
The Design and Implementation of a Low-Latency On-Chip Network

Robert Mullins, Andrew West and Simon Moore
Computer Laboratory, University of Cambridge

Robert.Mullins@cl.cam.ac.uk

Abstract— Many of the issues that will be faced by the
designers of multi-billion transistor chips may be alleviated by
the presence of a flexible global communication infrastructure.
In the short term, such a network will provide scalable
chip-wide communication and ease the complexity of handling
multi-cycle communications. In the long term, the network
will become a primary tool for optimising power and data
transfers and for scheduling computations. This paper details
the design and implementation of a low-latency on-chip
network. The network’s speculative routers are in the best case
able to route flits in a single clock cycle, helping to minimise
on-chip communication latencies and maximise the effectiveness
of buffering resources. Results from our 180nm test chip
demonstrate an inter-router data transfer rate in excess of
16Gbit/s for each link. In the best case each router hop adds
just 1 clock cycle to the final communication latency.

I. INTRODUCTION

Transistor switching speeds are continually improved
through scaling. Unfortunately, the impact of scaling on
long wires is a negative one. This forces an increase
in communication latencies and the energy required to
communicate each bit of information. The growing disparity
between communication and switching times will soon make
the provision of a chip-wide communication infrastructure
a central problem in achieving performance and power
dissipation goals. The resulting shift in design trade-offs will
lead to an era of “communication-centric” system design.

While constant length global wires fail to scale well,
the distance reachable in a single clock cycle in multiples
of λ does remain essentially constant [7]. This allows the
performance of designs of fixed complexity to scale when
ported to the next technology node. This observation leads to
the concept of a scalable architecture composed of a number
of tiles or modules of fixed complexity. The performance
of each tile scales as expected and additional performance
is possible by adding tiles as scaling permits. Inter-tile
communication is handled by an on-chip network which
consumes only a few percent of the total chip area. The
way in which such a system could scale is illustrated in
Table I. In this example the die size is assumed to be fixed at
256mm2. Each tile contains around 11M transistors and the
clock period is set to 16 FO4 delays. The table shows how
the frequency, size (width) and number of tiles scale. The
interconnect delay along one edge of a tile remains constant
at around one clock cycle.

The calculation of cycle time in Table I assumes one FO4
delay may be calculated as 500ps ∗Lgate (where Lgate is the
physical gate length as specified in [13]). The channel delays
were estimated using results from [1], [7]. In all cases it should

Technology Node No. of Tiles Width of Tile Tile Frequency
90nm 32 2.8mm 3.4GHz
65nm 64 2mm 5.0GHz
45nm 128 1.4mm 7.0GHz
32nm 256 1mm 13.0GHz

TABLE I

PREDICTED SCALING OF A GENERIC TILE-BASED SYSTEM

be possible to traverse the channel between two routers in less
than one clock cycle. Of course, if a longer clock period is
employed a smaller number of larger tiles may be used.

Such tile-based systems may implement arrays of
homogeneous processor/cache tiles [9], [10], finer-grain
computing fabrics [14] or networks of heterogeneous IP
blocks. Such approaches provide highly reconfigurable
platforms for a wide range of performance hungry
applications. The provision of an efficient chip-wide dynamic
on-chip network is fundamental in achieving performance
goals, flexibility and mitigating complexity in such systems.

Packet-switched networks employing Virtual Channel (VC)
flow control have recently been proposed as one approach
to implementing a chip-wide interconnection network [3].
Figure 1 illustrates the major components of a generic
virtual-channel router. Packets gain access to a physical
channel by first obtaining a virtual-channel (VC allocation).
Each of these virtual-channels has its own private input FIFO
at the destination router allowing flits1 from different packets
to be sent in an interleaved manner. Access to a physical
channel is now allocated on a cycle-by-cycle basis (switch
allocation) amongst waiting flits from any of the buffered
packets which have been assigned a VC. This scheme
improves both throughput and latency when compared to a
simple wormhole routed network by allowing blocked packets
to be bypassed. Particular classes of traffic may be restricted
to a subset of the available virtual-channels in order to
provide QoS enhancements or circumvent message-dependent
deadlocks.

II. SPECULATIVE ROUTER ARCHITECTURES

The description of virtual-channel flow control in Section
I implies that VC allocation and switch allocation are
performed sequentially. Peh and Dally [12] describe how this
dependency may be relaxed if we speculate that a waiting
packet will be successful in acquiring a VC. In this way
both VC and switch allocation may be performed in parallel.
In order to avoid a negative impact on performance, the

1A packet is composed of a number of flits (flow-control digits)



V

Output Channel

Output Channel

Crossbar
(P x P)

Input Port

Input Channel

Input Channel

VC Buffer

credit out

credit out

VC identifier

Switch Allocator

VC Allocator

Routing Logic

credits in

Fig. 1. A Virtual-Channel Router

switch allocator must prioritise non-speculative requests over
speculative ones. This is achieved by implementing two
switch allocators: one handling non-speculative requests from
packets which have been allocated a VC and one for requests
from packets awaiting VC allocation. We will refer to these
as the high and low priority switch allocators respectively
from this point onwards. Speculative requests are only
granted for a particular output when no regular requests are
present. In the case that a speculative request is granted we
must ensure that the VC has in fact been allocated and buffer
space exists downstream. Fortunately, such checks may be
performed in parallel with crossbar traversal.

III. SINGLE-CYCLE ROUTERS

The introduction of further speculative optimisations to
reduce the router pipeline depth to a single pipeline stage
was proposed in [11]. These optimisations almost completely
remove any control overhead from the critical path. Both
VC and switch allocation are now performed concurrently
with the transport of flits across the datapath and physical
channel. The ability to make such optimisations is based on
the following observations: if we assume that the network
is heavily loaded it should be possible to make scheduling
decisions accurately one clock cycle in advance. This is
because all the information necessary to make such a
decision is present when many packets are buffered. At the
other extreme, when the network is very lightly loaded, we
may assume that contention for a VC or physical channel is
low. In this case it is also possible to schedule one cycle in
advance by speculating that any new request for a VC or
physical channel may be granted immediately. Simulation
results predicted that for all intermediate throughputs the
router sacrifices only a few percent of performance over a
perfect single-cycle sequential scheme [11].

Figure 2 provides an outline of the single-cycle router
architecture. In this scheme VC and switch allocation is
effectively performed one cycle in advance and concurrently
with the transport of flits. Each allocator’s output is a set of
grant-enable signals which are registered and used on the

succeeding clock cycle to generate VC and switch allocation
grant signals. The presence of buffered flits allow resources
to be scheduled one cycle in advance, in this case the asserted
grant-enable signals correspond to the subset of requests to
be granted on the next clock cycle. If it is not possible to
schedule a particular VC or output in advance, a prediction
is made that there will be only one subsequent request for
the resource. In this case multiple grant-enable signals are
set. This allows any request on the next clock cycle, for the
resource in question, to be successful. Cases where multiple
requests are made on the following clock cycle are detected
by the abort logic described in Section III-A.

Datapath control signals are produced early in the clock
cycle by the “fast” logic blocks, simply by combining the
output port requests from each buffered (or newly arrived)
flit and the registered grant-enable signals. The output port
required by each flit is known without the need to first evaluate
a routing function by performing this task in the previous
router (look-ahead routing [6]).

A. Abort Detection

One issue which must be considered carefully is the case
when our prediction that requests on the next clock cycle will
not contend is subsequently proven false. Fortunately, to detect
these abort cases we only need consider newly arrived flits.
If flits were buffered on the previous clock cycle, speculation
would not have been necessary.

The abort logic associated with both VC and switch
allocation consists mainly of a comparison between each of
the output ports required by each new flit2. If we assume
there are P -input ports this requires P (P −1)/2 comparisons.
The abort logic detects cases where we are speculating and
two or more flits requiring the same output port resource
(physical link or VC) have arrived simultaneously. In these
cases the allocation of the resource is blocked incurring a one
clock cycle penalty. The correct scheduling of the resource
takes place during this time and non-speculative grant-enable
signals are generated for use on the following clock cycle.

In order to use the simple abort logic described above some
additional logic is required to account for one remaining corner
case. This is the scenario when a tail flit leaves an input buffer
and exposes a new packet (buffered head flit). As this packet
can now request any output port it is possible it will contend
with another such packet or newly arrived flit. The solution
adopted for such cases is to always stall such head flits for
one cycle to ensure they are handled properly by the switch
and VC allocation logic and need no further special treatment.
This has a negligible impact on performance.

B. Calculating the next set of requests

To enable the VC and switch allocators to produce accurate
grant-enable signals for the next clock cycle they may be fed
a set of requests that we know will be present on the next
clock cycle. These may be calculated by considering available

2At most one new flit may be received at each input port per clock cycle



If Necessary
Speculatively Allocate

New Flit’s output
port requests

New Flit’s
VC IDs

Output VC status
(blocked?)

Output VC status
(blocked?)

VC
Next

Switch
Next

High Priority
Switch Allocator

Low Priority
Switch Allocator

Virtual Channel
Allocator

If Necessary
Speculatively Allocate

VC ID Reg.

valid

control signals

Kill Logic
Flit

Detection
Abort

Where is 
speculation
taking place?

VC Flit Buffer

Channel Level
Flow Control

FSM

Crossbar

Free VC FIFO

Permit?

Tail Flits
Return

Free List
VC ID to

Output Port

input channel

channel flow

NextFreeVC
Output
Channel

channel
flow control
signals

FIFO Empty?

Current VC alloc.
requests (masked
by NextFreeVC)

VC
Fast

(A simple implem.
passes the current reqs.)

Output VC status (blocked?)

Current switch
allocation requests

Next Buffered Flit’s Output Port,
VC Alloc. Abort Signals,

Blocked VCs

Switch Allocation

Virtual Channel Allocation

switch grant enables

VC grant enables

Input Port Switch Control

Switch Allocator

Newly Allocated VC IDs

Newly Allocated VC IDs

Switch
Fast

Fig. 2. A single-cycle speculative virtual-channel router architecture. When necessary the router is able to speculate that flits arriving on the next clock cycle
may be routed without contention. During switch allocation the router is also able to speculate on the successful acquisition of VCs by new packets and on
the availability of buffer space at the flit’s destination.

information such as the current requests and those granted on
the current cycle. Information about the next buffered flit in
each VC buffer may also be exploited.

To ensure that the abort logic is the only place where we
need to handle mispredictions, it is important that the set of
requests output by the next request logic contains at least
the requests from those flits already buffered. Presenting
additional requests, e.g. those granted on the current cycle,
may reduce performance but will not cause the router to
malfunction. If requests that are to be made by buffered
flits are not considered, grant-enable signals may be set
speculatively enabling multiple buffered flits to gain access

to the same output (or VC). As only newly arrived flits
are considered by the abort logic, this problem would go
unchecked.

In the final router implementation we chose to accurately
calculate VC next requests using all the information available.
In the case of the switch scheduler we simply used the current
set of requests to schedule the switch for the next cycle. This
provided a significant improvement in cycle time with a small
architectural performance penalty (see comparison between
spec-fast and spec-accurate in Section V). The simplification
is aided by the fact that those switch requests recently granted
have a low arbitration priority.



C. Pipelining the use of VC state

The use of VC status information provides an example of
how internal control paths may be pipelined with only minor
changes to the architecture. In order to reduce cycle time it
was advantageous to pipeline the VC status data used by the
switch allocation logic. By adding a pipelining register, the
information provided to the switch allocator about which VC
is blocked becomes more out-of-date. In order to ensure the
quality of the switch schedule does not suffer significantly the
availability of both high- and low-priority switch allocators is
exploited. If a request is associated with a VC that appears to
be blocked it is steered to the low-priority allocator. Actual VC
blocked status is checked when the flit is selected for transport
(in parallel with its journey to its output port).

This sort of modification is simplified by the way in which
the architecture decouples scheduling from the datapath. The
allocator’s task is simply to provide the best schedule it
can for the next clock cycle with the information available.
Final checks on the validity of the schedule are delayed until
the schedule is applied. If advantageous, further pipelining
of the control logic internally could be exploited without
compromising the best case single cycle routing latency. This
could involve further pipelining of the allocators themselves.

IV. IMPLEMENTATION

The Lochside test chip consists of 16 traffic generating
tiles interconnected by a 4x4 mesh network. The chip is
implemented in UMC’s L180 logic process (1.8V core,
0.18µm) with all aluminium interconnect. Tiles and routers
are interconnected as shown in Figure 3. Each router is
connected to its neighbour using two unidirectional 80-bit
channels (64-bits of data and 16-bits of control information).
Each of the router’s input ports support 4 virtual-channels
and may buffer 4 flits on each virtual-channel.

The implementation is fully testable via traditional scan
chain techniques. An on-chip PLL may be used to provide
a clock source and is distributed to each tile using a simple
hand-crafted H-tree. Alternatively, a Distributed Clock
Generator (DCG) [5] may be selected as the global clock
source. In both cases, tile level clock distribution was
achieved by running a standard-cell clock tree synthesis tool.

The vast majority of the design is implemented in a standard
cell style. Exceptions include the DCG nodes and latch-based
virtual-channel buffers which benefited from a full-custom
implementation. The final router design was generated from a
highly parameterised network router model that allows a range
of router designs to be synthesized.

The performance of the design is limited by our current
PGA package (due to both thermal and bond-wire IR drop
issues). This limits the performance when running all traffic
generators to around 250MHz. If only two random packet
sources are enabled the maximum clock rate may be increased
to 300MHz.

Once a flit is received at a router’s input port it may
be allocated a virtual-channel and access to an output port,
traverse the crossbar and arrive at the destination router in a

single clock cycle (best case latency is simply one cycle per
hop). At 250MHz each router is able to transfer data at a
maximum rate of 16Gbits/s on each input and output link.

V. RESULTS

Each tile’s traffic generator is able to produce a wide
range of traffic patterns. Traffic destinations may be selected
randomly or deterministically with control over packet
length. Error detecting code and flit ordering checks are
also performed at each tile. Each tile maintains statistics on
the number of packets sent and received, together with the
timing information necessary to calculate average latency and
throughput. Each tile is able to inject traffic at a controlled
rate into a tile output queue. Packets injected into this queue
when it is full may be counted. The configuration system also
provides the necessary control logic in order to synchronise
the execution of commands at each tile, e.g. in order to start
and stop all tiles simultaneously.

Figure 5 shows the recorded average packet latency versus
measured throughput for our 4x4 mesh network. For each
experiment 16K packets were sent to uniformly distributed
destinations from each tile. Curves are plotted for a range
of fixed packet lengths. Experiments which resulted in the
tile output queue becoming full and generated packets being
dropped are not plotted.

A. Performance

The router was synthesized to operate at 200MHz under
worst case PVT operating conditions (around 35 FO4
including clocking overhead). If the speculative scheduling
optimisations are removed but VC and switch allocation is
still performed in parallel, the clock period is extended by a
factor of 1.65. It may be noted that the optimised router does

Router

Traffic
Generator

64+16 bit Channel

Distributed Clock Generator (DCG) Network

Pull−Down DCG NodePull−Up DCG Node

Fig. 3. Block Diagram of the Lochside Chip



Fig. 4. Lochside Die Micrograph. Die size is 5mm x 5mm. The chip contains
approximately 5 million transistors.

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

A
ve

ra
ge

 L
at

en
cy

 (
cl

oc
k 

cy
cl

es
)

Throughput (flits/node/clock cycle)

Packet Length

’8’
’6’
’4’
’2’
’1’

Fig. 5. Latency versus throughput measured from test-chip for a range of
packet lengths.

not quite achieve a speedup equal to the reduction in clock
cycle time. This is due to our router producing a slightly
inferior routing and VC allocation schedule as a result of
the approximations exploited to reduce cycle time. It is not,
as may be expected, directly as a consequence of VC and
switch aborts. The number of aborts is in fact consistently
very low. Overall our speculative scheduling optimisations
reduce average communication latency by a factor of 1.3 to
1.6.

Figure 6 plots latency against throughput for three router
architectures: (spec-fast) full speculation with no switch next
request logic, (spec-accurate) full speculation with accurate
switch next request logic and (sequential) concurrent switch
and VC allocation followed by switch traversal in the same
clock cycle. Each architecture was synthesized to calculate
its minimum clock period and the latency figures scaled to
account for these differences. The clock period results were,
30, 41 and 50 FO4 delays respectively (including 2 FO4 of
clock uncertainty). The packet length in these experiments was

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

A
ve

ra
ge

 L
at

en
cy

 (
in

 s
pe

c-
fa

st
 c

lo
ck

 c
yc

le
s)

Throughput (flits/node/clock cycle)

’sequential’
’spec-accurate’

’spec-fast’

Fig. 6. Latency/Throughput comparison for three router architectures.
Latency is scaled to account for differences in each router’s cycle time.

256-bits (4 flits).
In our final design the switch allocation critical

path is composed of the following delays: (32%) input
register, steering and buffering switch request to allocator,
(53%) switch allocation, (15%) selecting speculative or
non-speculative switch allocator result and speculatively
setting grant-enables if necessary.

The performance achieved by this implementation closely
tracks that predicted by earlier router simulation models.

B. Area

A 4x4 mesh network is not really practical for the size of our
test chip or its technology. The small tile size is dominated
by the area of each router (more than two thirds of a tile’s
area is taken by the network). However, if we move to the
next technology node (130nm) and imagine a larger chip (4x4
array of 3mm x 3mm tiles) synthesis results have shown that
the network area overhead is reduced to only 5 − 6%. This
overhead would drop even further if the scaling in Table I
was adopted.

The area overhead of the speculative single-cycle
architecture is small at around 8%. This compares the area of
two single cycle routers one with our optimisations and one
without. If the unoptimised case was pipelined, the difference
in area would fall as registers would be required to buffer
intermediate results.

VI. RELATED WORK

Our implementation compares favourably to other on-chip
network designs and implementations published to date.
Comparable networks which have been implemented include
the Philips Æthereal network-on-chip [4] and the RAW
processor’s dynamic networks [14]. The Philips team report
a similar peak link bandwidth of 16Gbit/s while operating
at 500MHz in a 130nm process. Control decisions are
actually taken at 166MHz. The router differs from ours in its
ability to offer guaranteed services by reserving consecutive



routing slots in consecutive routers. Virtual-channels are not
supported for improving the performance of best-effort traffic.
RAW’s dynamic networks operate at 225 MHz (worst-case
PVT). In this case the whole network is duplicated in
preference to exploiting virtual-channels. The RAW processor
was implemented using IBM’s 180nm 6LM ASIC copper
process

Other research projects include Netchip [8] which aims to
automatically generate application-specific on-chip networks.
The authors emphasise the need to maintain a high switch
operating frequency and adopt a deeply pipelined architecture
(7-stage router). Unfortunately this significantly increases
buffering requirements by extending round-trip time. It also
incurs a significant overhead in terms of the additional
pipelining registers required. Even if a very short clock period
of less than 10 FO4 is possible, best case communication
latencies would still be more than double that of our current
single cycle design.

A study of virtual-channel router implementations
undertaken by Peh and Dally [12] suggests that an on-chip
network typically requires 3 pipeline stages operating at a
clock frequency of 20 FO4. While our actual switch and
VC allocator implementations offer improvements over the
published delay models, clocking and test overheads and
internal buffering delays extend our clock period to around
35 FO4 in the final implementation. Improvements to the
input port logic to reduce this delay are ongoing. Even at 35
FO4 our network’s best case latency would be nearly half
that of their reported pipelined design.

A. Global Synchronisation

The speculative techniques at the heart of our router exploit
the presence of a global clock. Global synchronisation offers
regular snapshots of state and ensures the system proceeds
in a deterministic fasion. This simplifies the implementation
of the speculative scheduling mechanisms and ensures abort
detection and handling mispredictions is relatively simple.

The cost of providing a low-skew high-frequency global
clock is in both its complexity and the power it consumes.
In many designs this cost may be considered to be too
high. This has prompted asynchronous on-chip interconnect
techniques to be investigated [2], [15]. While such approaches
are promising, it is also possible to make similar trade-offs
while retaining a synchronous router implementation. The
first approach is to exploit known relationships between
router clock signals while relaxing global synchronisation.
Examples include source-synchronous communication and the
use of clock predictive synchronisers. Global synchronisation
may be relaxed further by generating clock pulses locally on
demand or in a data-driven manner. This allows each router
to operate at a rate dictated by the data it is transporting.
This both reduces synchronisation overheads and provides a
simple high-level approach to clock gating. Work in this area
is ongoing. Techniques such as the DCG [5] may also be
employed as previously discussed.

VII. CONCLUSION

This paper has detailed the design of an on-chip network
which can provide an efficient global communications
infrastructure for future gigascale ICs. A speculative
architecture is able to accurately produce datapath control
signals one cycle in advance of their use. This enables
both datapath and control logic to operate concurrently
providing significant latency improvements over previously
published work. A number of trade-offs between cycle time
and speculation accuracy have also been introduced and
evaluated.

The optimisations proposed are orthogonal to other well
known techniques for boosting performance such as adaptive
routing and are independent of the network topology selected.

ACKNOWLEDGEMENTS

This work is supported by EPSRC (grant GR/L86326) and
the Cambridge-MIT Institute.

REFERENCES

[1] V. Agarwal, M.S.Hrishikesh, S. W. Keckler, and D. Burger. Clock Rate
versus IPC: The End of the Road for Conventional Microarchitectures. In
Proceedings of the 27th Annual International Symposium on Computer
Architecture (ISCA), 2000.

[2] J. Bainbridge and S. B. Furber. Chain: A delay-insensitive chip area
interconnect. IEEE Micro, 22(5):16–23, 2002.

[3] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip
Interconnection Networks. In Proceedings of the 38th Design
Automation Conference (DAC), June 2001.

[4] J. Dielissen, A. Radulescu, K. Goossens, and E. Rijpkema. Concepts
and Implementation of the Philips Network-on-Chip. In IP-Based SOC
Design, Grenoble, France, Nov 2003.

[5] S. Fairbanks and S. Moore. Self-timed circuitry for global clocking.
In Proceedings of the 11th International Symposium on Asynchronous
Circuits and Systems, 2005.

[6] M. Galles. Scalable Pipelined Interconnect for Distributed Endpoint
Routing: The SGI SPIDER Chip. In Proceedings of Hot Interconnects
Symposium IV, 1996.

[7] R. Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford
University, 2003.

[8] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli. xpipesCompiler: A
tool for instantiating application specific Networks on Chip. In Design,
Automation and Test in Europe (DATE), Paris, France, Feb 2004.

[9] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,
and K. Asanovic. The Vector-Thread Architecture. In 31st International
Symposium on Computer Architecture (ISCA-31), Munich, Germany,
June 2004.

[10] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz.
Smart Memories: A Modular Reconfigurable Architecture. In 27th
International Symposium on Computer Architecture (ISCA-27), June
2000.

[11] R. D. Mullins, A. F. West, and S. W. Moore. Low-Latency
Virtual-Channel Routers for On-Chip Networks. In Proceedings of the
31st Annual International Symposium on Computer Architecture (ISCA),
2004.

[12] L.-S. Peh and W. J. Dally. A Delay Model and Speculative Architecture
for Pipelined Routers. In International Symposium on High-Performance
Computer Architecture, pages 255–266, Jan 2001.

[13] Semiconductor Industry Association. International technology roadmap
for semiconductors (2004 update), 2004.

[14] M. B. Taylor et al. Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams. In The 31st
Annual International Symposium on Computer Architecture (ISCA-31),
Munich, Germany, June 2004.

[15] T.Felicijan and S.B.Furber. An Asynchronous On-Chip Network
Router with Quality-of-Service (QoS) Support. In Proceedings
IEEE International SOC Conference, pages 274–277, Santa Clara, CA,
September 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


