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Abstract - This paper addresses the problem of minimizing 
energy consumption of a computer system performing 
periodic hard real-time tasks with precedence constraints. 
In the proposed approach, dynamic power management 
and voltage scaling techniques are combined to reduce the 
energy consumption of the CPU and devices. The 
optimization problem is first formulated as an integer 
programming problem. Next, a three-phase solution 
framework, which integrates power management 
scheduling and task voltage assignment, is proposed. 
Experimental results show that the proposed approach 
outperforms existing methods by an average of 18% in 
terms of the system-wide energy savings.  

I. INTRODUCTION 

Reducing power consumption is a key requirement for 
extending the battery service lifetime of portable devices. 
Even in high-end computer systems, expensive cooling and 
packaging cost and declined reliability associated with high 
levels of power dissipation, make low power design a critical 
design consideration. Dynamic power management (DPM) 
and dynamic voltage scaling (DVS) have both proven to be 
highly effective techniques for reducing power dissipation in 
such systems. DPM refers to a selective shut-off of idle 
system components, while DVS slows down underutilized 
resources and decreases their operating voltages. A detailed 
survey of DPM techniques can be found in [1]. 

Most researches on low-power task scheduling focus only 
on reducing the CPU power by using DVS techniques. 
However, in reality, executing a useful task on a computer 
system requires cooperation between the CPU and many other 
system components, e.g., memory, disk drives, wireless 
devices, etc., which can also consume significant amounts of 
power. These components generally have their own voltage 
levels and may or may not support DVS, which makes it 
difficult to apply DVS techniques to the CPU only and 
achieve total system power savings. In fact, DVS when 
applied to CPU only may even increase the overall system 
energy consumption for executing a given set of tasks. At the 
same time, DPM is known to be an effective approach for 
reducing the power consumption of the various peripheral 
components and I/O devices. Thus DVS combined with DPM 
has the potential to achieve power savings, not possible by 
either DPM or DVS. 

This paper addresses the problem of power optimization 
of a real-time system having heterogeneous components and 
performing periodic hard real-time tasks. The dependencies 
between the tasks are described by a directed acyclic graph 
(DAG), sometimes referred to as a task graph.  

Most related work on low power scheduling for dependent 
tasks concentrate on DVS techniques. Some authors have 
considered voltage assignment on distributed embedded 
systems.  The approach proposed in [2] first schedules tasks 
based on a list-scheduling algorithm by using the reciprocal of 
the slack time as the task priority, and next tries to evenly 
distribute the available positive slack time among tasks on 
each critical path and thereby reduce the operating voltages 
and save energy. Reference [3] assumes a given task schedule 
and assignment and proposes an extended list-scheduling 
algorithm. At each time step, the energy saving of a task is 
calculated as the difference between the expected energies 
given the task is scheduled at this step or at the next step. A 
task with a higher energy saving and less slack time has a 
higher priority. The authors of [4] present a two-phase 
framework. In the first phase, a version of the early-deadline-
first scheduling is used to assign a task to a best-fit processor 
in terms of the task ready time and the processor free time. In 
the second phase, an ILP optimization problem is formulated 
and solved in order to determine the voltage level of the 
processor used to run each task.  

Several works on DPM-based task scheduling have also 
been proposed in the literature. An online scheduling 
algorithm for independent tasks is presented in [5]. This 
algorithm attempts to reduce the number of device on/off 
transitions by greedily extending the pattern for current device 
usage so as to reduce average power consumption in the near 
future. Reference [6] proposes an offline branch-and-bound 
algorithm to search for the energy optimal task scheduling. In 
[7], the authors prove that solving energy optimal task 
scheduling for DPM on multiple devices is an NP hard 
problem even for a simple case where no timing dependency 
is considered. References [8] and [9] start with a given 
timing-fixed task sequence and propose algorithms to 
determine an energy-minimal state transition sequence for 
devices while satisfying hard time constraints. 

More recently, a number of researchers have reported 
DVS algorithms taking into account energy consumption of 
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the system components. In [10] the authors present a DVS 
heuristic based on the critical speed of each task, which is 
defined as the CPU speed at which the execution of a task 
consumes the least total system energy. Reference [11] 
proposes a DVS technique based on a precise energy model 
considering both the active power and standby component of 
the system power.  

In the literature, several works have been proposed on 
combining DVS and DPM. Reference [12] present a 
Markovian decision processes based DPM model which is a 
uniform modeling framework for both DVS and DPM. In 
[13], the authors combine DVS with their previously 
proposed renewal theory based DPM approach. These two 
stochastic approaches are unable to handle tasks with hard-
time constraints or dependency. The problem of combining 
DVS and DPM for hard real-time tasks is studied in reference 
[14], where a scheduling algorithm for a single processor with 
a sleep state is presented which is proved having a 
competitive ratio of 3. Task dependency is not considered in 
this work either.  

To the best of our knowledge, no proposed research work 
is conducted to combine DVS and DPM techniques for hard 
real-time dependent tasks running on multiple devices. This is 
specifically the contribution of the present paper. In particular, 
an integer programming based formulation is first provided to 
exactly state the optimization problem to be addressed. Next, 
a three-phase algorithm is proposed to solve the power-aware 
task scheduling and voltage-to-task assignment problems with 
the objective of minimizing the total system energy 
consumption. The three steps are power-aware task 
scheduling, task-level voltage assignment, and task 
rescheduling and voltage level refinement. 

The remainder of the paper is organized as follows: The 
problem formulation is presented in section 2. The three steps 
of the proposed algorithm are described in sections 3, 4 and 5, 
respectively. Experimental results and conclusions are given 
in sections 6 and 7.   

II. PROBLEM FORMULATION  

This paper targets a real-time system which has a single CPU 
and κ system devices (e.g., various I/O devices, main 
memory.) The CPU is considered to be device number 0 
whereas other devices are numbered from1 to κ. The CPU has 
a discrete number of performance states corresponding to 
different supply voltage levels and clock frequencies and one 
sleep state. All other devices have a functional state during 
which they provide service and a low power sleep mode 
during which they cannot provide any services. 2  Furthermore, 
a device which is in the performance/functional state can be in 
one of two sub-states: 1) actively performing services; 2) 
waiting for service requests to arrive. We will refer to sub-
state 1 as the active state and sub-state 2 as the idle state. We 
assume that each device k consumes the same amount of 
power when they are in active or idle mode (denoted by 

                                                           
2 It is straight-forward to extend the mathematical formulation to 

handle I/O devices with multiple low-power states (e.g., standby, 
drowsy, and sleep.)  

funcpowk), but significantly less power when it is in the sleep 
mode (sleepowk.) 

A set of n non-preemptive dependent tasks periodically 
run on the system with a time period Td. The data dependency 
(precedence) constraints between the tasks are described by a 
directed acyclic task graph, called a task graph, G(V, E), 
where each node v denotes a task and a directed edge e(u, v) 
represents a data flow between task u and v and implies that 
task v can be executed only after task u finishes. Every task 
has to be performed on the CPU, and may require support 
(services) from some (or all) of the system devices. It is 
assumed that during the run time of a task, all devices whose 
services are required by the task in question will stay in their 
active modes. The problem is to solve the optimal task 
scheduling and task-level voltage assignment with the 
objective of minimizing the total system energy consumption 
during period Td.  

Let Vi, i =1, …, m, denote the m operating voltages for the 
CPU and fi the clock frequency of the CPU at voltage Vi. We 
define the workload of task u as the number of CPU cycles 
without considering memory and IO device access delay. Let 
Nu,i denote the actual number of CPU cycles required to 
complete task u at operating voltage Vi. We define variable 
x(u, i) to represent the percentage of the workload of task u 
which is performed at voltage Vi. Note that there are m·n such 
variables. The execution time (duration) of task u is 
calculated as 
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We introduce n.κ 0-1 integer variables, Zk(u), as follows: 
( ) 1kZ u =  exactly if task u requires service from device k. The 

energy consumption due to execution of task u is equal to 
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where cu is the effective switched capacitance per CPU cycle; 
and Pk is the power consumption of device k in the active 
mode. 

Let s(u) denote the start time of task u. Thus the 
precedence constraint is expressed as 

( ) ( ) ( , )us u dur s v e u v E+ ≤ ∀ ∈  

To formulate the energy consumed by the CPU and 
devices during idle time, we need to introduce two virtual 
(dummy) tasks: task 0 of duration zero which is placed at 
exactly the start of period Td and task n+1 of duration zero 
which is placed at the end of period Td.  We define tasks 0 and 
n+1 so as to require all devices, i.e., 

(0) 1 and ( 1) 1,  k kZ Z n k= + = ∀ . Notice that the interval 

between task 0 and the first task executed on device k denotes 
the first idle period. Similarly, the last idle period is defined 
as the interval between the last task executed on device k and 
task n+1. Also notice that. 

We introduce (n+2)2k 0-1 integer scheduling variables 
Yk(u,v) as follows: Yk(u,v) = 1 exactly if task u is executed on 
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device k immediately before task v is executed on the same 
device. Since on each device, every task has only one 
immediate successor, the following constraint on Yk(u,v) 
should be respected 
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Similarly, every task has only one immediate predecessor; i.e., 
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There is also a precedence constraint between task v and its 
immediate successor, both of which are executed on device k, 
as follows 

0
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With variable Yk(u,v), we can express the duration of the idle 
time of device k just before it provides service to task v, itk,v, 
as 
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Let function idlenek(it) return the energy consumed by 
device k during idle time of length it. Note that the device 
may be placed in a low-power state during its long idle times, 
as suggested, for instance, in [8][9]. For the illustration 
purpose, assume that device k has two power states: active 
and sleep.  Let pa and ps denote the power consumptions of 
the device in the active and sleep states, respectively. Let εtr 
and τtr denote the summation of energy overheads and latency 
overheads associated with the two transitions into and out of 
the sleep state, respectively. Recall that the breakeven time is 
equal to ( )/BE tr a sp pτ ε= − . Then, 
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Thus, the total energy consumed by the system during time 
period Td is calculated as 
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Notice that when executing a periodical task set, for a device, 
the idle time before the first task starts and the idle time after 
the last task finishes actually constitute a single idle period. 
The third term on the right-hand side of equation (2-9) 
calculates the device energy consumption for such an idle 
period. The second term on the RHS handles all the other idle 
times.  

The optimization problem is to minimize Esys with respect 
to constraints (2-1) to (2-8). Note that in this formulation, we 
ignore the energy and timing overhead associated with the 
voltage changes because switching of the CPU voltage 
normally takes between 10-100 microseconds depending on 
the hardware support for the DVS function. This is negligible 
compared to the device on/off transition times, which tend to 
be in the range of a few tenths of a second. The corresponding 
energy overhead is also small. 

This problem is a nonlinear non-convex integer program 
over variables s(u), x(u,i) and Yk(u,v); the worst-case 
computational complexity of exactly solving this problem is 
expected to be exponential. So we propose a three-step 
heuristic approach to solve the problem as follows: 

1. Task Ordering: Derive a linear ordering of tasks (i.e., 
calculate Yk(u,v) values) by performing an interactive 
minimum-cost matching on some appropriately 
constructed graph (cf. section 3.) 

2. Voltage Assignment: Given the task ordering implied by 
the schedule obtained in step 1, assign voltages and task 
durations (i.e., calculate x(u,i) values) and exact start times 
(i.e., calculate s(u) values) to each task so as to meet a 
target cycle time, Td  (cf. section 4.) 

3. Refinement: Improve the task scheduling and voltage 
assignment of steps 1 and 2 to increase the energy 
efficiency of the resulting solutions (cf. section 5.) 

III. TASK ORDERING 

In this step, we assume that the CPU voltage level is set to the 
maximum possible value and that the task execution times 
(durations) are calculated on this basis.3 The goal is to take 
the task graph with known task execution times and schedule 
it on the CPU (device 0) so as to minimize the total energy 
dissipation due to I/O devices (1,…, κ) staying in the idle 
mode and that caused by transitioning the devices from their 
high-power functional state to the low-power sleep state. 
Notice that the summation of energy dissipation in all devices 
(0,…, κ) when these devices are in active states is fixed and 
independent of the scheduling. The scheduling only changes 
the duration of the idle times and the number of on to off 
transitions for the I/O devices.   

Let tasksk denote the set of tasks running on device k and 
devu denote the set of devices that are needed by task u.  A 
lower bound on the total system energy dissipation, toteneLB 
can be obtained by assuming that there is no energy overhead 
for the transitions between idle and sleep states of any device 

0
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u k
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totene funcpow dur sleepow T dur
κ
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Now, the actual total energy includes the energy consumed by 
various devices when they stay in their idle modes and when 
they transition in and out of the sleep modes. Let’s denote the 
schedule, Λ, by the start times of all tasks in the given task 
graph. Based on this information, one can linearly order the 
set of tasks and represent the active times of each device as a 
set of closed intervals. More precisely, device k will be 
represented by a segment set, Sk={sk,1,…,sk,z} (z≤n) 
corresponding to the time intervals during which the device is 
in its active state.  
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Other heuristic assignments are possible. Note, however, that we 
are only interested in the ordering of tasks after the completion of 
this step and will in fact calculate the exact task schedule and 
execution times after voltage assignment. 
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Here start(s) and end(s) denote the start time and end time of 
segment s while transenek denotes the total transition energy 
cost of device k to go from idle mode to the sleep mode and 
to return to the active mode.   

Next we construct an augmented task graph (ATG) 
A(V,C) from the given task graph G(V,E) by copying G(V,E) 
and subsequently adding/deleting some edges to/from E. 
More precisely, the new edge set, C, does not contain any 
directed edge uv such that there exists another directed path 
from u to v in C. In addition, C contains undirected edges qr if 
tasks associated with q and r can be scheduled next to each 
other in some order. In addition, each node, q, in V (task) has 
three attributes: task execution time, durq, task energy 
consumption, eneq, and the list of devices that are required by 
the task, devq. Finally, each directed edge qr in C, has an 
associated energy cost, extraeneqr, calculated as follows 
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Each undirected edge between nodes q and r will have two 
such energy costs corresponding to directed edges qr and rq. 
Note however that at most one of the two directed edges may 
be chosen as part of the scheduling solution. 

The basic flow of the proposed scheduling algorithm is to 
iteratively find the edge with the least extra energy value and 
merge its two end nodes, implying that the corresponding 
tasks will be scheduled to run in immediate succession. For a 
directed edge, the ordering is fixed a priori whereas for the 
undirected edge, the algorithm will choose one of the two 
possible orderings and fix it. After each merge, the ATG is 
updated by removing all edges that become invalid and 
calculating the attributes for the newly generated node. The 
process continues until a single node is left in the ATG, which 
corresponds to a total ordering (scheduling) of all the tasks. 
The process continues until exactly one node remains in the 
modified ATG (i.e., a complete schedule is obtained.)  If at 
any step of the algorithm, there is a tie between the extra 
energy costs of two candidate edges qr and uw, then we will 
choose the edge that would result in the minimum total extra 
energy cost, extraenetot, of the resulting graph if the merge 
was performed. Now, extraenetot is calculated as the 
summation of the node weights of the resulting graph where 
the node weight is itself calculated as the average of the extra 
edge costs of outgoing edges from that node.  

Example 1: Consider a task graph depicted in Figure 1(a). 
Assume that there are four devices {0,1,2,3} with the 
following device utilization sets:  

( 1) {0}

( 2) ( 4) {0,1}

( 3) ( 5) ( 6) {0,2,3}

dev u

dev u dev u

dev u dev u dev u

=
= =
= = =

.   

For the sake of simplicity, we assume that each task has a unit 
time duration (which is longer than its breakeven time) and 
that the idle power consumption of all devices is the same. In 
addition, each device consumes 1 unit of energy for each 
transition to and from the sleep state. The ATG graph of this 
task set is given in Figure 1(b). The directed edge u1u2 exists 
in ATG, because there is a precedence constraint between 
nodes u1 and u2 and u2 can be scheduled immediately after 
u1. The presence of undirected edge u2u3 implies that u2 and 
u3 can be scheduled next to the other without any ordering 
constraint. The edge labels denote the energy consumption if 
the start and end nodes of the edge are scheduled one after the 
other. For simplicity, assume all node energies are 0.  

 
(a) Initial task graph            (b) ATG 

 
(c) ATG after merging a pair of node  

Figure 1. Illustrative example for power-aware task schedule. 

With this ATG, we can start the task scheduling for power 
management. There are five edges with minimal edge energy 
equal to 0. That is, we can merge the pair of nodes associated 
with each of these edges without incurring additional energy 
cost. In Figure 1(c), three ATGs are presented, each 
corresponding to the merging of the node pair for one of the 
edges. Let us consider the left-most ATG which is generated 
after merging u2 and u4. Since there is a directed edge from 
u2 to u4, u4 must be scheduled after u2. After the u2-u4 
merge, the edge from u3 to u2 becomes a directed edge, 
because originally u3 had to be executed before u4 which has 
now been merged with u2 into a single node. The directed 
edge from u1 to u2 in the initial ATG disappears because 
after the u2-u4 merge, u3 stands between u1 and u2 in the 
precedence chain.  

The left-most ATG in Figure 1(c) has the minimal EATG 
value equal to 5. So the merge of u2 and u4 is selected for the 
first step.  



 

IV. VOLTAGE ASSIGNMENT 

Having generated the task schedule, we fix the ordering of 
tasks, but otherwise, ignore the task execution times and start 
times, which were heuristically set as explained at the 
beginning of section 3, we can easily calculate the Yk(u,v) 
values. Thus by substituting the value of Yk(u,v) into the 
optimization problem formulated by (2-1) through (2-9), all 
constraints becomes linear constraints and the only unknowns 
become s(u) and x(u,i) variables. However, the optimization 
problem cannot be solved exactly and efficiently, because the 
objective function remains a non-convex function of idle 
times, it. We thus propose two approaches to get around this 
non-convexity issue.  

The first one simply ignores the energy components 
introduced by idlenek in equation (2-9). The optimization 
problem thus becomes a linear programming problem over 
continuous variable x(u,i), which can be solved in polynomial 
time. It is worth pointing out that, strictly speaking, x(u,i) 
should take discrete values instead of continuous ones, 
because the number of CPU cycles executed at each operating 
voltage is an integer. However, when we consider a task 
executed in hundreds of thousands of CPU cycles, the effect 
introduced by rounding up to one cycle can be safely ignored. 

The second approach introduces new 0-1 integer variables 
Wk(v,h) to approximate the idle time itk,v as follows: Wk(v,h) 
=1 exactly if tk,h≤ itk,v < tk,h+1. tk,h and tk,h+1  take values from a 
discrete set {tk,1, tk,2, …, tk,H}. The value of idlenek(it) is 
approximated by 
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And equation (2-9) becomes an integer linear cost function. 
As a result, the original optimization problem is approximated 
with a mixed integer linear program. The value of parameter 
H can be adjusted to trade-off the computational complexity 
and the approximation accuracy.  

V. REFINEMENT 

In this section, we provide a top-level overview of an 
algorithm that we have developed to improve the results 
obtained by the first two steps. Starting from the solution 
obtained from steps 1 and 2, we shift the tasks together to 
remove redundant positive slack times.  Next, we apply a 
greedy refinement algorithm on this solution to improve the 
total energy cost while meeting the timing constraint. In 
particular, we identify the set of critical tasks whose duration 
has a large impact on the system energy dissipation, e.g. a 
small change of the duration could enable device transitions 
to low power states, and change their voltage assignments 
accordingly. Detailed are omitted.   

VI. EXPERIMENTAL RESULTS 

This experiment is conducted on a system comprising of a 
single CPU and three other devices. The CPU has three 
operating voltage/frequency levels: 1V/200MHz, 
1.1V/300MHz and 1.3V/400MHz [11]. The CPU and all 
devices support only one low-power sleep state. The power 
consumptions in different states, energy and timing overheads 
of state transitions for both the CPU and the three devices are 
reported in Table 1.  

TABLE 1  

Power and transition parameters 

Device Active 
Power 

Sleep 
Power 

Energy 
Overhead 

Timing 
Overhead 

SDRAM 0.3W ~0 ~0 ~0 

HDD 2.1W 0.85W 0.6J 400ms 

WLAN 0.7W 0.05W 0.04J 100ms 

CPU 

 

1.0W 

(200MHz) 

0.05W 0.3J 400ms 

To evaluate the effectiveness of our proposed approach, 
we generated five task graphs by using software package, 
TGFF [15], which is a randomized task graph generator 
widely used in the literature to evaluate the performance of 
scheduling algorithms. Each task graph consists of 20 to 200 
tasks. All tasks require supports from SDRAM. The 
dependency of tasks on HDD and WLAN were randomly 
generated and fixed before optimization. The characteristics 
of different task graphs are given in the following table. For 
example, for task graph G1, when the CPU has its highest 
frequency setting, the cpu is used during 61% of the total 
execution whereas the SDRAM, HDD and WLAN are used 
for 61%, 29% and 42% of the total time.  

TABLE 2  

Characteristics of task graphs 

Task 

Graph 
No. of 
Tasks 

CPU and device utilization factors at 
max speed for the CPU 

CPU SDRAM HDD WLAN 

G1 28 0.61 0.61 0.29 0.42 

G2 65 0.72 0.72 0.51 0.39 

G3 110 0.34 0.34 0.12 0.23 

G4 159 0.48 0.48 0.30 0.25 

G5 204 0.55 0.55 0.28 0.36 

In this experiment, we compare the total system energy 
consumptions of the following methods: 

M1: No DVS, no DPM. The CPU always operates at the 
highest voltage level and devices are kept active during the 
whole execution time. This provides the baseline compare 
against. 

M2: DPM without any task scheduling. Tasks are 
executed on the CPU (which has assumed its highest 
frequency and voltage setting) in an un-optimized order based 
on their ID numbers after they become available. A method 
similar to the approach in [8] is used to determine the state 
transition sequences of all devices and the CPU. 

M3: DPM with task scheduling. This method is similar to 
M2, except that our proposed power-aware task scheduling 
algorithm is used to determine the task execution sequence.  



 

M4: Conventional cpu-driven DVS plus DPM. Similar to 
M2, except that the task operating voltage is assigned to 
minimize the CPU power consumption. More specifically, the 
operating voltage setting for each task is obtained by solving 
the optimization problem defined in section 2 without 
considering the energy consumption of devices.  

M5: Proposed system-aware DVS plus DPM (which have 
called, Power-aware Scheduling and Voltage Setting or PSVS 
for short.) Task scheduling and operating voltage settings are 
determined through the proposed three-phase framework.  

TABLE 3 
 Normalized energy consumption results for different 

techniques 

Task Graph M2 M3 M4 M5 

G1 0.54 0.50 0.58 0.47 

G2 0.67 0.59 0.63 0.53 

G3 0.28 0.26 0.32 0.25 

G4 0.40 0.35 0.42 0.34 

G5 0.43 0.37 0.39 0.33 

The energy consumptions of different techniques are compared 
in Table 3. These values have been normalized with respect to the 
baseline energy consumption of M1, e.g., for G1, M2 results in total 
system energy consumption which is 54% of the baseline energy 
consumption. From this table, it is seen that compared to DPM 
technique without task scheduling, our proposed DPM with task 
scheduling can reduce energy consumption by an average of 11%. 
Furthermore, when this method is combined with our proposed 
voltage assignment technique (resulting in M5 or PSVS), an 
additional 9% energy saving is achieved. 

VII. CONCLUSIONS 

This paper addresses the problem of minimizing energy 
consumption of a computer system performing periodic hard 
real-time tasks with precedence constraints. In the proposed 
approach, dynamic power management and voltage scaling 
techniques are combined to reduce the energy consumption of 
the CPU and devices. The optimization problem is first 
formulated as an integer programming problem. Next, a three-
phase solution framework, which integrates power 
management scheduling and task voltage assignment, is 
proposed. Experimental results demonstrate efficiency of the 
proposed approach.  
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