

Power-Aware Scheduling and Dynamic Voltage Setting for
Tasks Running on a Hard Real-Time System1

1 This project was funded in part by the NSF CNS grant no. 0509564.

Abstract - This paper addresses the problem of minimizing
energy consumption of a computer system performing
periodic hard real-time tasks with precedence constraints.
In the proposed approach, dynamic power management
and voltage scaling techniques are combined to reduce the
energy consumption of the CPU and devices. The
optimization problem is first formulated as an integer
programming problem. Next, a three-phase solution
framework, which integrates power management
scheduling and task voltage assignment, is proposed.
Experimental results show that the proposed approach
outperforms existing methods by an average of 18% in
terms of the system-wide energy savings.

I. INTRODUCTION

Reducing power consumption is a key requirement for
extending the battery service lifetime of portable devices.
Even in high-end computer systems, expensive cooling and
packaging cost and declined reliability associated with high
levels of power dissipation, make low power design a critical
design consideration. Dynamic power management (DPM)
and dynamic voltage scaling (DVS) have both proven to be
highly effective techniques for reducing power dissipation in
such systems. DPM refers to a selective shut-off of idle
system components, while DVS slows down underutilized
resources and decreases their operating voltages. A detailed
survey of DPM techniques can be found in [1].

Most researches on low-power task scheduling focus only
on reducing the CPU power by using DVS techniques.
However, in reality, executing a useful task on a computer
system requires cooperation between the CPU and many other
system components, e.g., memory, disk drives, wireless
devices, etc., which can also consume significant amounts of
power. These components generally have their own voltage
levels and may or may not support DVS, which makes it
difficult to apply DVS techniques to the CPU only and
achieve total system power savings. In fact, DVS when
applied to CPU only may even increase the overall system
energy consumption for executing a given set of tasks. At the
same time, DPM is known to be an effective approach for
reducing the power consumption of the various peripheral
components and I/O devices. Thus DVS combined with DPM
has the potential to achieve power savings, not possible by
either DPM or DVS.

This paper addresses the problem of power optimization
of a real-time system having heterogeneous components and
performing periodic hard real-time tasks. The dependencies
between the tasks are described by a directed acyclic graph
(DAG), sometimes referred to as a task graph.

Most related work on low power scheduling for dependent
tasks concentrate on DVS techniques. Some authors have
considered voltage assignment on distributed embedded
systems. The approach proposed in [2] first schedules tasks
based on a list-scheduling algorithm by using the reciprocal of
the slack time as the task priority, and next tries to evenly
distribute the available positive slack time among tasks on
each critical path and thereby reduce the operating voltages
and save energy. Reference [3] assumes a given task schedule
and assignment and proposes an extended list-scheduling
algorithm. At each time step, the energy saving of a task is
calculated as the difference between the expected energies
given the task is scheduled at this step or at the next step. A
task with a higher energy saving and less slack time has a
higher priority. The authors of [4] present a two-phase
framework. In the first phase, a version of the early-deadline-
first scheduling is used to assign a task to a best-fit processor
in terms of the task ready time and the processor free time. In
the second phase, an ILP optimization problem is formulated
and solved in order to determine the voltage level of the
processor used to run each task.

Several works on DPM-based task scheduling have also
been proposed in the literature. An online scheduling
algorithm for independent tasks is presented in [5]. This
algorithm attempts to reduce the number of device on/off
transitions by greedily extending the pattern for current device
usage so as to reduce average power consumption in the near
future. Reference [6] proposes an offline branch-and-bound
algorithm to search for the energy optimal task scheduling. In
[7], the authors prove that solving energy optimal task
scheduling for DPM on multiple devices is an NP hard
problem even for a simple case where no timing dependency
is considered. References [8] and [9] start with a given
timing-fixed task sequence and propose algorithms to
determine an energy-minimal state transition sequence for
devices while satisfying hard time constraints.

More recently, a number of researchers have reported
DVS algorithms taking into account energy consumption of

Peng Rong

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
e-mail : prong@usc.edu

Massoud Pedram

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
e-mail : pedram@ceng.usc.edu

the system components. In [10] the authors present a DVS
heuristic based on the critical speed of each task, which is
defined as the CPU speed at which the execution of a task
consumes the least total system energy. Reference [11]
proposes a DVS technique based on a precise energy model
considering both the active power and standby component of
the system power.

In the literature, several works have been proposed on
combining DVS and DPM. Reference [12] present a
Markovian decision processes based DPM model which is a
uniform modeling framework for both DVS and DPM. In
[13], the authors combine DVS with their previously
proposed renewal theory based DPM approach. These two
stochastic approaches are unable to handle tasks with hard-
time constraints or dependency. The problem of combining
DVS and DPM for hard real-time tasks is studied in reference
[14], where a scheduling algorithm for a single processor with
a sleep state is presented which is proved having a
competitive ratio of 3. Task dependency is not considered in
this work either.

To the best of our knowledge, no proposed research work
is conducted to combine DVS and DPM techniques for hard
real-time dependent tasks running on multiple devices. This is
specifically the contribution of the present paper. In particular,
an integer programming based formulation is first provided to
exactly state the optimization problem to be addressed. Next,
a three-phase algorithm is proposed to solve the power-aware
task scheduling and voltage-to-task assignment problems with
the objective of minimizing the total system energy
consumption. The three steps are power-aware task
scheduling, task-level voltage assignment, and task
rescheduling and voltage level refinement.

The remainder of the paper is organized as follows: The
problem formulation is presented in section 2. The three steps
of the proposed algorithm are described in sections 3, 4 and 5,
respectively. Experimental results and conclusions are given
in sections 6 and 7.

II. PROBLEM FORMULATION

This paper targets a real-time system which has a single CPU
and κ system devices (e.g., various I/O devices, main
memory.) The CPU is considered to be device number 0
whereas other devices are numbered from1 to κ. The CPU has
a discrete number of performance states corresponding to
different supply voltage levels and clock frequencies and one
sleep state. All other devices have a functional state during
which they provide service and a low power sleep mode
during which they cannot provide any services. 2 Furthermore,
a device which is in the performance/functional state can be in
one of two sub-states: 1) actively performing services; 2)
waiting for service requests to arrive. We will refer to sub-
state 1 as the active state and sub-state 2 as the idle state. We
assume that each device k consumes the same amount of
power when they are in active or idle mode (denoted by

2 It is straight-forward to extend the mathematical formulation to

handle I/O devices with multiple low-power states (e.g., standby,
drowsy, and sleep.)

funcpowk), but significantly less power when it is in the sleep
mode (sleepowk.)

A set of n non-preemptive dependent tasks periodically
run on the system with a time period Td. The data dependency
(precedence) constraints between the tasks are described by a
directed acyclic task graph, called a task graph, G(V, E),
where each node v denotes a task and a directed edge e(u, v)
represents a data flow between task u and v and implies that
task v can be executed only after task u finishes. Every task
has to be performed on the CPU, and may require support
(services) from some (or all) of the system devices. It is
assumed that during the run time of a task, all devices whose
services are required by the task in question will stay in their
active modes. The problem is to solve the optimal task
scheduling and task-level voltage assignment with the
objective of minimizing the total system energy consumption
during period Td.

Let Vi, i =1, …, m, denote the m operating voltages for the
CPU and fi the clock frequency of the CPU at voltage Vi. We
define the workload of task u as the number of CPU cycles
without considering memory and IO device access delay. Let
Nu,i denote the actual number of CPU cycles required to
complete task u at operating voltage Vi. We define variable
x(u, i) to represent the percentage of the workload of task u
which is performed at voltage Vi. Note that there are m·n such
variables. The execution time (duration) of task u is
calculated as

,

1

(,)m
u i

u
i i

x u i N
dur

f=

⋅
=∑ ,

where
1

(,) 1
m

i

x u i
=

=∑ .

We introduce n.κ 0-1 integer variables, Zk(u), as follows:
() 1kZ u = exactly if task u requires service from device k. The

energy consumption due to execution of task u is equal to

2
,

1 1

(,) ()
m K

u u u i i k k u
i k

ene c x u i N V Z u P dur
= =

= ⋅ ⋅ + ⋅ ⋅∑ ∑ ,

where cu is the effective switched capacitance per CPU cycle;
and Pk is the power consumption of device k in the active
mode.

Let s(u) denote the start time of task u. Thus the
precedence constraint is expressed as

() () (,)us u dur s v e u v E+ ≤ ∀ ∈

To formulate the energy consumed by the CPU and
devices during idle time, we need to introduce two virtual
(dummy) tasks: task 0 of duration zero which is placed at
exactly the start of period Td and task n+1 of duration zero
which is placed at the end of period Td. We define tasks 0 and
n+1 so as to require all devices, i.e.,

(0) 1 and (1) 1, k kZ Z n k= + = ∀ . Notice that the interval

between task 0 and the first task executed on device k denotes
the first idle period. Similarly, the last idle period is defined
as the interval between the last task executed on device k and
task n+1. Also notice that.

We introduce (n+2)2k 0-1 integer scheduling variables
Yk(u,v) as follows: Yk(u,v) = 1 exactly if task u is executed on

(2-1)

(2-3)

(2-4)

(2-2)

device k immediately before task v is executed on the same
device. Since on each device, every task has only one
immediate successor, the following constraint on Yk(u,v)
should be respected

1

1

1, () 1
(,) , 0,1,...,

 0, otherwise

n
k

k
v

Z u
Y u v u n

+

=

=⎧
= =⎨
⎩

∑

Similarly, every task has only one immediate predecessor; i.e.,

0

1, () 1
(,) , 1,2,..., 1

 0, otherwise

n
k

k
u

Z v
Y u v v n

=

=⎧
= = +⎨
⎩

∑

There is also a precedence constraint between task v and its
immediate successor, both of which are executed on device k,
as follows

0

(()) (,) () ,
n

u k v
u

s u dur Y u v s v v V k devs
=

+ ⋅ ≤ ∀ ∈ ∈∑

With variable Yk(u,v), we can express the duration of the idle
time of device k just before it provides service to task v, itk,v,
as

,
0

() (()) (,)
n

k v u k
u

it s v s u dur Y u v
=

= − + ⋅∑ .

Let function idlenek(it) return the energy consumed by
device k during idle time of length it. Note that the device
may be placed in a low-power state during its long idle times,
as suggested, for instance, in [8][9]. For the illustration
purpose, assume that device k has two power states: active
and sleep. Let pa and ps denote the power consumptions of
the device in the active and sleep states, respectively. Let εtr
and τtr denote the summation of energy overheads and latency
overheads associated with the two transitions into and out of
the sleep state, respectively. Recall that the breakeven time is
equal to ()/BE tr a sp pτ ε= − . Then,

 , max(,)
()

, otherwise
tr s BE tr

k
a

p it it
idlene it

p it

ε τ τ+ ⋅ ≥⎧
= ⎨ ⋅⎩

Thus, the total energy consumed by the system during time
period Td is calculated as

,
1 0 1

, 1 ,
0 1

(() [1 (0,)])

((0,))

n K n

sys u k k k k v
u k v

K n

k k n k k v
k v

E ene idlene Z v Y v it

idlene it Y v it

= = =

+
= =

= + ⋅ − ⋅

+ + ⋅

∑ ∑∑

∑ ∑

Notice that when executing a periodical task set, for a device,
the idle time before the first task starts and the idle time after
the last task finishes actually constitute a single idle period.
The third term on the right-hand side of equation (2-9)
calculates the device energy consumption for such an idle
period. The second term on the RHS handles all the other idle
times.

The optimization problem is to minimize Esys with respect
to constraints (2-1) to (2-8). Note that in this formulation, we
ignore the energy and timing overhead associated with the
voltage changes because switching of the CPU voltage
normally takes between 10-100 microseconds depending on
the hardware support for the DVS function. This is negligible
compared to the device on/off transition times, which tend to
be in the range of a few tenths of a second. The corresponding
energy overhead is also small.

This problem is a nonlinear non-convex integer program
over variables s(u), x(u,i) and Yk(u,v); the worst-case
computational complexity of exactly solving this problem is
expected to be exponential. So we propose a three-step
heuristic approach to solve the problem as follows:

1. Task Ordering: Derive a linear ordering of tasks (i.e.,
calculate Yk(u,v) values) by performing an interactive
minimum-cost matching on some appropriately
constructed graph (cf. section 3.)

2. Voltage Assignment: Given the task ordering implied by
the schedule obtained in step 1, assign voltages and task
durations (i.e., calculate x(u,i) values) and exact start times
(i.e., calculate s(u) values) to each task so as to meet a
target cycle time, Td (cf. section 4.)

3. Refinement: Improve the task scheduling and voltage
assignment of steps 1 and 2 to increase the energy
efficiency of the resulting solutions (cf. section 5.)

III. TASK ORDERING

In this step, we assume that the CPU voltage level is set to the
maximum possible value and that the task execution times
(durations) are calculated on this basis.3 The goal is to take
the task graph with known task execution times and schedule
it on the CPU (device 0) so as to minimize the total energy
dissipation due to I/O devices (1,…, κ) staying in the idle
mode and that caused by transitioning the devices from their
high-power functional state to the low-power sleep state.
Notice that the summation of energy dissipation in all devices
(0,…, κ) when these devices are in active states is fixed and
independent of the scheduling. The scheduling only changes
the duration of the idle times and the number of on to off
transitions for the I/O devices.

Let tasksk denote the set of tasks running on device k and
devu denote the set of devices that are needed by task u. A
lower bound on the total system energy dissipation, toteneLB
can be obtained by assuming that there is no energy overhead
for the transitions between idle and sleep states of any device

0

()
u k

LB k u k d u
u V k dev k u tasks

totene funcpow dur sleepow T dur
κ

∈ ∈ = ∈

= ⋅ + ⋅ −∑ ∑ ∑ ∑
Now, the actual total energy includes the energy consumed by
various devices when they stay in their idle modes and when
they transition in and out of the sleep modes. Let’s denote the
schedule, Λ, by the start times of all tasks in the given task
graph. Based on this information, one can linearly order the
set of tasks and represent the active times of each device as a
set of closed intervals. More precisely, device k will be
represented by a segment set, Sk={sk,1,…,sk,z} (z≤n)
corresponding to the time intervals during which the device is
in its active state.

3 This is a simple heuristic used to assign task durations for this step.

Other heuristic assignments are possible. Note, however, that we
are only interested in the ordering of tasks after the completion of
this step and will in fact calculate the exact task schedule and
execution times after voltage assignment.

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)

, 1 ,

, , 1
,1 ,

, , 1 ,
, , , 1

() () if
(,)

() () otherwise

1 if (,)
(,)

0

k

k i k i k

nonactive k i k i
d k k S

nonactive k i k i BE k

k i k k i k i

start s end s i S
t s s

T start s end s

t s s t
F F s s

otherwise

+
+

+
+

⎧ − <⎪
⎨ + −⎪⎩

≥⎧
= ⎨
⎩

1

, , ,
1 1

()

((1) ())
k

LB

S

k i k k i k nonactive k i
k i

totene totene

F transene F funcpow t s
κ −

= =

Λ = +

⋅ + − ⋅ ⋅∑∑

Here start(s) and end(s) denote the start time and end time of
segment s while transenek denotes the total transition energy
cost of device k to go from idle mode to the sleep mode and
to return to the active mode.

Next we construct an augmented task graph (ATG)
A(V,C) from the given task graph G(V,E) by copying G(V,E)
and subsequently adding/deleting some edges to/from E.
More precisely, the new edge set, C, does not contain any
directed edge uv such that there exists another directed path
from u to v in C. In addition, C contains undirected edges qr if
tasks associated with q and r can be scheduled next to each
other in some order. In addition, each node, q, in V (task) has
three attributes: task execution time, durq, task energy
consumption, eneq, and the list of devices that are required by
the task, devq. Finally, each directed edge qr in C, has an
associated energy cost, extraeneqr, calculated as follows

, , ()

, , , , ()

1

, , , , ,
1

[() , ()]; [() ,]

(,)

((1) ())
k

q r

k q q k succ r r d

k q r k k q k succ r

qr

S

k q r k k q r k nonactive k i
k dev dev i

s start r dur start r s start r dur T

F F s s

extraene

F transene F funcpow t s
−

∈ − =

− +

=

⋅ + − ⋅ ⋅∑ ∑
Each undirected edge between nodes q and r will have two
such energy costs corresponding to directed edges qr and rq.
Note however that at most one of the two directed edges may
be chosen as part of the scheduling solution.

The basic flow of the proposed scheduling algorithm is to
iteratively find the edge with the least extra energy value and
merge its two end nodes, implying that the corresponding
tasks will be scheduled to run in immediate succession. For a
directed edge, the ordering is fixed a priori whereas for the
undirected edge, the algorithm will choose one of the two
possible orderings and fix it. After each merge, the ATG is
updated by removing all edges that become invalid and
calculating the attributes for the newly generated node. The
process continues until a single node is left in the ATG, which
corresponds to a total ordering (scheduling) of all the tasks.
The process continues until exactly one node remains in the
modified ATG (i.e., a complete schedule is obtained.) If at
any step of the algorithm, there is a tie between the extra
energy costs of two candidate edges qr and uw, then we will
choose the edge that would result in the minimum total extra
energy cost, extraenetot, of the resulting graph if the merge
was performed. Now, extraenetot is calculated as the
summation of the node weights of the resulting graph where
the node weight is itself calculated as the average of the extra
edge costs of outgoing edges from that node.

Example 1: Consider a task graph depicted in Figure 1(a).
Assume that there are four devices {0,1,2,3} with the
following device utilization sets:

(1) {0}

(2) (4) {0,1}

(3) (5) (6) {0,2,3}

dev u

dev u dev u

dev u dev u dev u

=
= =
= = =

.

For the sake of simplicity, we assume that each task has a unit
time duration (which is longer than its breakeven time) and
that the idle power consumption of all devices is the same. In
addition, each device consumes 1 unit of energy for each
transition to and from the sleep state. The ATG graph of this
task set is given in Figure 1(b). The directed edge u1u2 exists
in ATG, because there is a precedence constraint between
nodes u1 and u2 and u2 can be scheduled immediately after
u1. The presence of undirected edge u2u3 implies that u2 and
u3 can be scheduled next to the other without any ordering
constraint. The edge labels denote the energy consumption if
the start and end nodes of the edge are scheduled one after the
other. For simplicity, assume all node energies are 0.

(a) Initial task graph (b) ATG

(c) ATG after merging a pair of node

Figure 1. Illustrative example for power-aware task schedule.

With this ATG, we can start the task scheduling for power
management. There are five edges with minimal edge energy
equal to 0. That is, we can merge the pair of nodes associated
with each of these edges without incurring additional energy
cost. In Figure 1(c), three ATGs are presented, each
corresponding to the merging of the node pair for one of the
edges. Let us consider the left-most ATG which is generated
after merging u2 and u4. Since there is a directed edge from
u2 to u4, u4 must be scheduled after u2. After the u2-u4
merge, the edge from u3 to u2 becomes a directed edge,
because originally u3 had to be executed before u4 which has
now been merged with u2 into a single node. The directed
edge from u1 to u2 in the initial ATG disappears because
after the u2-u4 merge, u3 stands between u1 and u2 in the
precedence chain.

The left-most ATG in Figure 1(c) has the minimal EATG
value equal to 5. So the merge of u2 and u4 is selected for the
first step.

IV. VOLTAGE ASSIGNMENT

Having generated the task schedule, we fix the ordering of
tasks, but otherwise, ignore the task execution times and start
times, which were heuristically set as explained at the
beginning of section 3, we can easily calculate the Yk(u,v)
values. Thus by substituting the value of Yk(u,v) into the
optimization problem formulated by (2-1) through (2-9), all
constraints becomes linear constraints and the only unknowns
become s(u) and x(u,i) variables. However, the optimization
problem cannot be solved exactly and efficiently, because the
objective function remains a non-convex function of idle
times, it. We thus propose two approaches to get around this
non-convexity issue.

The first one simply ignores the energy components
introduced by idlenek in equation (2-9). The optimization
problem thus becomes a linear programming problem over
continuous variable x(u,i), which can be solved in polynomial
time. It is worth pointing out that, strictly speaking, x(u,i)
should take discrete values instead of continuous ones,
because the number of CPU cycles executed at each operating
voltage is an integer. However, when we consider a task
executed in hundreds of thousands of CPU cycles, the effect
introduced by rounding up to one cycle can be safely ignored.

The second approach introduces new 0-1 integer variables
Wk(v,h) to approximate the idle time itk,v as follows: Wk(v,h)
=1 exactly if tk,h≤ itk,v < tk,h+1. tk,h and tk,h+1 take values from a
discrete set {tk,1, tk,2, …, tk,H}. The value of idlenek(it) is
approximated by

, ,
1

() () (,)
H

k k v k k h k
h

idlene it idlene t W v h
=

=∑ , with 1

1

(,) 1
H

k
h

W v h
−

=
=∑ .

Consequently, constraint (2-8) is thus rewritten as

()

()

1

,
1 0

1

, 1
1

, () (()) (,)

,

H n

k h k u k
h u

H

k h k
h

t W v h s v s u dur Y u v

t W v h

−

= =

−

+
=

≤ − + ⋅

≤

∑ ∑

∑
.

And equation (2-9) becomes an integer linear cost function.
As a result, the original optimization problem is approximated
with a mixed integer linear program. The value of parameter
H can be adjusted to trade-off the computational complexity
and the approximation accuracy.

V. REFINEMENT

In this section, we provide a top-level overview of an
algorithm that we have developed to improve the results
obtained by the first two steps. Starting from the solution
obtained from steps 1 and 2, we shift the tasks together to
remove redundant positive slack times. Next, we apply a
greedy refinement algorithm on this solution to improve the
total energy cost while meeting the timing constraint. In
particular, we identify the set of critical tasks whose duration
has a large impact on the system energy dissipation, e.g. a
small change of the duration could enable device transitions
to low power states, and change their voltage assignments
accordingly. Detailed are omitted.

VI. EXPERIMENTAL RESULTS

This experiment is conducted on a system comprising of a
single CPU and three other devices. The CPU has three
operating voltage/frequency levels: 1V/200MHz,
1.1V/300MHz and 1.3V/400MHz [11]. The CPU and all
devices support only one low-power sleep state. The power
consumptions in different states, energy and timing overheads
of state transitions for both the CPU and the three devices are
reported in Table 1.

TABLE 1

Power and transition parameters

Device Active
Power

Sleep
Power

Energy
Overhead

Timing
Overhead

SDRAM 0.3W ~0 ~0 ~0

HDD 2.1W 0.85W 0.6J 400ms

WLAN 0.7W 0.05W 0.04J 100ms

CPU

1.0W

(200MHz)

0.05W 0.3J 400ms

To evaluate the effectiveness of our proposed approach,
we generated five task graphs by using software package,
TGFF [15], which is a randomized task graph generator
widely used in the literature to evaluate the performance of
scheduling algorithms. Each task graph consists of 20 to 200
tasks. All tasks require supports from SDRAM. The
dependency of tasks on HDD and WLAN were randomly
generated and fixed before optimization. The characteristics
of different task graphs are given in the following table. For
example, for task graph G1, when the CPU has its highest
frequency setting, the cpu is used during 61% of the total
execution whereas the SDRAM, HDD and WLAN are used
for 61%, 29% and 42% of the total time.

TABLE 2

Characteristics of task graphs

Task

Graph
No. of
Tasks

CPU and device utilization factors at
max speed for the CPU

CPU SDRAM HDD WLAN

G1 28 0.61 0.61 0.29 0.42

G2 65 0.72 0.72 0.51 0.39

G3 110 0.34 0.34 0.12 0.23

G4 159 0.48 0.48 0.30 0.25

G5 204 0.55 0.55 0.28 0.36

In this experiment, we compare the total system energy
consumptions of the following methods:

M1: No DVS, no DPM. The CPU always operates at the
highest voltage level and devices are kept active during the
whole execution time. This provides the baseline compare
against.

M2: DPM without any task scheduling. Tasks are
executed on the CPU (which has assumed its highest
frequency and voltage setting) in an un-optimized order based
on their ID numbers after they become available. A method
similar to the approach in [8] is used to determine the state
transition sequences of all devices and the CPU.

M3: DPM with task scheduling. This method is similar to
M2, except that our proposed power-aware task scheduling
algorithm is used to determine the task execution sequence.

M4: Conventional cpu-driven DVS plus DPM. Similar to
M2, except that the task operating voltage is assigned to
minimize the CPU power consumption. More specifically, the
operating voltage setting for each task is obtained by solving
the optimization problem defined in section 2 without
considering the energy consumption of devices.

M5: Proposed system-aware DVS plus DPM (which have
called, Power-aware Scheduling and Voltage Setting or PSVS
for short.) Task scheduling and operating voltage settings are
determined through the proposed three-phase framework.

TABLE 3
 Normalized energy consumption results for different

techniques

Task Graph M2 M3 M4 M5

G1 0.54 0.50 0.58 0.47

G2 0.67 0.59 0.63 0.53

G3 0.28 0.26 0.32 0.25

G4 0.40 0.35 0.42 0.34

G5 0.43 0.37 0.39 0.33

The energy consumptions of different techniques are compared
in Table 3. These values have been normalized with respect to the
baseline energy consumption of M1, e.g., for G1, M2 results in total
system energy consumption which is 54% of the baseline energy
consumption. From this table, it is seen that compared to DPM
technique without task scheduling, our proposed DPM with task
scheduling can reduce energy consumption by an average of 11%.
Furthermore, when this method is combined with our proposed
voltage assignment technique (resulting in M5 or PSVS), an
additional 9% energy saving is achieved.

VII. CONCLUSIONS

This paper addresses the problem of minimizing energy
consumption of a computer system performing periodic hard
real-time tasks with precedence constraints. In the proposed
approach, dynamic power management and voltage scaling
techniques are combined to reduce the energy consumption of
the CPU and devices. The optimization problem is first
formulated as an integer programming problem. Next, a three-
phase solution framework, which integrates power
management scheduling and task voltage assignment, is
proposed. Experimental results demonstrate efficiency of the
proposed approach.

REFERENCES

[1] L. Benini, A. Bogliolo and G. De Micheli, “A survey of
design techniques for system-level dynamic power
management,” IEEE Trans on VLSI, vol.8 iss.3, pp.299-
316, 2000.

[2] J. Luo and N. Jha, “Static and dynamic variable voltage
scheduling algorithms for real-time heterogeneous
distributed embedded systems,” ASP-DAC, pp. 719-26,
2002.

[3] F. Gruian and K. Kuchchinski, “LEneS: task scheduling
for low-energy systems using variable supply voltage
processors,” ASP-DAC, pp. 449-55, 2001.

[4] Y. Zhang, X. Hu, and D.Z. Chen, “Task scheduling and
voltage selection for energy minimization,” DAC, pp.
183-8, 2002.

[5] Y-H Lu, L. Benini and G. De Micheli, “Low-power task
scheduling for multiple devices,” CODES, pp. 39-43,
2000.

[6] V. Swaminathan and K. Chakrabarty, “Pruning-based
energy-optimal device scheduling for hard real-time
systems,” CODES, pp.175-80, 2002.

[7] Y-H Lu, L. Benini and G. De Micheli, “Power-aware
operating systems for interactive systems,” IEEE Trans.
on VLSI, vol.10 iss.2, pp. 119-34, 2002.

[8] V. Swaminathan and K. Chakrabarty, “Energy-conscious,
deterministic I/O device scheduling in hard real-time
systems,” IEEE Trans. on CAD, vol.22 iss.7, pp.847-58,
2003.

[9] J. Liu and P.H. Chou, “Optimizing mode transition
sequences in idle intervals for component-level and
system-level energy minimization,” ICCAD, pp. 21-28,
2004.

[10] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for
system-wide energy minimization in real-time embedded
systems,” ISLPED, pp. 78-81, 2001.

[11] K. Choi, W. Lee, R. Soma and M. Pedram, “Dynamic
voltage and frequency scaling under a precise energy
model considering variable and fixed components of the
system power dissipation,” ICCAD, pp. 29-34, 2004.

[12] Q. Qiu and M. Pedram, "Dynamic power management
based on continuous-time Markov decision
processes," DAC, pp. 555-561, 1999.

[13] T. Simunic, L. Benini, A. Acquaviva, P. Glynn and G. De
Micheli, “Dynamic voltage scaling and power
management for portable systems,” DAC, pp.524-529,
2001.

[14] S. Irani, S. Shukla and R. Gupta, “Algorithms for power
savings,” SODA, pp. 37 – 46, 2003.

[15] http://ziyang.ece.northwestern.edu/tgff.

