Loading [a11y]/accessibility-menu.js
Macromodelling oscillators using Krylov-subspace methods | IEEE Conference Publication | IEEE Xplore

Macromodelling oscillators using Krylov-subspace methods


Abstract:

We present an efficient method for automatically extracting unified amplitude/phase macromodels of arbitrary oscillators from their SPICE-level circuit descriptions. Such...Show More

Abstract:

We present an efficient method for automatically extracting unified amplitude/phase macromodels of arbitrary oscillators from their SPICE-level circuit descriptions. Such comprehensive oscillator macromodels are necessary for accuracy when speeding up simulation of higher-level circuits/systems, such as PLLs, in which oscillators are embedded. Standard MOR techniques for linear time invariant (LTI) and varying (LTV) systems are not applicable to oscillators on account of their fundamentally nonlinear phase behavior. By employing a cancellation technique to deflate out the phase component, we restore the validity and efficacy of Krylov-subspace-based LTV MOR techniques for macromodelling oscillator amplitude responses. The nonlinear phase response is re-incorporated into the macromodel after the amplitude components have been reduced. The resulting unified macromodels predict oscillator waveforms, in the presence of any kind of input or interference, at far lower computational cost than full SPICE-level simulation, and with far greater accuracy compared to existing macromodels. We demonstrate the proposed techniques on LC and ring oscillators, obtaining speedups of 30-120/spl times/ with no appreciable loss of accuracy, even for small circuits.
Date of Conference: 24-27 January 2006
Date Added to IEEE Xplore: 13 March 2006
Print ISBN:0-7803-9451-8

ISSN Information:

Conference Location: Yokohama, Japan

Contact IEEE to Subscribe

References

References is not available for this document.