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ABSTRACT
Modern embedded system execute a single application or a class of
applications repeatedly. A new emerging methodology of designing
embedded system utilizes configurable processors where the cache
size, associativity, and line size can be chosen by the designer. In
this paper, a method is given to rapidly find the L1 cache miss rate
of an application. An energy model and an execution time model are
developed to find the best cache configuration for the given embed-
ded application. Using benchmarks from Mediabench, we find that
our method is on average 45 times faster to explore the design space,
compared to Dinero IV while still having 100% accuracy.

1. Introduction
Today, cache memory is an integral component of mid to high end

processor based embedded systems. The inclusion of cache sig-
nificantly improves system performance and reduces energy con-
sumption. Current processor design methodologies rely on reserving
large enough chip area for caches while conforming with area, per-
formance, and energy cost constraints. Recent application specific
processor design platforms (such as the Tensilica’s Xtensa platform
[1]) allows a cache to be customized for the processor. This allows
a design which can meet tighter energy consumption, performance,
and cost constraints.

In existing low power processors, cache memory is known to con-
sume a large portion of the on-chip energy. For example, in [2] Mon-
tanaro et al. report that cache consumes up to 43% of the total energy
of a processor. In embedded systems where a single application or
a class of applications are repeatedly executed on a processor, the
memory hierarchy could be customized such that an optimal config-
uration is achieved. The right choice of cache configuration for a
given application could have a significant impact on overall perfor-
mance and energy consumption.

Choosing the correct cache configuration for an embedded sys-
tem is crucial in reducing energy consumption and improving per-
formance. To find the correct configuration the hit and miss rates
must be evaluated, and the resulting energy consumption and execu-
tion times must be accurately estimated. Estimating the hit and miss
rates (for a particular application with sample input data) is fairly
easy using tools such as Dinero IV [7], but enormously time con-
suming to do so for various cache sizes, associativities and line sizes.
The resulting energy consumption and execution times are difficult
to examine due to the non uniform nature of memory, where the first
memory access takes far greater time compared to subsequent ac-
cesses (which are sequential to the first access). Energy and access
times are further complicated by differing cache configurations con-
suming energy at different rates and taking differing amounts of time
to access.

Our research results demonstrate that low miss rates do not neces-
sarily mean a faster execution time. Figure 1 shows the effect of dif-
ferent cache configurations have on the number of total cache misses
and the total execution time for the G721 encode application. The
graph in Figure 1 shows that higher total cache miss rates can possi-
bly provide the fastest execution time. This is due to large or more
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Figure 1: Total Cache miss vs. Total Execution Time

complex (higher associativity) caches having significantly longer ac-
cess times.

Existing methodologies for cache miss rate estimation, use heuris-
tics to search through the cache parameter design space [3, 4, 5, 6].
Other existing cache miss rates estimation tools, such as Dinero IV
[7] can accurately determine the cache miss rate for a single cache
configuration. To use Dinero IV to estimate cache miss rate for a
number of cache configurations means that a large program trace
needs to be repeatedly read and evaluated which is time consuming.

In this paper, we present a methodology to rapidly and accurately
explore the cache design space by: estimating cache miss rates for
many different cache configurations simultaneously; and investigate
the effect of different cache configurations on the energy and per-
formance of a system. The method performs simultaneous evalua-
tion of multiple cache configurations by reading a program trace just
once. Simultaneous evaluation can be rapidly performed by taking
advantage of the high correlation between cache behavior of different
cache configurations. The idea of utilizing correlation in cache be-
havior comes from the following observations: one, given two caches
with the same associativity using the Least Recently Used (LRU) re-
placement policy, whenever a cache hit occurs, all caches that have
larger set sizes will also guarantee a cache hit; two, a hit on a set-
associative cache means a cache hit is guarantee on all caches with
larger associativity (Explained in greater detail in Section 3).

These observations were also described [8] and [9]. Gecsei et al.
in [8] introduce the “stack algorithm” for finding the exact frequency
of accesses to each level in a memory hierarchy system. In [9], Hill
and Smith analyze the effect of different cache associativity on cache
miss rates. The benefit of our method is a quick exploration of dif-
ferent cache parameters from a single read of a large program trace.
This will then allow an embedded system to be tested with multi-
ple input sets and with multiple architectures, where it may not be
possible to store the large program traces.

The rest of this paper is structured as follow, Section 2 presents ex-
isting cache exploration methodologies; Section 3 presents our cache
parameters exploration space methodology; Section 4 describes the
performance and energy model for the system architecture consid-
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ered in this work; Section 5 describes the experimental setup and
discusses the results; and Section 6 concludes the paper.

2. Related Work
Cache simulation is required for tuning cache parameters to en-

sure maximal performance and minimal energy consumption. In the
past, various methodologies have been researched for cache simula-
tion. These cache simulation methodologies can be divided into two
classes: one, estimation techniques, and the other, exact simulation.

Cache estimation techniques use heuristics to predict the cache
misses for multiple cache configurations. Pieper et al. in [3] devel-
oped a metric to represent cache behavior independently of the cache
structure. Their metric based result is within 20% accuracy of a uni-
processor trace-based simulation and can be applied for estimating
multiprocessor architectures.

In [4], Fornaciari proposed a heuristic method for configuration of
cache architecture without exhaustive analysis of the space of para-
meters. Their analysis looked at the sensitivity of individual cache
parameters on the energy delay product. Maximum error is less than
10%.

Ghosh et al. described a method to generate and solve a cache miss
equations (CME) to represent the cache behavior [5]. In [6], Vera
et al. proposed a fast and accurate method to solve the cache miss
equation (CME).

For exact cache simulation techniques, there exists a tool called
Dinero IV [7]. Dinero IV is a single processor cache simulation tool
developed by Jan Edler and Mark Hill. Its purpose is to estimate
the number of cache misses given a cache configuration; its features
include simulating separate or combined instruction and data caches,
and simulating multiple levels of cache.

For simulating multiple cache configurations, exact cache simula-
tion techniques rely on exploiting the inclusion property of caches.
Inclusion means that given two cache configuration,
Cache C2 ⊂Cache C1 if all the content of Cache C2 is a subset of the
content of Cache C1.

In 1970, Gecsei et al. [8] introduced the ‘Stack’ algorithm for per-
forming simulation of multiple levels of storage systems. In 1989,
Hill in [9] investigated the effects of associativity of caches. They
briefly described the methodology of forest simulation for quick sim-
ulation of alternate direct-mapped caches. They also introduced the
all-associative methodology for simulating alternate direct-mapped,
set-associative, and fully-associative caches based on the ‘Stack’ al-
gorithm. The space complexity of the all-associativity simulation is
O(Nunique), where Nunique is the number of unique blocks referenced
in an address trace. In their experiment, they showed that to simu-
late alternate direct-mapped caches, the forest simulation method is
faster than the all-associative simulation.

Sugumar et al., introduced a cache simulation methodology by us-
ing a binomial trees [10] to improve the method described in [9].
The time complexity of their algorithm for searching procedure is
O((log2(N) + 1)×A) and the time complexity for maintaining the
binomial tree is O((log2(N) + 1)×A), where N is the size of the
cache and A is the associativity of the cache. Li in [11] then extends
the work in [10] by introducing a method to compress the program
trace for reducing the cache simulation time.

Other existing exact cache simulation methodologies uses parallel
processing units and/or multiprocessor systems. Nicol in [12] pre-
sented a parallel methodology to simulate cache using SIMD and
MIMD hardware units.

Heidelberger in [13] presented a method of to analyze a cache trace
using a parallel processor system. They split long traces into several
shorter traces, and the shorter traces are then executed on parallel
independent processors. The sum of the individual results are not
accurate, but by executing a re-simulation phase, it is possible to
accurately count the exact number of cache misses.

Our simulation methodology was created as a forest simulation data
structure. Our methodology extends the idea of forest simulation
described in [9]. The space complexity of our methodology is fixed
depending on the number of cache configurations to be evaluated.
The required space of our cache simulation method is larger than the
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Figure 2: The cache tree data structure.

space needed for the all-associativity simulation described in [9] and
the binomial tree simulation described in [10]. The time complexity
for searching our data structure is O((log2(N)+1)×A), and the time
complexity for updating the data structure is O(log2(N)+1). This is
faster compared to the method described in [10].

Other research looked at the use of heuristics for predicting cache
behavior. Ghosh et al, in [14] presented an algorithm for simulating
cache parameters and finding cache configurations that guaranteed
cache miss rates lower than a desired cache miss rate. Their space
complexity is in the order of the size of the trace file.

2.1 Our Contribution

• For the first time a methodology is proposed which allows an L1
cache to be chosen for an Application Specific Instruction Set
Processor (ASIP) based upon the energy consumption and exe-
cution time.

• We also propose a modified forest algorithm based on a simplified
data structure, for fast and accurate simulation of the cache. The
time taken by the algorithm for both simulation and updating of
the data structure is considerably quicker than previous methods.
In addition, this method allows parallelization.

3. Cache Parameters Exploration Methodology
A cache configuration is dependent on the cache parameters: cache

size N, cache associativity A, and cache line size L. The cache size
refers to the total number of bits that can be stored in the cache. The
cache associativity refers to the number of ways a data can be stored
within the same address of the cache. For a direct-mapped cache
(A = 1), each datum has a single location where it can be stored
within the cache. The total cache size divided by associativity of
the cache is called the cache set size, M = N/A. In our simulations
we will consider cache configurations with the cache set in the range
from 2mmin to 2mmax , where mmin and mmax refer to the number of
address bits needed to address 2mmin and 2mmax locations.

We perform design space exploration on the cache parameters by
accurately and efficiently simulating the number of cache misses that
would occur for a given collection of cache configurations. We op-
timize the run time of our cache simulation by replacing multiple
readings of large program traces with a single reading and simulat-
ing multiple cache configurations simultaneously. This is possible
due to the following observations.

First, assume that two cache configurations have the same associa-
tivity and the same cache line size but that one cache is twice the size
of the other cache. In this case if a cache hit occurs on the smaller
size cache, a cache hit will also occur on the larger cache size.

This is illustrated in Figure 2. For a memory address request of
‘1010’, cache location pointed to by the address ‘1010’ can be found
on the cache locations shown with the dotted line branches in Fig-
ure 2. The numbers inside the parentheses shown in Figure 2 indi-
cate the cache address for that location. From the figure, it can be
seen that the entries within cache size = 2 are a subset of the entries
within cache size = 4, and the entries within cache size = 4 are a
subset of the entries within cache size = 8.

The second observation is that if a cache miss occurs for a cache
of size N, associativity A, and of cache set size M, then for all other
cache configurations with the same cache set size M and associativity
larger than A, a cache hit will also occur. Hence, evaluation for all
values larger than A is not required to determine the number of cache
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Figure 4: The linked list data structure.

misses for such configurations. This observation is also known as
‘inclusion’ [8].

3.1 Cache Simulation Methodology
Based on the two observations described above, we designed and

implemented the following procedure for simultaneous simulation
of multiple cache configurations using a single read of the program
trace.

We created an array of cache miss counters to record the cumula-
tive cache misses that occur with different cache configurations. The
size of this array is dependent on the number of cache configurations
to be simulated and the array is indexed using cache configuration
parameters. To simulate the cache, we created a collection of forest
data structures as follows.

Each forest corresponds to a collection of cache configurations that
have the same cache line size. Each tree in such a forest is used
as a convenient data structure to store pointers to locations in cache
sets for caches of different sizes. An array of size equal to minimum
cache set size 2mmin is created to store addresses of such trees; note
that mmin bits are required to address 2mmin such locations of the ar-
ray. The kth level of the tree corresponds to the cache configuration
with the cache set size 2k+mmin . Each node in the tree corresponds
to a cache location and points to a linked list. Elements in this list
correspond to cache ways, and will be used to store the tag address,
the valid bit, and the pointer to the next element. The total number of
elements in each linked list corresponds to the largest associativity of
the family of cache configurations considered. The head element of
the linked list corresponds to the most recently used data in the cache;
the tail corresponds to the least recently used data. The linked list is
illustrated in Figure 4, and the whole data structure is illustrated in
Figure 3. Searches of each linked list on different nodes of the tree
are independent of each other; this property allows parallelization to
optimize the simulation procedure.

To simulate different cache line sizes, we replicate the forest for
each cache line size parameter that need to be simulated. For the
sake of explanation, we first assume that the cache line size is fixed
to one byte; as this assumption does not change the nature of the
algorithm.

The cache simulation methodology is shown in Figure 5 and illus-
trated in Figure 6. The methodology takes its input from the pro-
gram trace. For each address x read from the program trace, we use
the least significant mmin bits of the address x to locate in the array
the pointer to the appropriate tree. For each cache set size of the
form 2k+mmin , thus ranging in powers of two from 2mmin to 2mmax we
take the next k bits of the memory address and use these bits to find
the node in the tree that corresponds to the cache set location in the
cache of this size (i.e., 2k+mmin ). This is done by traversing down the

For each address x from the trace {

Use the least significant mmin bits of the address x to locate in the array,
the pointer to the corresponding tree, and go to the root of the tree.
For k = 0 to (mmax −mmin) { // k corresponds to the level of the tree;

// the total cache set size is 2k+mmin

Go to the head of the linked list pointed by this node of the tree
Search linked list to find the tag entry that
is equal to the tag of the address x.
If a cache hit occurs in an element s of the linked list{

Increment cache miss counters for all cache configuration with

cache set size equal to 2k+mmin and lower associativity than s.
Move element s to be the head element of the linked list.

} else {

Increment cache miss counter for all cache

configuration with cache set equal to 2k+mmin

Replace entry in the tail element of the
linked list with the current tag address.
Move this tail element to become the head
element of the linked list.

}

Increment the value of k.
Step down the tree according to the value of the bit k +mmin
taking the left child if this bit is 0 else take the right child.

}

Scan the next address x+1 from the trace.
}

Figure 5: Cache Simulation Procedure

tag address cache
addr.

mmax mmin

Figure 6: Cache Simulation Procedure.

tree depending on the mmin to mmin + k bits of the address to choose
whether to traverse the left branch or the right branch. The node has
a pointer to the head element in the linked list that corresponds to the
multiple way associativity of this cache set location. The remaining
bits of the address x form the tag address that is to be searched for in
the linked list. If the tag is found at position s, this indicates that a
cache hit would occur in all s-way or higher-way associative caches.
If this happens, the sth element of the list is moved to the head of the
list. In this case, all cache miss counters for caches with the same
cache set size and associativity less than s are incremented. If the tag
is not found, the tag in the tail element is replaced by the new tag,
and this tail element is moved to the head of the list. In such a case,
cache miss counters for caches with the same cache set size and any
values of associativity are incremented.

This is illustrated for a 4-way set-associative cache in Figure 4. If
the tag comparison results in a hit with the second element in the
linked list, then this indicates that a cache hit would occur in the
4-way set-associative cache and the 2-way set-associative cache. A
cache miss would occur in the direct mapped cache, hence it is not
necessary to continue the search until the tail element. The second
element is then moved to be the head element to conform with the
Least Recently Used (LRU) replacement policy.

The procedure continues by traversing down the trees to find the
linked list corresponding to the larger cache set size. The procedure
for tag comparison and updating the associativity replacement policy
is then repeated. An example is shown in Figure 2, once the cache es-
timation for the level cache size = 2 is completed, the algorithm will
look at the least significant bit of the current tag part of the address
which will make up the most significant bit of the cache address for
the cache size = 4 tree level to determine whether to traverse the left
or right branch. In Figure 2, the dotted line indicates the traversing
path given the address ‘1010’.

The algorithm then continues by using the replicated forest data
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structures for simulating the different cache line sizes. Different parts
of the current address are used for locating the appropriate tree data
structure.

3.2 Efficiency of The Methodology
With the implementation described above, we can limit the search

space for all the different cache configurations and reduce the time
taken to estimate cache misses by increasing the space requirements.

Each linked list entry is used to store the tag address (32 bits), a
valid bit (1 bit), and a pointer to the next element in the linked list
(32 bits). In total, each linked list entry needs to keep 65 bits of data.
Each node in the tree needs to store pointers to the head element of
the linked list (32 bits), a pointer to the left branch (32 bits), and a
pointer to the right branch (32 bits); giving a total of 96 bits per node.

For each cache way, a linked list entry needs to be kept, this gives
a total size of listsize = A× 65bits. The number of nodes created
is dependent on the number of cache sets, cache line size, and cache
size range. The number of nodes is calculated by nodesize = (2mmax −
2mmin)× (log2(L)+1)×96 bits.

Space complexity is calculated by summing all the space needed
for each node and each linked list entry. In terms of space, our data
structure is optimal for storing all the necessary parameters with ex-
ception of the redundancy of the content of the linked lists. However,
the space requirement is fully manageable by standard desktop com-
puters. For the work described in this paper, we simulated cache
sizes ranging from 512 bytes up to 2M bytes, cache associativity of
1 up to 32, and cache line size of 8 bytes up to 256 bytes. In total, we
have simulated 268 cache configurations requiring 9.3 megabytes.
This reasonable redundancy simplifies the maintenance of the data
structure and the associated algorithms.

4. System Energy and Performance Model
To facilitate the design space exploration steps, we created crude

performance and energy models for the system. The model of the
embedded system architecture consisted of a processor with an in-
struction cache, a data cache, and embedded DRAM as main mem-
ory. The data cache uses a write-through strategy. The system archi-
tecture is illustrated in Figure. 7.

The equation for calculating the system’s total execution time is
given by:

Exectime =Icacheaccess × Icacheaccess time +

Icachemiss ×DRAMaccess time +

Icachemiss × Icachelinesize ×
1

DRAMbandwidth
+

Dcacheaccess ×Dcacheaccess time +

Dcachemiss ×DRAMaccess time +

Dcachemiss ×Dcachelinesize ×
1

DRAMbandwidth

(1)

where,

• Icacheaccess and Dcacheaccess is the total number of memory ac-
cesses to the instruction and data cache, respectively.

• Icacheaccess time and Dcacheaccess time is the access time of the
instruction and data cache, respectively.

Total Execution Time (sec)
Application Trace size Dinero IV Our methodology ratio

cjpeg 15531057 1592 41 38.83
djpeg 4616784 363 20 18.15

pegwitenc 33070433 2831 136 20.82
pegwitdec 18903066 1642 70 23.46

epic 52801084 4017 30 133.90
unepic 6746679 512 6 85.33

g721enc 3.15E+08 (7.5 hr) 26990 (26.5 min) 1595 16.92
g721dec 3.03E+08 (7 hr) 25132 (25 min) 1503 16.72

mpeg2enc 1.13E+09 (25.2 hr) 90431 (53 min) 3186 28.38
mpeg2dec 35398584 3377 49 68.92

Average 45.14

Table 1: Total execution time comparison of our methodology
with Dinero IV.

• Icachemiss and Dcachemiss is the total number of cache misses for
the instruction and data cache, respectively.

• Icachelinesize and Dcachelinesize is the cache line size of the in-
struction and data cache, respectively.

• DRAMaccess time is the DRAM latency time.

• DRAMbandwidth is the bandwidth of the DRAM.

There exists six components in the system’s execution time shown
in equation 1. The first and fourth terms Icacheaccess×Icacheaccess time
and Dcacheaccess ×Dcacheaccess time are for calculating the amount
of time taken for the processor to access the instruction cache or the
data cache. The second and fifth terms Icachemiss ×DRAMaccess time
and Dcachemiss ×DRAMaccess time calculate the amount of time re-
quired for the DRAM to respond to each cache miss. The third and
sixth terms Icachemiss×Icachelinesize×

1
DRAMbandwidth

and Dcachemiss×

Dcachelinesize ×
1

DRAMbandwidth
calculates the amount of time taken to

fill a cache line on each cache miss.
In our execution time model, we assume that all data cache misses

will cause a pipeline stall, and we ignore the bus communication time
cost. As the bus communication time is expected to be similar to
other systems, ignoring this will not adversely affect the final results.

Energy equation of the system is given by the following equation:

Energytotal =Exectime ×CPUpower +

Icacheaccess × Icacheaccess energy +

Dcacheaccess ×Dcacheaccess energy +

Icachemiss × Icacheaccess energy × Icachelinesize+

Dcachemiss ×Dcacheaccess energy ×Dcachelinesize+

Icachemiss ×DRAMaccess power×

(DRAMaccess time + Icachelinesize ×
1

DRAMbandwidth
) +

Dcachemiss ×DRAMaccess power×

(DRAMaccess time +Dcachelinesize ×
1

DRAMbandwidth
)

(2)

where,

• CPUpower is the total processor power excluding the instruction
and data cache power.

• Icacheaccess energy and Dcacheaccess energy is the instruction cache
and data cache access energy, respectively.

• Dcacheaccess power is the active power consumed by the DRAM.

There exist seven components in the energy equation 2. The first
term Exectime ×CPUpower calculates the processor energy given that
execution time takes Exectime amount of time. The second and third
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Processor Energy 168mW @ 100MHz
Embedded DRAM @100MHZ

energy 19.5mW
Latency 19.5 ns

Bandwidth 50MB/sec

Table 2: System Specification
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Figure 8: Total execution time compared to increasing program
trace size

terms, Icacheaccess × Icacheaccess energy and Dcacheaccess×
Dcacheaccess energy calculate the amount of energy consumed by the
instruction and data cache, respectively. The fourth and fifth terms,
Icachemiss × Icacheaccess energy × Icachelinesize and Dcachemiss×
Dcacheaccess energy ×Dcachelinesize calculate the energy cost of writ-
ing to cache for each cache miss. The sixth and seventh terms,
Icachemiss ×DRAMaccess energy × (DRAMaccess time + Icachelinesize ×
DRAMbandwidth) and Dcachemiss ×DRAMaccess energy×
(DRAMaccess time +Dcachelinesize×DRAMbandwidth) calculate the en-
ergy cost of the DRAM to service all the cache misses. The fourth,
fifth, sixth, and seventh terms vary depending on the cache line size,
as larger line size means more data need to be read from the main
memory and written into the respective caches.

Units for time variables in the equations are in seconds, bandwidth
is in bytes/sec., cache line size is in bytes, power variable is in Watts,
and energy unit is in Joules.

5. Experimental Procedure and Results
We compiled and simulated programs from Mediabench [15] with

SimpleScalar/PISA 3.0d [16]. Program traces were generated by
SimpleScalar and fed into both Dinero IV[7] and our estimation tool.
Our results were completely consistent with the ones produced by
Dinero IV. Our estimation tool is written in C and compiled with
GNU/GCC version 3.4.3 build 20050227 with -O1 optimization. Sim-
ulations were performed on a dual Opteron64 2GHz machine with
2GBytes of memory. We simulated 268 different cache configura-
tions, with cache sizes ranging from 512 Bytes up to 2M bytes, cache
associativity ranging from 1 up to 32, and cache block sizes ranging
from 8 bytes per cache line up to 256 bytes per cache line.

Table 1 shows the execution time comparison of executing Dinero
IV multiple times with different cache configurations and execution
of our estimation tool once. Column 1 in Table 1 shows the applica-
tion name, column 2 shows the trace size of the benchmark, column
3 shows the total time taken for executing Dinero IV multiple times,
column 4 shows the execution time of our estimation tool, and col-
umn 5 shows the ratio of time savings of our tool when compared to
executing Dinero IV multiple times. The trace size shown in Column
2 in Table 1 only shows the size of the instruction memory access
trace. From column 5 in Table 1, it can be observed that, on average,
our tool is approximately 45 times faster than Dinero IV. Plotting the
total execution time versus the size of the trace in Figure 8 shows that
as the trace size grows exponentially, our methodology shows a lin-
ear increase in total execution time required while Dinero IV shows
an exponential increase in the time required.

5.1 Result Analysis
To analyze the effect of cache miss rates on system’s performance

and energy consumption, we utilized cache models from CACTI [17]
for the cache access time and cache access energy. Processor energy
is taken from [2]. The main memory model is taken from the em-
bedded DRAM described in [18]. The processor and memory spec-
ification is described in Table 2. System total execution time and its
energy consumption is calculated using equation 1 and equation 2,
respectively.

In Figure 9, We plot the number of cache misses versus the to-
tal energy consumption for different cache configurations. The plot
for cache misses versus execution time for g721enc application was
shown in Figure 1. The three plots in Figure 9 show the same plot
with different coloring to pick out the effect of differing cache line
sizes, cache associativity, and cache sizes on the energy consump-
tion. Figure 9(b) highlights the effect of different cache line size
on the total energy consumption. Figure 9(a) highlights the effect
of changing associativity on the total energy consumption. Figure
9(c) highlights the effect of varying cache sizes on the total energy
consumption. Due to space constraints, we are unable to show the
cache miss versus total execution time graphs with different color-
ing to highlight the effect of cache associativity, cache line size, and
cache size on the total execution time.

5.2 Model Validation
We validate the energy model of the processor by comparing with

output results of Wattch [19]. The mediabench applications were
executed in Wattch and the total energy results is plotted against the
total cache miss number. Figure 10 shows the total energy versus the
total cache miss number for g721enc application with energy figures
obtained from Wattch output.

Comparing the energy versus cache miss number graphs in Fig-
ure 10 and in Figure 9(c) show that energy results from Wattch and
from equation 2 display similar patterns. As cache size gets larger,
the cache miss number decreases and the energy consumption de-
creases; but when the cache size reaches a certain size, the energy
consumption starts to increase due to compulsory misses.

It should be noted that simulation time for the 268 cache configu-
rations with Wattch took 2.5 days. The energy values obtained from
Wattch simulation has a unit of Watts.cycle and the energy values
should not be compared directly against the energy values obtained
from Equation 2. The energy graphs obtained using the Equation 2
and from Wattch is not an exact copy of each other. This error is due
to several reasons, such as, the different processor parameters of the
two processors and the inaccuracy of the simplescalar model (Wattch
is built on top of Simplescalar) for reporting cache misses. In addi-
tion, it is also known that processor energy calculation using proces-
sor model derived from simplescalar is inaccurate; for example, sim-
plescalar modeled the issue queue, reorder buffer, and the physical
register file as a unified structure called Register Update Unit (RUU),
unlike in real implementations where the number of entries and the
number of ports in all these components are quite disparate [20].

We also performed simulation with Wattch for the remaining Me-
diabench benchmarks and obtained similar energy graph results in
comparison to energy graph obtain from using Equation 2. Due to
space constraints, we are unable to include the energy graphs ob-
tained with Wattch for all other benchmarks.

5.3 Design Space Exploration
Looking at the Pareto optimal points in the three plots (Figure 9),

it can be concluded that for g721enc application a 16K bytes direct-
mapped cache with line size of 16 bytes would be the best cache
configuration in terms of lowest energy consumption.

For design space exploration purposes, the best cache configuration
based on performance or energy consumption can then be chosen
from the performance plots and the energy plots. Best choices of
cache configurations for the Mediabench benchmark is shown in Ta-
ble 3.

For g721enc application, it can be seen in Table 3 that for best
performance a 16K bytes direct-mapped cache with line size of 256
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Cache configuration corresponding to
Best Performance Lowest energy consumption

Application Cache Cache Cache Cache Cache Cache
size Assoc. line size size Assoc. line size

cjpeg 16384 1 256 16384 1 16
djpeg 8192 1 128 8192 1 16

pegwitenc 16384 1 128 16384 1 16
pegwitdec 8192 1 128 8192 1 8

epic 8192 1 128 8192 1 32
unepic 8192 1 128 4096 1 32

g721enc 16384 1 256 16384 1 32
g721dec 16384 1 16 8192 1 64

mpeg2dec 4096 1 64 4096 1 16

Table 3: Best cache configuration choice in terms of performance
or energy consumption.

bytes should be used. This indicates that the lowest energy consum-
ing cache configurations does not translate to the fastest execution
time.

6. Conclusions
In this paper, we presented a cache selection method for config-

urable processors. This method uses a cache simulation procedure
to perform fast and accurate simulation of multiple cache configura-
tions simultaneously using a single reading of a program trace. Our
method is 45 times faster compared to existing methods of cache
simulation. Fast and accurate cache miss calculations allow rapid
design space exploration of optimal cache parameters for desired per-
formance and/or energy consumption.
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(a) Energy comparison for different cache associativity
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(b) Energy comparison for different cache line size
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Figure 9: Total energy consumption compared to cache miss
number
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Figure 10: Total energy consumption of g721enc application
measured using Wattch.
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