Cache Size Selection for Performance, Energy and Reliability of
Time-Constrained Systems *

Yuan Cai!, Marcus T. Schmitz?,

Alireza Ejlali?,

Bashir M. Al-Hashimi?, ~Sudhakar M. Reddy"

!Department of Electrical and Computer Engineering, University of Iowa
E-mail: {yucai, reddy } @engineering.uiowa.edu
2School of Electronics and Computer Science, University of Southampton
Email: {ms4, ac04v, bmah} @ecs.soton.ac.uk

Abstract— Improving performance, reducing energy con-
sumption and enhancing reliability are three important objec-
tives for embedded computing systems design. In this paper, we
study the joint impact of cache size selection on these three objec-
tives. For this purpose, we conduct extensive fault injection exper-
iments on five benchmark examples using a cycle-accurate pro-
cessor simulator. Performance and reliability are analyzed using
the performability metric. Overall, our experiments demonstrate
the importance of a careful cache size selection when designing
energy-efficient and reliable systems. Furthermore, the experi-
mental results show the existence of optimal or Pareto-optimal
cache size selection to optimize the three design objectives.

I. INTRODUCTION

Cache memories are widely used in microprocessors to im-
prove the system performance [1]. As small, fast on-chip mem-
ories, caches store frequently accessed instructions and data to
avoid a large number of accesses to the slow, off-chip main
memory. Depending on the way the cache blocks are mapped
onto the main memory, we distinguish between direct-mapped
caches (each main memory address is mapped to one and only
one cache block) and n-way set-associative caches (each main
memory address can be mapped to n possible cache blocks).
As opposed to the slow dynamic main memory, cache mem-
ories are implemented as flip-flops using static logic. Though
cache memories can improve the system performance dramat-
ically, they are responsible for a large portion of the overall
system’s power dissipation [2]. To reduce the energy dissi-
pation, several approaches of dynamic cache reconfiguration
have been reported. Zhang et al. [3] proposed a technique
called way concatenation that tunes the cache ways between
one (direct-mapped), two and four. Accordingly, at a reduced
number of ways (1 and 2) the corresponding unused cache
ways are disable. This is carried out under software control,
i.e., at application run-time. They report an average energy
saving of 40% compared to a fixed four-way cache. Simi-
larly, Dropsho et al. [4] introduced a cache design, called ac-
counting cache based on the selective ways cache [5]. The
number of active ways is dynamically change under hardware
control. Powell et al. [6] applied way-prediction and selec-
tive direct-mapping to reduce the set-associative cache energy.

*This work is supported in part by the EPSRC, U.K., under grant
GR/S95770, EP/C512804

This is achieved by predicting the matching way and access-
ing only this matching one, instead of all ways. A dynamic
online scheme that combines the processor voltage scaling and
dynamic cache reconfiguration was proposed by Nacul et al.
[7]. Their online algorithm adapts the processor speed and the
cache subsystem to the workload requirements of the appli-
cation. In a similar fashion, Zhang et al. [2] introduced an
online heuristic that dynamically adjusts the cache size in or-
der to minimize the cache energy. Their experiments point out
that among all configurable cache parameters, cache size has
the largest impact on cache performance and energy consump-
tion. Yang et al. [8] investigated different design choices for
resizable caches and evaluated their efficiency in reducing the
system’s energy dissipation. While these approaches are ef-
fective in reducing the energy dissipation, they neglect another
important factor, namely the cache reliability.

Cache reliability is mainly threatened by transient faults,
caused by strikes from alpha particles and energetic particles
[9]. When a memory cell (flip-flop) is hit by such a particle,
though the circuit itself is not damaged, the stored bit value
can flip and cause an error. This problem is becoming more
and more serious due to the ever-shrinking feature size and re-
duced supply voltage levels [10]. Hardware approaches that
are dedicated to improve the cache reliability have been pro-
posed. Such approaches make use of spatial redundancy to cor-
rect corrupted bits, for instance, data word parity [11] and Sin-
gle Error Correct-Double Error Detect Error Correcting Codes
(SEC-DED ECC) [12]. Li et al. [10] studied the impact of two
leakage energy reduction approaches on the cache reliability.
They also used the word parity and SEC to detect and correct
the corrupted bits. However, the impact of cache size selection
was not considered. Clearly, the spacial redundancy requires
additional hardware and decreases the performance, hence is
likely to increase the cache energy consumption.

Nevertheless, like cache energy and performance, the cache
reliability is also affected by the cache size. The reason for
this is threefold. Firstly, when the cache size is reduced (for
instance, through disabling a portion of the cache), the proba-
bility of particle-hits in the smaller active area is also reduced
and particles hitting the disabled part of the cache will not man-
ifest in errors. Secondly, the execution time of the application
generally increases as the cache size decreases. The proba-
bility of particle-hits during a longer execution time increases.
Thirdly, if time redundancy techniques (e.g. rollback recovery)

Cache

Task execution

val. tag data
1 5
53
‘ '3 & & Slack & ' o
128 S S S ¥ ______ .=
Original ! '3
task Re-Exe.1 |Re-Exe.2 | A
3 execution ! |
T T TT T
0 F, F, N F3/2N 3N cycles
256
(a) Cache size set to 256 lines (slack for 2 re—executions)
val. tag data
1 | 2
¥
64| L & |
: S 5
j & & Slack |
\ I 0 o0 Q
128 [13 . ¥ .=
Original =
. task Re—-execution 1 | ! 8
Dl execution -
T T
0 F, F, N 2N cycles
256
(b) Cache size set to 128 lines (slack for one re—execution)
val. tag data
1 @
E
64 < |
&
& i Slack
h [0}
128 ¥ 3 .=
Disabled Original |8
task rA
. |
ﬂ. execution i
T
0 F N cycles
256

(c) Cache size set to 64 lines (insufficient slack for re—execution)

Fig. 1. Affection of the cache size on reliability

are used to correct faulty executions, the cache’s influence on
the task execution times will also affect the number of possible
re-executions, hence affecting the system’s reliability. For ex-
ample, in Fig. 1(a), if we reduce the cache size from 256 lines
to 128 and 64 lines (Fig. 1(b) and (c)), the number of faults in
the active cache area decrease from 3 to 2 and 1, respectively.
However, the smaller cache sizes result in prolonged task ex-
ecution times, which, in turn, change the amount of slack left
for re-executions.

The aim of this paper is to examine the combined effect
of cache size selection on energy consumption, reliability and
performance. To the best of our knowledge, this is the first
investigation into the interaction between cache energy con-
sumption and transient faults from an cache size perspective.
We perform extensive fault inject simulations on five com-
monly used benchmarks, using a cycle-accurate microproces-
sor simulator. The experiments demonstrate that there exists
a complex trade-off between the different objects. Ultimately,
this trade-off can be exploited through dynamic cache resizing
(enabling/disabling portions of the cache) at application run-
time.

The remainder of this paper is organized as follows. We in-
troduce the models of the transient faults, the cache performa-
bility and the cache energy in Section II. The simulation setup
and results analysis are in Section III. Concluding remarks are
given in Section I'V.

II. PRELIMINARIES

A. Transient fault model

Transient faults within the cache are mainly caused by al-
pha particles hitting the flip-flops of the cache [9, 17]. The
physical procedure of the particle-hits causing faults is com-
plex and the effect depends on many factors, like the energy
transferred from the particle into the circuit, the transistor size,
etc. [18]. In this paper, however, we are not directly interested
in the combined circuit and particle properties that can lead to
transient faults, but rather in the effect of the transient faults
within the cache on the task execution result with respect to
performance, energy and reliability. Thus we will use the bit-
flip as the transient fault model, i.e, when an alpha particle hits
a flip-flop, the value stored in it changes its value from 1 to 0
or vice versa [19]. The arrival process of the transient faults is
typically modeled as a Poisson process with an average fault
rate Afqq¢ [13, 14]. With the arrival of a transient fault, each
flip-flop in the cache has an equal probability to be hit since
alpha particles are uniformly distributed over the circuit area.
Of course, the transient faults can also occur in other parts of
the processor (e.g. registers) and cause errors. However, the
number of registers in modern microprocessor is far below the
number of cache memory cells and it was pointed out in [21]
that more than 90% of errors in a processor are originating
from the transient faults in the cache. Therefore, we will focus
throughout this paper on transient faults in the cache. When a
transient fault occurs in the cache, though the value in a certain
flip-flop is corrupted, this does not necessarily manifest in an
error, that is, the computational result can still be correct. For
example, when the transient fault happens in a tag array and the
processor wants to read the corresponding cache line, the ef-
fect may be just one read miss causing a read from the external
memory. Nevertheless, the overall correctness of the computa-
tion is not jeopardized. Even when a transient fault happens in
a data array of the cache, it is possible that the corrupted value
in the data array is overwritten due to a cache write from the
processor or a data read from the memory to the cache before
it is propagated into the data path of the processor so that the
fault is masked. Hence, one important factor that characterizes
the system’s vulnerability is the ratio between the errors and
transient faults. We define the vulnerability factor (VF) as this
ratio. Further, we define the error rate Ao, as the product of
VF and the fault rate, i.e., Aepror = V F' % Apquie. The error rate
Aerror Will be used in Section II.B to compute the performa-
bility of the cache. Though the fault rate A ¢4, is independent
of the cache size (3 faults appear in all cache configurations of
Fig. 1), we can find that VF is actually a function of the cache
size from the simulation results (see Section III.B), so the er-
ror rate as well as the performability both depend on the cache
size. We will outline how to obtain VF through fault injection
experiments in Section II[.A.

B. Performability model

For real-time systems, the most important criterion of the
system performance is whether the processor can finish execut-
ing a task within a given deadline. More specifically, suppose
the processor needs IV cycles to execute a task and the proces-
sor frequency is f, if the deadline before which the task should

complete is D, then the performance requirementis N/f < D.
In the case that the task finishes execution before the deadline
D, then there exists a slack. For example, Fig. 1 (b) shows
the task execution for a cache size of 128 lines. As we can
observe, it takes IV cycles to execute the task, leaving a slack
of D — N/f. This slack time can be utilized to increase the
system’s reliability against transient faults by performing roll-
back recoveries (re-execution) when errors occur [14]. That is,
in the presents of an error, the task is re-executed with the aim
to achieve a non-faulty run. Nevertheless, since re-executions
require time, the number of possible re-executions is limited
by the amount of slack. Accordingly, the number of possible
re-executions is given by:

D Dxf
k:LN—/fJ—lzL N

-1 ey

For instance, in Fig. 1(a), the slack is large enough to per-
form two re-executions (k = 2), when needed. The number
of possible re-execution, however, decreases as the cache size
is reduced. For instance, in Fig. 1(b) and (c) the number of
re-execution is kK = 1 and k = 0, respectively.

Since the appearance of transient faults follows a Poisson
distribution, the probability of at least one error during the ex-
ecution of a task is [14]:

—VFXXfau1s XN

pe:]_—e f

—Aerror XN
=1l—-e 7 2)
We use a combined metric called performability to measure the
system performance and reliability together [13, 14]. Here, the
performability is defined as the probability of finishing the task
correctly within the deadline in the presence of faults [14].

Based on Eqs. (1) and 2, the performability can be expressed
by [14]:

—%em}orXN LDjéfJ

P=1-pfl=1-(1-¢ 3)

The clock cycles N that the processor needs to execute a task
is heavily impacted by the cache size. The direct result is that
k, the number of possible re-executions, will be different for
different cache sizes. Also, as outlined in Section III.A, the
error rate Ae,ror 18 a function of the cache size. As a result, the
performability is fundamentally impacted by the cache size.
As our experimental results indicate (Section III), a careful se-
lection of the cache size is of utmost importance to achieve the
required performance and reliability.

C. Cache energy consumption

The energy dissipated in the cache is comprised by a static
and a dynamic component. Static energy is caused by leak-
age currents in the CMOS circuit, while dynamic energy is
mainly due to the charging and discharging of the load capac-
itance which are driven by switching gates. Dynamic energy
consumption consists of most of the total energy dissipation
in level one caches [16], hence we only consider the dynamic
energy of the cache here. Cache energy is dissipated during
read as well as write accesses. Write accesses include the nor-
mal write accesses and the cache line replacements after cache
misses. Accordingly, the cache energy is given by:

E = Eread X Nread + Ewrite X Nwrite (4)

Valid Tag Data

=Ll ..

1 2

B

Y

Fig. 2. Position of fault injection: instruction cache

where Nycqq and Nypite are the numbers of the cache read
access and write access respectively, while E,..,q and E e
are the energy consumed during one cache read access and one
cache write access, respectively. Both N,..q,q and Ny, iz de-
pend on the cache size since the cache hit rates are generally
different for different cache sizes. Furthermore, the energy per
access, E,..qq as well as E, .., is also cache size dependent.
The main reason is that different memory wire lengths have
different capacitances to be charged [23].

III. SIMULATIONS AND EXPERIMENTAL RESULTS

A. Simulation setup

In order to study the impacts of the cache size on performa-
bility and cache energy, we use a simulation-based approach.
The experimental platform is MPARM [24], a cycle-accurate
simulator that includes an ARM7 microprocessor model. The
simulator reports detailed information regarding the number of
clock cycles used to execute a benchmark as well as the energy
consumed within the cache. The cache size of MPARM can be
configured from 32 bytes up to 1M bytes (1024 x 1024) with
the constraint that the size must be a power of 2. The cache line
size is fixed to 16 bytes. In our simulation, we use separated
data cache and instruction cache, and both have a maximum
size of 256K bytes (256 x 1024). Cache memory accesses
require one clock cycle, while accesses to the main DRAM
memory are conservatively assumed to take 100 clock cycles
[22]. Two way set-associativity is used for the data cache. The
instruction cache is direct-mapped. Although the associativity
of the cache is configurable, we do not change the cache as-
sociativity in our simulations, since our main focus is on the
cache size.

We conduct the fault injection experiments to determine
the vulnerability factor (Section II.A) of different cache con-
figuration for five commonly used benchmark applications,
namely, a fixed point FFT (FPFFT) with a 1024 points dis-
crete sinewave as input, a cyclic redundancy check (CRC) with
300 ASCII characters as inputs, a 8 x8 matrix multiplication
(MM), a 12x 12 matrix addition (MA) and a 100 integer quick
sort algorithm (QSORT). In order to obtain accurate vulnera-
bility factors, we inject 10% faults for each benchmarks. Each
fault is injected in the following way: Two independent ran-
dom variables X and Y are used to decide the position of the
fault injection in the cache, as illustrated in Fig. 2. The ran-
dom variable X is uniformly distributed between 1 and L, the
number of lines in the cache. Accordingly, X decides in which
line the fault will be injected. The random variable Y is uni-

1.8e+07
6e+06 N B B Lo
1.6e+07 [~

Se+06 1 146407 [

1.2e4+07 [~

4e+06 [

1e+07 [~
3e+06 [~

clock cycles

8e+06 [
2e+06 [~

data cache energy(pJ)

6e+06 [~

le06 1 4e+06

vulnerability factor

0 2e+06

4 6 8 10 12 14 16 18 4 6 8
cache size
(a) data cache energy

(b) clock cycles

12 14 16 4 6 8 10 12 14 16

18 18
cache size cache size

(c) vulnerability factor

Fig. 3. FPFFT simulation results: data cache

formly distributed between 1 and M, the number of bits in a
line, to decide which bit in the line will flip its value. This de-
termines if the flipped bit belongs to the valid bit, the tag array
or the data array. Fig. 2 shows the case for the direct-mapped
instruction cache, the fault position in the two way data cache
is decided in a similar way, only that Y is uniformly distributed
between 1 and 20 . When Y is less than M, the fault is within
set 0; otherwise, the fault is within set 1. According to the val-
ues of X and Y, we check whether the selected memory cell
falls within the disabled cache region. If so, the fault injection
will definitely not cause an error and a simulation run is unnec-
essary. On the other hand, if a memory cell within the enabled
cache is selected, then the injected fault might manifest in an
error, i.e., the simulation has to be performed to observe the
effect of the injected fault. Before the simulation is performed,
we also randomly determine the clock cycle I of the task ex-
ecution during which the fault will be injected (1 < I < N).
After a simulation has finished, we compare the outcome with
the expected outcome to see if the injected fault resulted in an
error. The number of errors is counted and divided by the num-
ber of injected faults (10%) to obtain the vulnerability factor.

B. Experimental results

In the first set of experiments, we concentrate on the data
cache and the results obtained for the FPFFT benchmark.
Fig. 3 shows the outcomes of the experiments. The three
graphs give the energy dissipation, the number of clock cy-
cles and the vulnerability factor as a function of the cache size.
Note that the cache size in the figures is the logarithm of the
true cache size, e.g., cache size 10 means the true cache size
is 219 = 1024 bytes. As we can observe from Fig. 3 (a), the
optimal cache energy consumption for the FPFFT benchmark
is obtained for a cache size of 2'° bytes. It is interesting to see
that the cache energy increases for smaller sizes. The main rea-
son for this behavior is the high miss rate for smaller caches,
which consequently results in a large number of cache line
replacements. This increases the number of cache accesses
(read/write accesses + replacement accesses). Although the
energy per cache access increases when the cache size gets
larger, the number of cache accesses drops relatively faster and
the overall effect is a decreasing energy consumption. When
the cache size is above 210 bytes, the number of the cache ac-
cesses reduces slower and becomes fixed after the cache size is
greater than 2'2 bytes. However, the energy per cache access
continuously increases with the cache size increasing. This
is mainly due to the fact that the address/data lines in the
cache become longer and hence a larger capacitance has to be

TABLEI
PERFORMABILITY FOR FPFFT: DATA CACHE

cache size | number of 9’s | digits after 9
5 6 89742
6 6 74106
7 6 59974
8 12 52998
9 16 69592
10 26 81057
11 26 52011
12 26 39275
13 26 34412
14 26 30301
15 26 48551
16 26 40212
17 26 27900
18 26 42730

charged for the accesses. As a result, the energy curve of the
cache rises after the cache size is larger than 21° bytes.

The processor clock cycles used to execute the benchmark
is depicted in Fig. 3(b). As we can see, with increasing cache
size the miss rate drops and the clock cycles decrease quickly.
Clearly, less cache misses cause less time-consuming main
memory accesses so that the total clock cycles are reduced.
Nevertheless, once the cache size is above 212 bytes, the clock
cycles do not change any more. This is due to the fact that the
application can not facilitate the extra cache and the increasing
cache size will not further reduce the cache miss rate.

Fig. 3(c) shows the vulnerability factor (VF) as a function
of the cache size. It shows an opposite trend when compared
to the clock cycle curve of Fig. 3(b). This can be explained
as follows. If the active cache portion is increasing, also an
increasing number of the uniformly distributed transient faults
will hit this active area, hence causing more errors. However,
when the cache size has exceeded 212 bytes, the FPFFT bench-
mark does not take advantage of additional cache and the pro-
cessor will not access the additional cache lines. Hence, as the
cache becomes larger and larger, although more and more tran-
sient faults fall into the cache, the number of those hitting the
accessed lines of the cache does not change significantly. As
a result, the VF curve becomes saturate when the cache size
exceeds 2'2 bytes.

Having obtained the clock cycles and vulnerability factor,
we can now use Eq. 3 to compute the performability for each
cache size. The deadline for the FPFFT benchmark is 80.9 ms,
which is the execution time of the benchmark when the cache
size is minimum (2% bytes). The performability results are
given in Table I. Note that the performability is actually a prob-
ability, with a desired value of as close as possible to 1. To ease
the comparison we report the results by the number of 9s af-
ter the decimal point (Column 2) and five more digits after the

1.4e+07 03
4.5e+06 -
4e+06 - 1.2e+07 = | 0.25 - 4
~
= -
£ 350406 [3 1e+07 1 8
> S o2 i
B0 3e406 - 4 38 &
o D 8e+06 [al >
G 250406 [4@ = oisp 4
o - F o1
S 20406 4 8 exl6 [o E
S L 4 ° £ oif q
g 1.5¢+06 es06 - | 3
T jes06 [. B
2e+06 | 0.05
500000 - q
o i i i i i i i o i i i i i i i o i i i i i
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
cache size cache size cache size
(a) data cache energy (b) clock cycles (c) vulnerability factor
Fig. 4. CRC simulation results: data cache
250407 4.5¢407 T T T T T T T
0.06 [B
. 4e+07 [b
2
e N 3.5e407 [T, M 7
3] 9]
3 36407 |- 49
=1 A S 004 B
S 150407 [43 b
—?:) > 2.5e+07 [- Z\
S M = 3L R : . o
3 B 2es07 4 8 00
o les07 [~ 4 8 5
=} o L. . =]
S 150407 = o b
o El 2
E >
Z 5e406 [i 1e+07 [i
£ 001 [B
56406 [~ q
o i i i i i i i o i i i i i i i o i i i i i i i
6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
cache size cache size cache size
(a) inst. cache energy () clock cycles (c) vulnerability factor
Fig. 5. FPFFT simulation results: instruction cache

last 9 (Column 3). As we can observe, when the cache size is
smaller than 28 bytes, though the VF value is small (Fig. 3(c)),
the execution time is relatively long due to the large number
of clock cycles (Fig. 3(b)). As a result, there is not enough
slack for the re-execution so that the performability becomes
low. With increasing cache size, the execution time reduces
and there is more slack left for re-executions, even though the
VF value increases, the performability still improves. This il-
lustrates that compared to VF, slack time is more important to
improve the performability for this benchmark. After the size
reaches 2'° bytes, the difference between each performability
value is marginal and the number of 9s remains the same. From
Table I, it can be found that with the cache size of 2!° bytes, we
can achieve the best performability. Taking the energy curve of
Fig. 3(a) into consideration, we can find that selecting a cache
size larger than 2'° is not a good choice because it is not energy
efficient and the performability will not be improved. Clearly,
for the FPFFT benchmark, 2'° bytes is the optimal cache size
with which the cache energy is minimal and the performability
is maximal.

The next set of experiments is concerned with the CRC
benchmark, for which we performed the same evaluations as
for the FPFFT benchmark. The deadline of the CRC bench-
mark is at 69.4 ms. Fig. 4 and Table II show the experimental
results. When comparing Figs. 3 and 4 as well as Tables I
and II, we can notice similar trends, however, we should note
some important difference. For CRC the cache energy is mini-
mal when the cache size is 2? bytes while the performability is
maximal when the cache size is 2'° bytes. That is, as opposed
to FPFFT, there is a Pareto-optimal set of the cache sizes: {29,
2101, The decision of the cache size selection can be made
according to the system requirement. For safety-critical sys-
tems, we should select 219 bytes to achieve the highest per-
formability; for systems with tight energy budget, e.g. some
battery powered systems, the cache size should be selected as

TABLE I
PERFORMABILITY FOR CRC: DATA CACHE

cache size | number of 9’s | digits after 9
5 7 33991
6 6 75160
7 6 60276
8 25 78142
9 31 75245
10 36 87705
11 36 83265
12 36 31894
13 35 87930
14 35 86913
15 35 89884
16 35 17656
17 35 89517
18 35 03286

29 bytes.

Due to space limitations, we do not report here the de-
tailed results of the matrix multiplication (MM), matrix addi-
tion (MA) and quick sort algorithm (QSORT).Nevertheless,
the general trends of these benchmarks follow observations
made for the FPFFT and CRC benchmarks. Overall these
benchmarks have optimal data cache sizes for MM, MA and
QSORT of 2'°, 2 and 2°, respectively.

Since the above given experimental results concentrated on
the data cache, we have conducted additional experiments for
the instruction cache. The results of the FPFFT benchmark are
given in Fig. 5 and Table III. The energy curve reaches the
lowest point at the cache size of 2° bytes. In Table III, we can
find the performability is maximum when the cache size is 2'3
bytes. However, since the performability at size 2'° is very
close to the maximum value and the number of 9s at size 2'°
is the same as that of size 213, we can choose 2° and 219 as the
Pareto-optimal set of the cache size.

The experimental results for the other four benchmarks on
the instruction cache follow a similar trend and details are
omitted due to space limitations. Nevertheless, for the MA
and QSORT benchmarks, there are Pareto-optimal sets: {27,

TABLE III
PERFORMABILITY FOR FPFFT: INSTRUCTION CACHE

cache size | number of 9’s | digits after 9
5 5 48157
6 4 80023
7 4 17800
8 12 45910
9 40 19101
10 64 75657
I1 64 79140
12 64 85160
13 64 86659
14 64 69409
15 64 83935
16 64 67832
17 64 80194
I8 64 83067

28} and {28, 2°}, respectively. For the MM and CRC bench-
marks the optimal cache sizes are 28 and 2°, respectively.

Summarizing, we can draw the following conclusion from
the above experimental results. There exist optimal or Pareto-
optimal cache size choices with respect to performability and
energy consumption. Depending on the application require-
ment a proper cache size should be selected to achieve the opti-
mal energy and performability simultaneously or the best trade
off. Furthermore, as the optimal cache sizes depend largely on
the running application, dynamically changing the cache size
to suit the particular application is not only beneficial from
an energy point of view but also to improve the system’s per-
formability. For instance, when running the FPFFT benchmark
after the MA benchmark, the processor’s data cache should be
adapted from 2° to 2'° bytes and the instruction cache should
be changed from 2% to 2° bytes. This adaption would reduce
the data cache energy by 2.6% and increasing the performa-
bility from sixteen 9s to twenty-six 9s. The instruction cache
would reduce its energy by 8.8% and improve the performabil-
ity from twelve 9s to forty 9s.

IV. CONCLUSIONS

In this paper, we studied the impact of the cache size se-
lection on three important design objectives, namely, the sys-
tem performance, the cache energy consumption and the cache
reliability, which has not been addressed explicitly in previ-
ous work. Performability has been defined to combine the
analysis of the performance and the reliability. We have con-
ducted extensive experiments to analyze the interplay between
the three objects. These experiments were performed using
cycle-accurate processor simulations and it was found that the
cache size selection affects not only the energy but also the
performability. The results indicate that a careful cache size
selection is needed, in order to take advantage of the found
optimal energy/performability trade-off points.

REFERENCES

[1] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative
Approach, 2nd Edition, Morgan Kaufmann Publishing Co. 1996

[2] C. Zhang, F. Vahid and R. Lysecky, “A self-Tuning Cache Architecture
for Embedded Systems”, in Proc. of DATE, 2004.

[3] C.Zhang, F. Vahid, W. Najjar, “A Highly Configurable Cache Architec-
ture for Embedded Systems”, in Proc. of International Symposium on
Computer Architecture, 2003.

[4] S. Dropsho et al., “Integrating Adaptive On-Chip Storage Structures for
Reduced Dynamic Power”, in Proc. of the International Conference on
Parallel Architectures and Compilation Techniques, 2002.

[5] D. H. Albonesi, “Selective cache ways: On-demand cache resource allo-
cation”, in Proc. of International Symposium on Microarchitecutre, 1999.

[6] M. Powell A. Agaewal, T. Vijaykumar, B. Falsafi and K. Roy, “Reducing
Set-Associative Cache Energy via Way-Prediction and Selective Direct
Mapping”, in Proc. of International Symposium on Microarchitecture,
2001.

[7]1 A.C. Nacul and T. Givargis, “Dynamic Voltage and Cache Reconfigura-
tion for Low Power”, in Proc. of DATE 04, March, 2004.

[8] S. Yang, M. D. Powell, B. Falsafi, T. N. Vijaykumar, “Exploiting
Choice in Resizable Cache Design to Optimize Deep-Submicron Pro-
cessor Energy-Delay”, in Proc. of International Symposium on High-
Performance Computer Architecture, 2002.

[9]1 G. Asadi, V. Sridharan, M. B. Tahoori, D. Kaeli, “Balancing Performa-
cne and Reliability in the Memory Hierarchy”, in Proc. of International
Symposium on Performance Analysis of Systems and Software, 2005.

[10] L.Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, “Soft
Error and Energy Consumption interations: A Data Cache Perspective”,
in Proc. of ISLPED 04, Aug. 2004.

[11] S. Kim and A. K. Somani, “Area Efficient Architectures for Information
Integrity in Cache Memories”, in Proc. of International Symposium on
Computer Architecture, 1999.

[12] W. Zhang, S. Gurumurthi, M. Kandemir, A. Sivasubramaniam, “ICR:
in-cache replication for enhancing data cache reliability”, in Proc. of In-
ternational Conference on Dependable Systems and Networks, 2003.

[13] D. Zhu, R. Melhem and D. Mosse, “The Effecs of Energy Management
on Reliability in Real-Time Embedded Systems”, in Proc. of ICCAD 04,
Nov. 2004.

[14] A. Ejlali, M. T. Schmitz, B. M. Al-Hashimi, S. G. Miremadi, “Energy
Efficient SEU-Tolerance in DVS-Enabled Real-Time Systems through
Information Redundancy”, in Proc. of ISLPED 05, Aug. 2005

[15] R. Melhem, D. Mosse, E. Elnozahy, “The interplay of Power Manage-
ment and Fault Recovery in Real-Time Systems”, IEEE Transaction on
Computers, Vol. 53, No. 2, February, 2004.

[16] H. Hanson, M. S. Hrishikesh, V. Agarwal, S. W. Keckler, D. Burger,
“Static Energy Reduction Techniques for Microprocessor Caches”, IEEE
Transaction on VLSI systems, Vol. 11, No. 3, June, 2003.

[17] S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. S. Kim, “Robust System
Design with Built-In Soft-Error Resilience”, IEEE Computer Magazine,
Vol, 38, No. 2, Feburary, 2005.

[18] P. E. Dodd and F. W. Sexton, “Critical Charge Concepts for the CMOS
SRAMS”, IEEE Transactions on Nuclear Science, Vol. 42, No. 6, Dec.
1995.

[19] F.Faure, R. Velazco, M. Violante, M. Rebaudengo and M. Sonza Reorda,
“Impact of Data Cache Memory on the Single Event Upset-Induced Error
Rate of Microprocessors”, IEEE Transactions on Nuclear Science, Vol.
50, No. 6, Dec. 2003.

[20] A. Maheshwari, W. Burleson, R. Tessier, “Trading off Transient Fault
Tolerance and Power Consumption in Deep Submicron (DSM) VLSI Cir-
cuits”, IEEE Transaction on VLSI systems, Vol. 12, No. 3, March 2004.

[21] M. Rebaudengo, M. S. Reorda and M. Violante, “An Accurate Analy-
sis of the Effects of Soft Errors in the Instruction and Data Caches of a
Pipelined Microprocessor”, in Proc. of DATE 03, March, 2003.

[22] L.Li, I. Kadayif, Y-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin
and A. Sivsubramaniam, “Leakage Energy Management in Cache Hier-
archies”, in Proc. of International Conference on Parallel Architectures
and Compilation Techniques, 2002.

[23] G.Reinmann and N. P. Jouppi, “CACTI2.0: An Integrated Cache Timing
and Power Model”, COMPAQ, Western Research Lab, Research Report,
2000.

[24] http://www-micrel.deis.unibo.it/sitonew/research/mparm.html

