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ABSTRACT
In this paper, we present a simultaneous resource allocation and 
binding algorithm for FPGA power minimization. To fully validate 
our methodology and result, our work targets a real FPGA 
architecture ⎯ Altera Stratix FPGA [2], which includes generic 
logic elements, DSP cores, and memories, etc. We design a high-
level power estimator for this architecture and evaluate its 
estimation accuracy against a commercial gate-level power 
estimator ⎯ Quartus II PowerPlay Analyzer [1]. During the 
synthesis stage, we pay special attention to interconnections and 
multiplexers. We concentrate on resource allocation and binding 
tasks because they are the key steps to determine the 
interconnections. We use a novel approach to explore the design 
space. Experimental results show that our high-level power 
estimator is 8.7% away from PowerPlay Analyzer. Meanwhile, we 
are able to achieve a significant amount of power reduction (32%) 
with better circuit speed (16%) compared to a traditional resource 
allocation and binding algorithm.  

1. INTRODUCTION 
The basic problem of high-level synthesis is the mapping of a 
behavioral description of a digital system into an RTL design 
consisting of a datapath and a control unit. A datapath is composed 
of three types of components: functional units (e.g., ALUs, 
multipliers, and shifters), storage units (e.g., registers and memory), 
and interconnection units (e.g., buses and multiplexers). The control 
unit is specified as a finite state machine, which controls the set of 
operations for the datapath to perform during every control step. The 
high-level synthesis process mainly consists of three subtasks: 
scheduling, allocation, and binding. Scheduling determines when a 
computational operation will be executed; allocation determines how 
many instances of resources (functional units, registers, or 
interconnection units) are needed; binding binds operations, 
variables, or data transfers to these resources.  
Traditionally, people are more concerned with area and power of 
functional units and registers. As technology advances, the area and 
power of multiplexers and interconnects have by far outweighed the 
area and power of functional units and registers, especially for 
FPGA architectures. Studies show that interconnects contribute 70-
80% of the total area [27] and 75-85% of the total power [19][20] in 
FPGAs. Multiplexers are particularly expensive for FPGA 
architectures. It is shown that the delay and power data of a 32-to-1 
multiplexer are almost equivalent to a 18-bit multiplier in 0.1um 
technology in FPGA designs [6][7]. In general, smaller number of 
functional units or registers allocated but with larger number of wide 
multiplexers and larger amount of interconnects may lead to a 
completely unfavorable solution for both performance and power. 
To tackle this increasingly alarming problem, it will require an 
efficient search engine to explore a sufficiently large solution space 
considering multiple constraining factors, such as resource allocation 
and binding, MUX generation, and interconnection generation, for 
optimizing performance or power, or study the tradeoff between 
them.  

Although low-power high-level synthesis for ASICs is an old topic, 
high-level synthesis for FPGA power minimization has not been 
widely studied. We are only aware of one previous work [7], where 
the optimization goal is to minimize power of FPGA designs under 
performance/latency constraints. The authors adopted a simulated 
annealing-based algorithm, which carried out high-level synthesis 
subtasks simultaneously. However, the delay model in [7] did not 
consider multiplexer delay, which could represent a significant 
portion of the critical path delay for FPGA chips. Also, [7] only 
worked on data-flow graphs (DFGs), and it did not model existing 
commercial FPGAs.    
In this work we present a novel design space exploration engine, 
xPlore-Power, for FPGA power minimization. We concentrate on 
resource allocation and binding tasks because they are the key steps 
to determine the interconnections during high-level synthesis. To 
fully validate our methodology and result, we target a real FPGA 
architecture ⎯ Altera Stratix architecture [2], which includes 
generic logic elements, DSP cores, and different types of memories, 
etc. We design a high-level power estimator for this architecture and 
verify that its power estimation result is very close to that reported 
by Altera’s gate-level power estimator ⎯ Quartus II PowerPlay 
Analyzer [1]. We form, propagate and prune binding/allocation 
solution points guided by our power and delay estimation. During 
this process, we pay attention to interconnects and multiplexers to 
control their power consumption and delay. Eventually, we generate 
a design solution curve, which can provide ideal solution points with 
low power and high performance.
The rest of this paper is organized as follows. In Section 2 we 
present related work. Section 3 provides definitions and problem 
formulation. Section 4 presents CDFG simulation, and power and 
delay estimation. Section 5 presents detailed description of our 
xPlore-Power algorithm. Section 6 presents experimental results, and 
Section 7 concludes this paper. 

2. RELATED WORK 
There is extensive literature on binding and allocation problems for 
high-level synthesis [10][11]. The previous work can be roughly 
categorized into two major groups. The first group solves register 
binding and functional unit binding separately. Representative 
algorithms include clique partitioning [28], weighted bipartite-
matching [15], network flow [5][12], and k-cofamily [6]. The 
challenge for these approaches is how to achieve global optimization. 
The second group tries to address the global optimality and performs 
simultaneous functional unit and register binding. Representative 
algorithms include simulated annealing [7][8][18], simulated 
evolution [21], and ILP (integer linear programming) [13][26]. Since 
the subtasks of high-level synthesis are highly interrelated, 
simultaneous optimization approaches try to consider all the 
involved optimization parameters together and explore the combined 
solution space for overall better results. One concern for these 
algorithms is their scalability towards optimizing large designs. 
There is some work that carries out simultaneous optimization one 
control step at a time [16][23]. Although this approach may have 
better runtime, it could lose the global optimization opportunity 
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because it has to commit to a binding solution for each control step, 
which only represents the local optima.  
Most of the work mentioned above is for data-dominated behaviors, 
normally found in digital signal processing and image processing 
applications. For control-flow intensive behaviors, frequently found 
in network-centric systems, different optimization techniques are 
required to handle branch and loop conditions. There are mainly two 
approaches to address the hierarchical structure in the design. One 
approach is to process each basic block separately (there are no 
conditions and loops in a basic block, thus an easier problem to 
solve), and then handle the control flow between these blocks to 
reduce cost or improve performance [22][30]. The other approach is 
to optimize the whole design directly on top of an internal 
representation (either hierarchical or flattened) for both datapath and 
control flow [14][25]. Our work belongs to the latter category. 

3. DEFINITIONS AND PROBLEM 
FORMULATION 

3.1 Definitions 
State transition diagrams, or STGs, are general models to describe 
the behavior of sequential circuits. We use STGs to hold the 
scheduling results from control data flow graph (CDFG), which is 
the input of our high-level synthesis system. To describe our version 
of STG representation and its execution semantics, we have the 
following definitions. 
A dataflow represents the data produced by some operation and 
consumed by others. An operation is an atomic computation of the 
design behavior. For example, an addition operation consumes two 
dataflows a and b, and produces their sum to dataflow c. A condition
is a Boolean expression of Boolean dataflows. It can be dynamically 
evaluated as true or false during the STG execution. The lifetime of 
each dataflow (or operation) in the STG is the time during which the 
dataflow (or operation) is active and is defined by an interval [birth 
time; death time]. Two dataflows (or operations) are compatible with 
each other if their lifetimes do not overlap. For example, if the birth 
time of a dataflow a1 is earlier than the death time of a2, a1 and a2
are not compatible. Two compatible dataflows (operations) can share 
the same register (functional unit).  
The STG also contains a set of states S and a set of transitions X. A 
state contains a set of operations, which should be accomplished 
within one clock cycle in the resulting circuit. A transition connects 
a source state to a sink state, associated with a condition. STG 
provides a general representation of scheduling results from various 
behavioral domains. It is a natural representation of control flow-
based scheduling results.  
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Figure 1: Two-level control data flow graph

We use a two-level CDFG representation for our input design. The 
first-level CDFG is a control flow graph (CFG). Each node 
corresponds to a basic block. The edges represent the control 
dependencies between the basic blocks. Each basic block contains 
one operation producing the control signal. If there are more than 
two successors, i.e., if-then-else or switch statements, the labels on 
the control edges indicate the values for the respective branches to 
be taken. A back control edge indicates that there is a loop between 
the source basic block and the destination basic block. The source 

basic block and the destination basic block of a back edge can be the 
same, which indicates that the loop only crosses one basic block. At 
the second level, each basic block has a pure data flow graph (DFG) 
representation, which contains a set of operation nodes and edges 
(dataflows) that represent data dependencies among operation nodes. 
Figure 1 shows one example. After scheduling, each CDFG has a 
corresponding STG to hold its scheduling result. 

3.2 Problem Formulation 
High-level synthesis started from a STG essentially is a resource 
allocation and binding (or sharing) problem, i.e., determine the 
numbers of functional units and registers, and share functional units 
among compatible operations and registers among compatible 
dataflows. These optimization steps have dramatic impacts on the 
final design quality. Careless allocation and binding will result in 
unaffordable interconnection resource and multiplexer usage 
(multiplexers are used to route data and control signals in the design), 
dropping down the final circuit frequency and increasing the total 
power. Unfortunately, binding for optimizing interconnection is 
known to be an NP-hard problem [24]. Even binding in a general 
STG to minimize resource counts is a difficult problem. Meanwhile, 
minimizing a single objective number, e.g., interconnection unit, 
functional unit, or register count, can not guarantee high design 
quality because these design metrics are interrelated. Therefore, 
instead of using resource count as the objective function, we use 
realistic measurements, namely performance and power, to guide our 
optimization. Performance is usually measured as the latency of the 
execution, i.e., the product of the execution path-length and the cycle 
time. Since the path-length is totally determined by the scheduling 
and thus fixed in the STG, we need only care about the frequency the 
final design can achieve. Therefore, our synthesis problem can be 
formulated as follows: 
Given: A CDFG G and its STG G’ 
Tasks: construct a datapath architecture, in which every functional 
unit is bound to a set of operations, and every register is bound to a 
set of dataflows.  
Objectives: maintain behavior correctness and optimize power and 
performance for the design on a target FPGA.  

4. POWER AND DELAY MODELING 
To efficiently search the solution space during resource allocation 
and binding, we need a fast and accurate high-level power and 
performance estimator to guide the process. We first present an 
efficient switching activity calculator using CDFG simulation. We 
then present our power characterization method for one type of 
commercial FPGAs ⎯ Altera Stratix FPGAs [2]. We would like to 
emphasize that similar method can be applied to other types of 
FPGAs from other FPGA vendors as well. Finally, we present our 
resource characterization method to estimate the area and speed of 
different functional units and multiplexers for Stratix.   

4.1 CDFG Simulation and Switching Activity Estimation 
We carry out test vector-based CDFG functional simulation. The 
simulation process is iterative. For each iteration, a set of test vectors 
arrive on the primary inputs of the CDFG. These values will follow 
the control and data flows in the graph and propagate through the 
graph until they reach the outputs of the CDFG. Then, another set of 
vectors arrive for the next iteration. During the propagation, the data 
get operated on the operators within the basic blocks and then passed 
on to branches or loops determined by conditions. Data can also be 
loaded from or stored into the memories. During this simulation, we 
can profile the CDFG and collect useful information for calculating 
switching activities, block visiting probabilities, worst-case latency, 
etc.  
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For switching activity calculation, we extend a method published in 
[4], which performs simulation just once at the beginning and 
computes switching activities for any legal binding without 
repeating simulations afterwards. We add loop support in the 
algorithm. The handling for operations not in loops is the same as 
the method in [4]. 
Let (PI1 → PI2 … → PIK) be a sequence of stimuli enforced on the 
primary inputs of the CDFG G. By performing functional simulation 
on G, with primary input stimulus PIj (1  j  K), we can obtain 
input bit vector Ii

j for operation Oi (1  i  N). Ii
j is computed based 

on the propagation of PIj through the design when the propagation 
reaches the internal operational node Oi. For functional unit U, let 
(O1 → O2 … → ON) be the bound operations in the execution order. 
Suppose all of these operations are in the same loop with a loop 
iteration upper bound B.1 We define Ii

j(x) to represent the input bit 
vector for operation Oi when the simulation takes primary input 
stimulus PIj and reaches loop iteration x (1  x  B) for Oi. The 
toggle count between Cin(Oi, Oi+1) and Cin(ON, O1) under this 
primary-input stimulus sequence, is then defined as follows:  
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where 1  i < N, and DH(X, Y) represents the Hamming Distance 
between bit vectors X and Y. Notice that Cin(ON, O1) represents the 
toggle count between ON and O1 when the execution finishes ON and 
begins O1 again. It contains two terms. The first one represents the 
switches from ON to O1 within the same loop (but different loop 
iteration). The second one represents the switches from the end of 
the previous loop (when it reached the loop upper bound) to the 
beginning of the new round for the loop (it starts from loop iteration 
1 again) when the simulation takes a new primary input stimulus 
PIj+1. Transition probability (or switching activity) Pin of the inputs 
of U is the ratio of the number of bit flips observed on its inputs 
between cycles over the maximum possible number of bit flips. It is 
formally defined as
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where Bit_width is the input vector width of U. In [4], a matrix of Cin
is constructed after scheduling but before binding, and is used for 
looking up when calculating the Pin for every possible binding 
solution afterwards. We skipped the details here. Once we have 
switching activities on U, we can use them to derive the switching 
activities for multiplexers and registers connected to U.

4.2 Power Estimation for Stratix FPGA 
Since we target Stratix FPGA device families, we need to deal with 
Stratix-specific features in our high-level power estimation. Altera 
provides a spread-sheet-based Early Power Estimator [3], where 
users can specify switching activities, Fmax, usages of various 
components (e.g., logic elements, memories, DSPs, I/O ports), and 
other related information to estimate the total power of Altera’s 
FPGAs in early design stages. We take advantage of this estimator 
and use it as a resource characterization tool to examine the power 
consumption of various components in a Stratix FPGA. Table 1 
shows some details of our characterization. We use Fmax = 100 Mhz 
and toggle rate (switching activity) = 100% for the purpose of power 

                                                            
1 We handle cases when these operations are not in the same loop as well. 

Details are not shown due to space limit. 

characterization. The actual power values for the components will be 
adjusted based on the estimated Fmax and switching activity during 
synthesis. Some formulae are listed below: 

Presource = Sresource ⋅ Aresource ⋅ PLE ⋅ (Fmax / 100)   

PDSP = 1.23 ⋅ SDSP ⋅ Bitwidth ⋅ (Fmax / 100)   

PIO = 19.31 ⋅ SIO ⋅ (Fmax / 100)   
where resource represents those components that can be 
implemented using logic elements (LEs) on the FPGA. These 
resources can include adders/subtractors, multiplexers, shifters, etc. 
Sresource, SDSP, and SIO are the estimated switching activities for the 
resource, DSP, and I/O respectively; Aresource is the estimated number 
of LEs for the resource when it is implemented in the Stratix FPGA 
(to be covered in the next subsection); and PLE is either 0.04mW for 
adders/subtractors, or 0.12mW for random logic or other generic 
logic. In general, multiplications are realized in the DSP blocks 
available on the FPGA chip. The power consumed in a DSP core is 
proportional to the number of DSP outputs (or the bitwidth of the 
multiplier implemented by the DSP core). PIO is the power of a 
single I/O pin. We can also calculate clock power, which is related to 
the number of flip-flops or DSP cores the clock drives.  

Table 1: Power consumption of various FPGA components (Fmax = 100; 
Toggle rate = 100%) 

4.3 Resource Characterization for Stratix FPGA  
In general, given the target FPGA architecture, the final area and 
delay of a functional unit and/or a multiplexer are largely determined 
by the total number of input operands and the precision (i.e., 
bitwidth) of the calculation. In this work we take a curve-fitting 
approach to model the timing/area characteristics of the functional 
units and multiplexers. We vary the precision for each functional 
unit (written in RTL code), and we also vary the number of inputs 
for the multiplexers. We run through the Altera Quartus II RTL 
synthesis and physical design tool to obtain a set of frequency and 
resource usage results on Stratix device. After all the data points are 
collected, we use the curve fitting tool in MATLAB to derive the 
best-fit area and delay curves.  
The area estimation functions for the multiplexers and several 
commonly occurring arithmetic units are listed in Table 2. Note that 
due to the high regularity of the FPGA device, the final resource 
usages of most operations are very predictable and their estimation 
functions can be expressed in close-form equations. For example, the 
resource usage (i.e., LEs) of an adder/subtractor is equivalent to its 
bitwidth. The reason is that Stratix FPGAs embed dedicated carry-
select chains in the fabric so that a fast N-bit carry-select 
adder/subtractor can be efficiently implemented using exactly N
logic elements (each contains a 4-input lookup table). Table 2 also 
shows that the multiplication may require several on-chip hard-core 
DSP multipliers. In this case, the area curve is discrete as the finest 
precision of a DSP block is 9×9. To acquire the delay estimation 
curve, we also perform curve fitting for various operations under 
different precisions. The results are shown in Table 3. Note that for 
multiplexers, since we cannot get a close-form equation with both N
(precision) and K (input operand count), we only list the formula for 
the 8-to-1 configuration here. We omit the complete data for other 
configurations due to space limit. We can observe that the area and 
delay of multiplexers are significant. For example, when N = 24, an 
8-to-1 multiplexer will use up 120 LEs and contribute 3ns on delay, 
where an adder/subtractor only occupies 24 LEs and contributes 

Elements # of LEs Est'ed P (mW) 
Logic Element (LE) 1 0.12 

LE with carry 1 0.04 
DSP per output 1.23 
I/O 1 19.31 
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2.4ns on delay. This motivates an interconnection-centric design 
method as proposed in this paper.  

Table 2: Area estimation functions for common operations on Altera 
Stratix FPGAs (N: bitwidth; K: number of input operands) 

Operation Delay (ns)
Add/Subtract 0.024*N+1.83 

Bitwise and/or/xor < 2 
Compare (���) 0.014*N+2.14 

Shift (with variable 
shift distance) 4.3*10-5*N3–5*10-3*N2+0.24*N+0.93 

Multiply 
N � 9: ��

N � 18: ���
N � 36: 7.69

Multiplexer (8-to-1) 9.8*10-5*N3–7.4*10-3*N2+0.2*N+1.07 
Table 3: Delay estimation functions for common operations on Altera 

Stratix FPGAs  

5. SIMULTANEOUS ALLOCATION AND 
BINDING 

Due to the difficulty of resource allocation and binding with 
interconnection consideration, it naturally calls for efficient solution 
space searching and pruning techniques. To enable such searching 
and pruning, we use a solution point to reflect a unique 
allocation/binding implementation. Each solution point is 
represented by a pair [power, delay], which contains the estimated 
power and delay for the datapath implemented through this solution 
point. We form, propagate and prune these solution points to search 
for ideal allocation/binding solutions.  
Because functional unit and register allocation and binding are 
interrelated, we adopt an iterative approach. We first carry out a 
trivial register binding, where each dataflow occupies its own 
register. This solution does not generate multiplexers in front of 
registers. After this, we carry out the allocation and binding for 
functional units and registers separately and iteratively so one 
allocation and binding is built upon another until the final quality of 
result converges. In general, we just carry out one such iteration 
because we observe a single iteration is already generating a good 
result that is very close to the final one.  
We will use functional unit allocation and binding as an example and 
the same principle is applied for registers. Figure 2 shows a simple 
example. Figure 2(a) is a STG, where nodes represent states and 
edges represent transitions. C1 and C2 are conditions. The numbers 
in the states represent operations. Suppose 1, 2, 3, 4, and 5 are 
multiplications, and 6 is addition.  Multiplications will be 
implemented by multipliers, and addition and comparison operations 
can be implemented by ALUs. Figure 2(b) is called a global 
compatibility graph, where each node is an operation, and the edge 
between two nodes represents that those two operations are 
compatible with each other. Notice Figure 2(b) actually contains two 
sub-graphs: one for multiplication and one for ALU. Nodes 2 and 3 
are not compatible with each other because they are in the same state 
in Figure 2(a). After we have the global compatibility graph we can 
start our functional unit allocation and binding procedure. The 
procedure will visit each operation in the global compatibility graph 
and carry out solution space exploration along the way. For 
illustration purpose, we assume that there are just four operations 1, 

2, 3, and 4 in the design, and we process the nodes according to that 
order. Note that we already have a register allocation and binding 
solution before this. Therefore, we can build a real datapath when we 
examine each solution point during the exploration. We present 
some details next.  

Figure 2: A STG and its global compatibility graph 

When we reach node 1, we know there will be one multiplier in the 
solution space. When we reach node 2, there will be two cases: {1, 2} 
or {(1, 2)}. {1, 2} means that 1 and 2 occupy two different 
multipliers, and {(1, 2)} means that 1 and 2 share the same 
multiplier. Each case represents one solution point for the design 
processed so far. When we reach node 3, we know that there have to 
be two multipliers in the design because 2 and 3 are not compatible. 
The possible solution points will be {1, 2, 3}; {(1, 2), 3}; and {(1, 3), 
2}. Similarly, we will process node 4, which will have a total of 
seven solution points. All of the solution points on node 4 inherit the 
solution points generated on node 3. In other words, solution points 
on node 3 propagate to node 4. For example, solution points {(1, 2),  
3, 4}, {(1, 2), (3, 4)}, and {(1, 2, 4), 3} on node 4 all inherit solution 
point {(1, 2), 3} and search along three different directions by either 
letting 4 occupy its own multiplier or share an existing multiplier 
already in the datapath. Each solution has its power and delay values 
based on the datapath implemented according to the solution point.  

Figure 3: (a) datapath for {(1, 2, 4), 3}; (b) solution curve
Figure 3(a) is the datapath according to one of the solution points: 
{(1, 2, 4), 3}. We use the longest combinational path in Figure 3(a) 
as the delay for this solution point (a combinational path starts from 
one of the registers on top and ends at one of the registers on 
bottom). We use the estimated power value (Section 4) as the power 
for the solution point. Notice multiplexers are naturally included in 
the power and delay calculations. Figure 3(b) illustrates the curve of 
solution points when we finish operation 4. Notice some solution 
points are inferior (those in dashed ovals), i.e., they have the same 
delay as another solution point but with larger power. The inferior 
solution points will be pruned from the solution space. Only non-
inferior solution points will be propagated to the next node.  
It is intuitive that the accuracy of delay and power estimation is 
directly related to solution pruning and final solution quality. 
Counting all the contributing components accurately has a direct 
impact to reduce the total amount of multiplexing and 
interconnecting requirements for better global power and/or delay 
minimization. For any two solution points, suppose Sol1 has 
[power1, delay1], and Sol2 has [power2, delay2], we do not enforce 
that when delay1 > delay2, power1 has to be smaller than power2.
This is because that the solution points represent the resource 

Operation Resource Usage 
Add/Subtract LE N

Bitwise and/or/xor LE N
Compare (���) LE round0.67*N+0.62
Shift (with variable 

shift distance) LE round(0.045*N2+3.76*N–8.22) 

Multiply DSP9x9 N � 18: �N/9� 
N � 36: �N/18�

Multiplexer LE N*round(0.67*K)

(a) 

MUL MUL 

registers MUX MUX 

power

delay

(b) 

best solution
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configurations in the partial datapaths before the end of the search, 
and the final desired datapath may be quite different. Therefore, we 
do not want to be too strict and greedy during the solution space 
search procedure. As long as two solution points have different 
delays, we keep them. Of course, there is an upper limit on the 
number of solution points we can keep. The more solution points, 
the larger solution space we are able to search but with larger 
runtime. We keep M solution points that possess the first M shortest 
delays explored so far. The far left point in Figure 3(b) represents the 
final best solution in terms of both power and delay among all the 
solutions. Different designs will have different curves. It is possible 
that a smaller power has to be achieved by sacrificing performance, 
or a smaller delay has to be achieved by sacrificing lower power. 
Due to space limit, we omit a formal description of the algorithm. 
We observe that a small number of solution points (e.g., M = 10) can 
already produce excellent results that are close to those generated 
through a larger number of solution points (e.g., M = 50). The 
runtime of the exploration is fast ⎯ usually within 1 minute with a 
2GHz Linux machine. 

6. EXPERIMENTAL RESULTS 
6.1 Simulation and Power Estimation Analysis  
To evaluate our high-level power estimator, we designed a 
verification process. After xPlore-Power generates its synthesis 
solution, it reports the estimated delay and power for the design. The 
test vectors used for our power estimation are dumped out in a 
format that Altera Quartus II can take. We then pass this vector file 
and our generated VHDL file containing our synthesis solution to 
Quartus II for RTL synthesis, placement and routing, timing 
analysis, and simulation. Afterwards, Quartus II’s built-in power 
estimator PowerPlay power analyzer [1] will report the power 
consumption of this design based on its gate-level simulation result. 
We use test vectors that have very high simulation coverage (up to 
96.7%). 2  Therefore, the final power reported from PowerPlay is 
quite accurate. xPlore-Power is incorporated into xPilot and uses the 
built-in data model and design flow from xPilot [29]. 
We present some detailed data in Table 4. The benchmarks are all in 
C and are a mixture of data-intensive (DFG) and control-intensive 
(CDFG) designs. Designs dir, mcm, lee and pr are DCT algorithms 
or DSP programs. Design motion is an algorithm to compute motion 
vectors, which is useful for video compression. Design sym_conv
computes 2D DWT of a 128x128 image. We use the smallest chip, 
EP1S10B672C6, from the Stratix family. The reported power values 
include both dynamic and static power. Dynamic power includes 
power contributed by logic elements, DSP cores, I/O pins, clocks, 
and memories. The static power reported from PowerPlay is fixed 
for each device. It is 187.50 mW for device EP1S10B672C6. 
Therefore, we also use a fixed static power in our estimation. 
Overall, we can observe that the estimated power from xPlore-Power 
is very close to the power reported by PowerPlay after placement 
and routing, with an average error of 8.7% based on the absolute 
values of estimation errors. This indicates that our high-level power 
estimation is sound and effective. 

                                                            
2 A percentage from PowerPlay reporting the ratio of output ports actually 
toggling between 1 and 0 during simulation, compared to the total number of 
output ports present in the netlist.  

Table 4: High-level power estimation compared to PowerPlay [1]

Figure 4: Estimated and reported power over static probability on 
benchmark pr

Figure 4 shows the correlation between the estimated power and 
reported power from another angle. The x-axis is the static 
probability (the probability of being logic high) on the input pins of 
the design. Different static probabilities on the input pins imply 
different switching activity on the inputs.3 We observe that the two 
curves are very close and have a similar trend. This shows that our 
power estimator is sound and able to provide meaningful guidance 
for the low-power design space exploration. 

Figure 5: Estimated and reported delays with solution points for 
benchmark motion

To verify the fidelity of our delay model, we carry out another 
experiment to compare delays reported from both xPlore-Power and 
Quartus II. Figure 5 illustrates the details. In xPlore-Power, the 
solutions are sorted by an increasing order on estimated delay 
values. Therefore, the curve for xPlore-Power is increasing along the 
solution point number. We can observe that the delay values 
reported by Quartus II after placement and routing correlate to those 
of xPlore-Power, although there are some swings along the curve. 
The swings are expected because the xPlore-Power delay model can 
not predict the wire delay in the routing tracks without the actual 
layout. We can still observe that these two curves are very close, 
which indicates that our delay estimation is meaningful and sound.  

6.2 xPlore-Power vs. Traditional Allocation and Binding 
Algorithm  
To verify the effectiveness of our algorithm, we carry out a 
comparison study with a traditional allocation and binding algorithm 

                                                            
3 The switching activity for the input can be calculated by a formula as 2 · Pv 

· (1 – Pv), where Pv is the probability of input v being 1. 

Benchmarks PowerPlay 
(mW) 

xPlore-Power 
(mW) 

Estimation 
Error (%) 

dir 437.7 431 -1.5% 
lee 1814.8 1533.4 -15.5% 

mcm 390.7 423.4 8.4% 
motion 239.3 252.1 5.3% 

pr 1491.3 1536.7 3.0% 
sym_ conv 307.2 251.4 -18.2% 

Absolute Value Average: 8.7% 
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using graph coloring. We only examine register allocation and 
binding here to narrow down the comparison criteria. Our algorithm 
carries out functional unit and register allocation and binding 
through xPlore-Power while the graph coloring algorithm will carry 
out the same functional unit allocation and binding through xPlore-
Power, but register allocation and binding through its own method. 
The goal of graph coloring algorithm is to minimize the number of 
registers during allocation.  
Graph coloring is a well-known technique to solve binding and 
allocation problems. To color the lifetime conflict graph of the 
dataflows with the minimum number of colors is equivalent to 
finding the best clique partitioning solution on the corresponding 
compatibility graph of the same dataflows. Some previous work on 
high-level synthesis used similar algorithms [9][28]. We compare 
our result to that generated from a well-known package, lmXRLF,
available from [17]. lmXRLF purely works on coloring the graph 
with the minimum number of colors. It designs a novel search 
algorithm to find the best independent set in the graph, one by one, 
according to an objective function, which is related to number of 
incident edges as well as two layers of neighborhoods. For our case, 
finding an independent set in the conflict graph is equivalent to 
finding a binding solution for all the nodes in the independent set 
(they are all compatible with one another). To make lmXRLF power 
aware, we estimate the switching activities for the nodes included in 
an independent set, and change the original cost by considering 
switching activity factors. We name this variant of lmXRLF as 
lmXRLF-Power.
Table 5 shows the detailed power and Fmax values for each 
algorithm. On average, lmXRLF-Power only offers a 3% 
improvement on power consumption compared to lmXRLF. The 
reason is that it only models the power consumption of the registers 
and does not model the multiplexers generated for the datapath. On 
the other hand, xPlore-Power is 32% better on power and 16% better 
on Fmax compared to lmXRLF. All the data are obtained after 
placement and routing using Quartus II. 

Table 5: xPlore-Power vs. lmXRLF (a graph coloring algorithm)

7. CONCLUSIONS 
In this paper we concentrated on resource allocation and binding 
tasks to optimize FPGA power and delay. We designed a high-level 
power estimator for a commercial FPGA architecture. We proposed 
a new simultaneous allocation and binding optimization algorithm, 
xPlore-Power, for efficient design space exploration. We handle all 
the contributing resources in the datapath. Our high-level power 
estimator is only 8.7% away from a commercial gate-level FPGA 
power estimator. Comparing to a traditional graph coloring-based 
register binding algorithm, xPlore-Power is 32% better on power and 
16% better on Fmax after placement and routing.  
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 lmXRLF lmXRLF-Power xPlore-Power
Bench 
marks 

Power 
(mW) 

Fmax 
(MHz) 

Power 
(mW) 

Fmax 
(MHz) 

Power 
(mW) 

Fmax 
(MHz) 

dir 541.9  160.1  447.7  153.7  250.2  236.3  
lee 3955.6  113.6  4129 107.9  1627 122.9  
mcm 492.9  171.9  500.9  174.6  203.2  241.1  
motion 56.5  139.3  56.6  145.6  51.8  142.1  
pr 1418.8  114.2  1360.5  111.0  1304 111.3  
sym_conv 155 71.2  155  71.2  146.5  73.7  
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