
High-Level Power Estimation and Low-Power Design Space Exploration
for FPGAs

ABSTRACT
In this paper, we present a simultaneous resource allocation and
binding algorithm for FPGA power minimization. To fully validate
our methodology and result, our work targets a real FPGA
architecture ⎯ Altera Stratix FPGA [2], which includes generic
logic elements, DSP cores, and memories, etc. We design a high-
level power estimator for this architecture and evaluate its
estimation accuracy against a commercial gate-level power
estimator ⎯ Quartus II PowerPlay Analyzer [1]. During the
synthesis stage, we pay special attention to interconnections and
multiplexers. We concentrate on resource allocation and binding
tasks because they are the key steps to determine the
interconnections. We use a novel approach to explore the design
space. Experimental results show that our high-level power
estimator is 8.7% away from PowerPlay Analyzer. Meanwhile, we
are able to achieve a significant amount of power reduction (32%)
with better circuit speed (16%) compared to a traditional resource
allocation and binding algorithm.

1. INTRODUCTION
The basic problem of high-level synthesis is the mapping of a
behavioral description of a digital system into an RTL design
consisting of a datapath and a control unit. A datapath is composed
of three types of components: functional units (e.g., ALUs,
multipliers, and shifters), storage units (e.g., registers and memory),
and interconnection units (e.g., buses and multiplexers). The control
unit is specified as a finite state machine, which controls the set of
operations for the datapath to perform during every control step. The
high-level synthesis process mainly consists of three subtasks:
scheduling, allocation, and binding. Scheduling determines when a
computational operation will be executed; allocation determines how
many instances of resources (functional units, registers, or
interconnection units) are needed; binding binds operations,
variables, or data transfers to these resources.
Traditionally, people are more concerned with area and power of
functional units and registers. As technology advances, the area and
power of multiplexers and interconnects have by far outweighed the
area and power of functional units and registers, especially for
FPGA architectures. Studies show that interconnects contribute 70-
80% of the total area [27] and 75-85% of the total power [19][20] in
FPGAs. Multiplexers are particularly expensive for FPGA
architectures. It is shown that the delay and power data of a 32-to-1
multiplexer are almost equivalent to a 18-bit multiplier in 0.1um
technology in FPGA designs [6][7]. In general, smaller number of
functional units or registers allocated but with larger number of wide
multiplexers and larger amount of interconnects may lead to a
completely unfavorable solution for both performance and power.
To tackle this increasingly alarming problem, it will require an
efficient search engine to explore a sufficiently large solution space
considering multiple constraining factors, such as resource allocation
and binding, MUX generation, and interconnection generation, for
optimizing performance or power, or study the tradeoff between
them.

Although low-power high-level synthesis for ASICs is an old topic,
high-level synthesis for FPGA power minimization has not been
widely studied. We are only aware of one previous work [7], where
the optimization goal is to minimize power of FPGA designs under
performance/latency constraints. The authors adopted a simulated
annealing-based algorithm, which carried out high-level synthesis
subtasks simultaneously. However, the delay model in [7] did not
consider multiplexer delay, which could represent a significant
portion of the critical path delay for FPGA chips. Also, [7] only
worked on data-flow graphs (DFGs), and it did not model existing
commercial FPGAs.
In this work we present a novel design space exploration engine,
xPlore-Power, for FPGA power minimization. We concentrate on
resource allocation and binding tasks because they are the key steps
to determine the interconnections during high-level synthesis. To
fully validate our methodology and result, we target a real FPGA
architecture ⎯ Altera Stratix architecture [2], which includes
generic logic elements, DSP cores, and different types of memories,
etc. We design a high-level power estimator for this architecture and
verify that its power estimation result is very close to that reported
by Altera’s gate-level power estimator ⎯ Quartus II PowerPlay
Analyzer [1]. We form, propagate and prune binding/allocation
solution points guided by our power and delay estimation. During
this process, we pay attention to interconnects and multiplexers to
control their power consumption and delay. Eventually, we generate
a design solution curve, which can provide ideal solution points with
low power and high performance.
The rest of this paper is organized as follows. In Section 2 we
present related work. Section 3 provides definitions and problem
formulation. Section 4 presents CDFG simulation, and power and
delay estimation. Section 5 presents detailed description of our
xPlore-Power algorithm. Section 6 presents experimental results, and
Section 7 concludes this paper.

2. RELATED WORK
There is extensive literature on binding and allocation problems for
high-level synthesis [10][11]. The previous work can be roughly
categorized into two major groups. The first group solves register
binding and functional unit binding separately. Representative
algorithms include clique partitioning [28], weighted bipartite-
matching [15], network flow [5][12], and k-cofamily [6]. The
challenge for these approaches is how to achieve global optimization.
The second group tries to address the global optimality and performs
simultaneous functional unit and register binding. Representative
algorithms include simulated annealing [7][8][18], simulated
evolution [21], and ILP (integer linear programming) [13][26]. Since
the subtasks of high-level synthesis are highly interrelated,
simultaneous optimization approaches try to consider all the
involved optimization parameters together and explore the combined
solution space for overall better results. One concern for these
algorithms is their scalability towards optimizing large designs.
There is some work that carries out simultaneous optimization one
control step at a time [16][23]. Although this approach may have
better runtime, it could lose the global optimization opportunity

Deming Chen
Department of ECE

University of Illinois, Urbana-Champaign
dchen@uiuc.edu

Jason Cong, Yiping Fan, Zhiru Zhang
Computer Science Department

University of California, Los Angeles
{cong, fanyp, zhiruz}@cs.ucla.edu

1-4244-0630-7/07/$20.00 ©2007 IEEE.

5C-4

529

because it has to commit to a binding solution for each control step,
which only represents the local optima.
Most of the work mentioned above is for data-dominated behaviors,
normally found in digital signal processing and image processing
applications. For control-flow intensive behaviors, frequently found
in network-centric systems, different optimization techniques are
required to handle branch and loop conditions. There are mainly two
approaches to address the hierarchical structure in the design. One
approach is to process each basic block separately (there are no
conditions and loops in a basic block, thus an easier problem to
solve), and then handle the control flow between these blocks to
reduce cost or improve performance [22][30]. The other approach is
to optimize the whole design directly on top of an internal
representation (either hierarchical or flattened) for both datapath and
control flow [14][25]. Our work belongs to the latter category.

3. DEFINITIONS AND PROBLEM
FORMULATION

3.1 Definitions
State transition diagrams, or STGs, are general models to describe
the behavior of sequential circuits. We use STGs to hold the
scheduling results from control data flow graph (CDFG), which is
the input of our high-level synthesis system. To describe our version
of STG representation and its execution semantics, we have the
following definitions.
A dataflow represents the data produced by some operation and
consumed by others. An operation is an atomic computation of the
design behavior. For example, an addition operation consumes two
dataflows a and b, and produces their sum to dataflow c. A condition
is a Boolean expression of Boolean dataflows. It can be dynamically
evaluated as true or false during the STG execution. The lifetime of
each dataflow (or operation) in the STG is the time during which the
dataflow (or operation) is active and is defined by an interval [birth
time; death time]. Two dataflows (or operations) are compatible with
each other if their lifetimes do not overlap. For example, if the birth
time of a dataflow a1 is earlier than the death time of a2, a1 and a2
are not compatible. Two compatible dataflows (operations) can share
the same register (functional unit).
The STG also contains a set of states S and a set of transitions X. A
state contains a set of operations, which should be accomplished
within one clock cycle in the resulting circuit. A transition connects
a source state to a sink state, associated with a condition. STG
provides a general representation of scheduling results from various
behavioral domains. It is a natural representation of control flow-
based scheduling results.

T F

T F

Backedge

* +

+ *

*

Figure 1: Two-level control data flow graph

We use a two-level CDFG representation for our input design. The
first-level CDFG is a control flow graph (CFG). Each node
corresponds to a basic block. The edges represent the control
dependencies between the basic blocks. Each basic block contains
one operation producing the control signal. If there are more than
two successors, i.e., if-then-else or switch statements, the labels on
the control edges indicate the values for the respective branches to
be taken. A back control edge indicates that there is a loop between
the source basic block and the destination basic block. The source

basic block and the destination basic block of a back edge can be the
same, which indicates that the loop only crosses one basic block. At
the second level, each basic block has a pure data flow graph (DFG)
representation, which contains a set of operation nodes and edges
(dataflows) that represent data dependencies among operation nodes.
Figure 1 shows one example. After scheduling, each CDFG has a
corresponding STG to hold its scheduling result.

3.2 Problem Formulation
High-level synthesis started from a STG essentially is a resource
allocation and binding (or sharing) problem, i.e., determine the
numbers of functional units and registers, and share functional units
among compatible operations and registers among compatible
dataflows. These optimization steps have dramatic impacts on the
final design quality. Careless allocation and binding will result in
unaffordable interconnection resource and multiplexer usage
(multiplexers are used to route data and control signals in the design),
dropping down the final circuit frequency and increasing the total
power. Unfortunately, binding for optimizing interconnection is
known to be an NP-hard problem [24]. Even binding in a general
STG to minimize resource counts is a difficult problem. Meanwhile,
minimizing a single objective number, e.g., interconnection unit,
functional unit, or register count, can not guarantee high design
quality because these design metrics are interrelated. Therefore,
instead of using resource count as the objective function, we use
realistic measurements, namely performance and power, to guide our
optimization. Performance is usually measured as the latency of the
execution, i.e., the product of the execution path-length and the cycle
time. Since the path-length is totally determined by the scheduling
and thus fixed in the STG, we need only care about the frequency the
final design can achieve. Therefore, our synthesis problem can be
formulated as follows:
Given: A CDFG G and its STG G’
Tasks: construct a datapath architecture, in which every functional
unit is bound to a set of operations, and every register is bound to a
set of dataflows.
Objectives: maintain behavior correctness and optimize power and
performance for the design on a target FPGA.

4. POWER AND DELAY MODELING
To efficiently search the solution space during resource allocation
and binding, we need a fast and accurate high-level power and
performance estimator to guide the process. We first present an
efficient switching activity calculator using CDFG simulation. We
then present our power characterization method for one type of
commercial FPGAs ⎯ Altera Stratix FPGAs [2]. We would like to
emphasize that similar method can be applied to other types of
FPGAs from other FPGA vendors as well. Finally, we present our
resource characterization method to estimate the area and speed of
different functional units and multiplexers for Stratix.

4.1 CDFG Simulation and Switching Activity Estimation
We carry out test vector-based CDFG functional simulation. The
simulation process is iterative. For each iteration, a set of test vectors
arrive on the primary inputs of the CDFG. These values will follow
the control and data flows in the graph and propagate through the
graph until they reach the outputs of the CDFG. Then, another set of
vectors arrive for the next iteration. During the propagation, the data
get operated on the operators within the basic blocks and then passed
on to branches or loops determined by conditions. Data can also be
loaded from or stored into the memories. During this simulation, we
can profile the CDFG and collect useful information for calculating
switching activities, block visiting probabilities, worst-case latency,
etc.

5C-4

530

For switching activity calculation, we extend a method published in
[4], which performs simulation just once at the beginning and
computes switching activities for any legal binding without
repeating simulations afterwards. We add loop support in the
algorithm. The handling for operations not in loops is the same as
the method in [4].
Let (PI1 → PI2 … → PIK) be a sequence of stimuli enforced on the
primary inputs of the CDFG G. By performing functional simulation
on G, with primary input stimulus PIj (1 j K), we can obtain
input bit vector Ii

j for operation Oi (1 i N). Ii
j is computed based

on the propagation of PIj through the design when the propagation
reaches the internal operational node Oi. For functional unit U, let
(O1 → O2 … → ON) be the bound operations in the execution order.
Suppose all of these operations are in the same loop with a loop
iteration upper bound B.1 We define Ii

j(x) to represent the input bit
vector for operation Oi when the simulation takes primary input
stimulus PIj and reaches loop iteration x (1 x B) for Oi. The
toggle count between Cin(Oi, Oi+1) and Cin(ON, O1) under this
primary-input stimulus sequence, is then defined as follows:

= =
++ =

K

j

B

x

xj
i

xj
iHiiin IIDOOC

1 1

)(
1

)(
1),(),(

−

=

+

=

−

=

+ +=
1

1

)1)(1(
1

)(

1

1

1

)1(
1

)(
1),(),(),(

K

j

jBj
NH

K

j

B

x

xjxj
NHNin IIDIIDOOC

where 1 i < N, and DH(X, Y) represents the Hamming Distance
between bit vectors X and Y. Notice that Cin(ON, O1) represents the
toggle count between ON and O1 when the execution finishes ON and
begins O1 again. It contains two terms. The first one represents the
switches from ON to O1 within the same loop (but different loop
iteration). The second one represents the switches from the end of
the previous loop (when it reached the loop upper bound) to the
beginning of the new round for the loop (it starts from loop iteration
1 again) when the simulation takes a new primary input stimulus
PIj+1. Transition probability (or switching activity) Pin of the inputs
of U is the ratio of the number of bit flips observed on its inputs
between cycles over the maximum possible number of bit flips. It is
formally defined as

)1(_2

),(),(
1

1
11

−××××

+
=

−

=
+

BKNwidthBit

OOCOOC
P

N

i

Niniiin

in

where Bit_width is the input vector width of U. In [4], a matrix of Cin
is constructed after scheduling but before binding, and is used for
looking up when calculating the Pin for every possible binding
solution afterwards. We skipped the details here. Once we have
switching activities on U, we can use them to derive the switching
activities for multiplexers and registers connected to U.

4.2 Power Estimation for Stratix FPGA
Since we target Stratix FPGA device families, we need to deal with
Stratix-specific features in our high-level power estimation. Altera
provides a spread-sheet-based Early Power Estimator [3], where
users can specify switching activities, Fmax, usages of various
components (e.g., logic elements, memories, DSPs, I/O ports), and
other related information to estimate the total power of Altera’s
FPGAs in early design stages. We take advantage of this estimator
and use it as a resource characterization tool to examine the power
consumption of various components in a Stratix FPGA. Table 1
shows some details of our characterization. We use Fmax = 100 Mhz
and toggle rate (switching activity) = 100% for the purpose of power

1 We handle cases when these operations are not in the same loop as well.

Details are not shown due to space limit.

characterization. The actual power values for the components will be
adjusted based on the estimated Fmax and switching activity during
synthesis. Some formulae are listed below:

Presource = Sresource ⋅ Aresource ⋅ PLE ⋅ (Fmax / 100)

PDSP = 1.23 ⋅ SDSP ⋅ Bitwidth ⋅ (Fmax / 100)

PIO = 19.31 ⋅ SIO ⋅ (Fmax / 100)
where resource represents those components that can be
implemented using logic elements (LEs) on the FPGA. These
resources can include adders/subtractors, multiplexers, shifters, etc.
Sresource, SDSP, and SIO are the estimated switching activities for the
resource, DSP, and I/O respectively; Aresource is the estimated number
of LEs for the resource when it is implemented in the Stratix FPGA
(to be covered in the next subsection); and PLE is either 0.04mW for
adders/subtractors, or 0.12mW for random logic or other generic
logic. In general, multiplications are realized in the DSP blocks
available on the FPGA chip. The power consumed in a DSP core is
proportional to the number of DSP outputs (or the bitwidth of the
multiplier implemented by the DSP core). PIO is the power of a
single I/O pin. We can also calculate clock power, which is related to
the number of flip-flops or DSP cores the clock drives.

Table 1: Power consumption of various FPGA components (Fmax = 100;
Toggle rate = 100%)

4.3 Resource Characterization for Stratix FPGA
In general, given the target FPGA architecture, the final area and
delay of a functional unit and/or a multiplexer are largely determined
by the total number of input operands and the precision (i.e.,
bitwidth) of the calculation. In this work we take a curve-fitting
approach to model the timing/area characteristics of the functional
units and multiplexers. We vary the precision for each functional
unit (written in RTL code), and we also vary the number of inputs
for the multiplexers. We run through the Altera Quartus II RTL
synthesis and physical design tool to obtain a set of frequency and
resource usage results on Stratix device. After all the data points are
collected, we use the curve fitting tool in MATLAB to derive the
best-fit area and delay curves.
The area estimation functions for the multiplexers and several
commonly occurring arithmetic units are listed in Table 2. Note that
due to the high regularity of the FPGA device, the final resource
usages of most operations are very predictable and their estimation
functions can be expressed in close-form equations. For example, the
resource usage (i.e., LEs) of an adder/subtractor is equivalent to its
bitwidth. The reason is that Stratix FPGAs embed dedicated carry-
select chains in the fabric so that a fast N-bit carry-select
adder/subtractor can be efficiently implemented using exactly N
logic elements (each contains a 4-input lookup table). Table 2 also
shows that the multiplication may require several on-chip hard-core
DSP multipliers. In this case, the area curve is discrete as the finest
precision of a DSP block is 9×9. To acquire the delay estimation
curve, we also perform curve fitting for various operations under
different precisions. The results are shown in Table 3. Note that for
multiplexers, since we cannot get a close-form equation with both N
(precision) and K (input operand count), we only list the formula for
the 8-to-1 configuration here. We omit the complete data for other
configurations due to space limit. We can observe that the area and
delay of multiplexers are significant. For example, when N = 24, an
8-to-1 multiplexer will use up 120 LEs and contribute 3ns on delay,
where an adder/subtractor only occupies 24 LEs and contributes

Elements # of LEs Est'ed P (mW)
Logic Element (LE) 1 0.12

LE with carry 1 0.04
DSP per output 1.23
I/O 1 19.31

5C-4

531

2.4ns on delay. This motivates an interconnection-centric design
method as proposed in this paper.

Table 2: Area estimation functions for common operations on Altera
Stratix FPGAs (N: bitwidth; K: number of input operands)

Operation Delay (ns)
Add/Subtract 0.024*N+1.83

Bitwise and/or/xor < 2
Compare (���) 0.014*N+2.14

Shift (with variable
shift distance) 4.3*10-5*N3–5*10-3*N2+0.24*N+0.93

Multiply
N � 9: ��

N � 18: ���
N � 36: 7.69

Multiplexer (8-to-1) 9.8*10-5*N3–7.4*10-3*N2+0.2*N+1.07
Table 3: Delay estimation functions for common operations on Altera

Stratix FPGAs

5. SIMULTANEOUS ALLOCATION AND
BINDING

Due to the difficulty of resource allocation and binding with
interconnection consideration, it naturally calls for efficient solution
space searching and pruning techniques. To enable such searching
and pruning, we use a solution point to reflect a unique
allocation/binding implementation. Each solution point is
represented by a pair [power, delay], which contains the estimated
power and delay for the datapath implemented through this solution
point. We form, propagate and prune these solution points to search
for ideal allocation/binding solutions.
Because functional unit and register allocation and binding are
interrelated, we adopt an iterative approach. We first carry out a
trivial register binding, where each dataflow occupies its own
register. This solution does not generate multiplexers in front of
registers. After this, we carry out the allocation and binding for
functional units and registers separately and iteratively so one
allocation and binding is built upon another until the final quality of
result converges. In general, we just carry out one such iteration
because we observe a single iteration is already generating a good
result that is very close to the final one.
We will use functional unit allocation and binding as an example and
the same principle is applied for registers. Figure 2 shows a simple
example. Figure 2(a) is a STG, where nodes represent states and
edges represent transitions. C1 and C2 are conditions. The numbers
in the states represent operations. Suppose 1, 2, 3, 4, and 5 are
multiplications, and 6 is addition. Multiplications will be
implemented by multipliers, and addition and comparison operations
can be implemented by ALUs. Figure 2(b) is called a global
compatibility graph, where each node is an operation, and the edge
between two nodes represents that those two operations are
compatible with each other. Notice Figure 2(b) actually contains two
sub-graphs: one for multiplication and one for ALU. Nodes 2 and 3
are not compatible with each other because they are in the same state
in Figure 2(a). After we have the global compatibility graph we can
start our functional unit allocation and binding procedure. The
procedure will visit each operation in the global compatibility graph
and carry out solution space exploration along the way. For
illustration purpose, we assume that there are just four operations 1,

2, 3, and 4 in the design, and we process the nodes according to that
order. Note that we already have a register allocation and binding
solution before this. Therefore, we can build a real datapath when we
examine each solution point during the exploration. We present
some details next.

Figure 2: A STG and its global compatibility graph

When we reach node 1, we know there will be one multiplier in the
solution space. When we reach node 2, there will be two cases: {1, 2}
or {(1, 2)}. {1, 2} means that 1 and 2 occupy two different
multipliers, and {(1, 2)} means that 1 and 2 share the same
multiplier. Each case represents one solution point for the design
processed so far. When we reach node 3, we know that there have to
be two multipliers in the design because 2 and 3 are not compatible.
The possible solution points will be {1, 2, 3}; {(1, 2), 3}; and {(1, 3),
2}. Similarly, we will process node 4, which will have a total of
seven solution points. All of the solution points on node 4 inherit the
solution points generated on node 3. In other words, solution points
on node 3 propagate to node 4. For example, solution points {(1, 2),
3, 4}, {(1, 2), (3, 4)}, and {(1, 2, 4), 3} on node 4 all inherit solution
point {(1, 2), 3} and search along three different directions by either
letting 4 occupy its own multiplier or share an existing multiplier
already in the datapath. Each solution has its power and delay values
based on the datapath implemented according to the solution point.

Figure 3: (a) datapath for {(1, 2, 4), 3}; (b) solution curve
Figure 3(a) is the datapath according to one of the solution points:
{(1, 2, 4), 3}. We use the longest combinational path in Figure 3(a)
as the delay for this solution point (a combinational path starts from
one of the registers on top and ends at one of the registers on
bottom). We use the estimated power value (Section 4) as the power
for the solution point. Notice multiplexers are naturally included in
the power and delay calculations. Figure 3(b) illustrates the curve of
solution points when we finish operation 4. Notice some solution
points are inferior (those in dashed ovals), i.e., they have the same
delay as another solution point but with larger power. The inferior
solution points will be pruned from the solution space. Only non-
inferior solution points will be propagated to the next node.
It is intuitive that the accuracy of delay and power estimation is
directly related to solution pruning and final solution quality.
Counting all the contributing components accurately has a direct
impact to reduce the total amount of multiplexing and
interconnecting requirements for better global power and/or delay
minimization. For any two solution points, suppose Sol1 has
[power1, delay1], and Sol2 has [power2, delay2], we do not enforce
that when delay1 > delay2, power1 has to be smaller than power2.
This is because that the solution points represent the resource

Operation Resource Usage
Add/Subtract LE N

Bitwise and/or/xor LE N
Compare (���) LE round0.67*N+0.62
Shift (with variable

shift distance) LE round(0.045*N2+3.76*N–8.22)

Multiply DSP9x9 N � 18: �N/9�
N � 36: �N/18�

Multiplexer LE N*round(0.67*K)

(a)

MUL MUL

registers MUX MUX

power

delay

(b)

best solution

C1 C1’

1

C2 C2’

>

2,3 4

5

<

6

1

2 3 4

5

6

>

<

(a) (b)

5C-4

532

configurations in the partial datapaths before the end of the search,
and the final desired datapath may be quite different. Therefore, we
do not want to be too strict and greedy during the solution space
search procedure. As long as two solution points have different
delays, we keep them. Of course, there is an upper limit on the
number of solution points we can keep. The more solution points,
the larger solution space we are able to search but with larger
runtime. We keep M solution points that possess the first M shortest
delays explored so far. The far left point in Figure 3(b) represents the
final best solution in terms of both power and delay among all the
solutions. Different designs will have different curves. It is possible
that a smaller power has to be achieved by sacrificing performance,
or a smaller delay has to be achieved by sacrificing lower power.
Due to space limit, we omit a formal description of the algorithm.
We observe that a small number of solution points (e.g., M = 10) can
already produce excellent results that are close to those generated
through a larger number of solution points (e.g., M = 50). The
runtime of the exploration is fast ⎯ usually within 1 minute with a
2GHz Linux machine.

6. EXPERIMENTAL RESULTS
6.1 Simulation and Power Estimation Analysis
To evaluate our high-level power estimator, we designed a
verification process. After xPlore-Power generates its synthesis
solution, it reports the estimated delay and power for the design. The
test vectors used for our power estimation are dumped out in a
format that Altera Quartus II can take. We then pass this vector file
and our generated VHDL file containing our synthesis solution to
Quartus II for RTL synthesis, placement and routing, timing
analysis, and simulation. Afterwards, Quartus II’s built-in power
estimator PowerPlay power analyzer [1] will report the power
consumption of this design based on its gate-level simulation result.
We use test vectors that have very high simulation coverage (up to
96.7%). 2 Therefore, the final power reported from PowerPlay is
quite accurate. xPlore-Power is incorporated into xPilot and uses the
built-in data model and design flow from xPilot [29].
We present some detailed data in Table 4. The benchmarks are all in
C and are a mixture of data-intensive (DFG) and control-intensive
(CDFG) designs. Designs dir, mcm, lee and pr are DCT algorithms
or DSP programs. Design motion is an algorithm to compute motion
vectors, which is useful for video compression. Design sym_conv
computes 2D DWT of a 128x128 image. We use the smallest chip,
EP1S10B672C6, from the Stratix family. The reported power values
include both dynamic and static power. Dynamic power includes
power contributed by logic elements, DSP cores, I/O pins, clocks,
and memories. The static power reported from PowerPlay is fixed
for each device. It is 187.50 mW for device EP1S10B672C6.
Therefore, we also use a fixed static power in our estimation.
Overall, we can observe that the estimated power from xPlore-Power
is very close to the power reported by PowerPlay after placement
and routing, with an average error of 8.7% based on the absolute
values of estimation errors. This indicates that our high-level power
estimation is sound and effective.

2 A percentage from PowerPlay reporting the ratio of output ports actually
toggling between 1 and 0 during simulation, compared to the total number of
output ports present in the netlist.

Table 4: High-level power estimation compared to PowerPlay [1]

Figure 4: Estimated and reported power over static probability on
benchmark pr

Figure 4 shows the correlation between the estimated power and
reported power from another angle. The x-axis is the static
probability (the probability of being logic high) on the input pins of
the design. Different static probabilities on the input pins imply
different switching activity on the inputs.3 We observe that the two
curves are very close and have a similar trend. This shows that our
power estimator is sound and able to provide meaningful guidance
for the low-power design space exploration.

Figure 5: Estimated and reported delays with solution points for
benchmark motion

To verify the fidelity of our delay model, we carry out another
experiment to compare delays reported from both xPlore-Power and
Quartus II. Figure 5 illustrates the details. In xPlore-Power, the
solutions are sorted by an increasing order on estimated delay
values. Therefore, the curve for xPlore-Power is increasing along the
solution point number. We can observe that the delay values
reported by Quartus II after placement and routing correlate to those
of xPlore-Power, although there are some swings along the curve.
The swings are expected because the xPlore-Power delay model can
not predict the wire delay in the routing tracks without the actual
layout. We can still observe that these two curves are very close,
which indicates that our delay estimation is meaningful and sound.

6.2 xPlore-Power vs. Traditional Allocation and Binding
Algorithm
To verify the effectiveness of our algorithm, we carry out a
comparison study with a traditional allocation and binding algorithm

3 The switching activity for the input can be calculated by a formula as 2 · Pv

· (1 – Pv), where Pv is the probability of input v being 1.

Benchmarks PowerPlay
(mW)

xPlore-Power
(mW)

Estimation
Error (%)

dir 437.7 431 -1.5%
lee 1814.8 1533.4 -15.5%

mcm 390.7 423.4 8.4%
motion 239.3 252.1 5.3%

pr 1491.3 1536.7 3.0%
sym_ conv 307.2 251.4 -18.2%

Absolute Value Average: 8.7%

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25

D
el

ay
 (n

s)

Quartus II
xPlore-Power

Solution Points

0

200

400

600

800

1000

1200

1400

1600

1800

0.1 0.2 0.3 0.4 0.5 0.6

Input Port Static Probability

D
yn

am
ic

 P
ow

er
 (m

W
)

xPlore-Power
Quartus-PowerPlay

5C-4

533

using graph coloring. We only examine register allocation and
binding here to narrow down the comparison criteria. Our algorithm
carries out functional unit and register allocation and binding
through xPlore-Power while the graph coloring algorithm will carry
out the same functional unit allocation and binding through xPlore-
Power, but register allocation and binding through its own method.
The goal of graph coloring algorithm is to minimize the number of
registers during allocation.
Graph coloring is a well-known technique to solve binding and
allocation problems. To color the lifetime conflict graph of the
dataflows with the minimum number of colors is equivalent to
finding the best clique partitioning solution on the corresponding
compatibility graph of the same dataflows. Some previous work on
high-level synthesis used similar algorithms [9][28]. We compare
our result to that generated from a well-known package, lmXRLF,
available from [17]. lmXRLF purely works on coloring the graph
with the minimum number of colors. It designs a novel search
algorithm to find the best independent set in the graph, one by one,
according to an objective function, which is related to number of
incident edges as well as two layers of neighborhoods. For our case,
finding an independent set in the conflict graph is equivalent to
finding a binding solution for all the nodes in the independent set
(they are all compatible with one another). To make lmXRLF power
aware, we estimate the switching activities for the nodes included in
an independent set, and change the original cost by considering
switching activity factors. We name this variant of lmXRLF as
lmXRLF-Power.
Table 5 shows the detailed power and Fmax values for each
algorithm. On average, lmXRLF-Power only offers a 3%
improvement on power consumption compared to lmXRLF. The
reason is that it only models the power consumption of the registers
and does not model the multiplexers generated for the datapath. On
the other hand, xPlore-Power is 32% better on power and 16% better
on Fmax compared to lmXRLF. All the data are obtained after
placement and routing using Quartus II.

Table 5: xPlore-Power vs. lmXRLF (a graph coloring algorithm)

7. CONCLUSIONS
In this paper we concentrated on resource allocation and binding
tasks to optimize FPGA power and delay. We designed a high-level
power estimator for a commercial FPGA architecture. We proposed
a new simultaneous allocation and binding optimization algorithm,
xPlore-Power, for efficient design space exploration. We handle all
the contributing resources in the datapath. Our high-level power
estimator is only 8.7% away from a commercial gate-level FPGA
power estimator. Comparing to a traditional graph coloring-based
register binding algorithm, xPlore-Power is 32% better on power and
16% better on Fmax after placement and routing.

Acknowledgements

This work is partially sponsored by NSF under grant CCF-0306682
and Altera, Magma, and Xilinx under the MICRO Program.

REFERENCES
[1] Altera Corp., PowerPlay Power Analyzer, http://www.altera.

com/support/devices/estimator/pow-powerplay.html.
[2] Altera Corp., Stratix Device Handbook, http://www.

altera.com/literature/hb/stx/stratix_handbook.pdf.
[3] Altera Corp., Stratix PowerPlay Early Power Estimator, http://www.

altera.com/support/devices/estimator/powpowerplay.html.
[4] A. Bogliolo, et. al, “Efficient Switching Activity Computation During High-Level

Synthesis of Control-Dominated Designs,” ISLPED, Aug. 1999.
[5] J. M. Chang and M. Pedram, “Register Allocation and Binding for Low Power,”

Design Automation Conf., 1995.
[6] D. Chen and J. Cong, “Register Binding and Port Assignment for Multiplexer

Optimization,” ASPDAC, Jan. 2004.
[7] D. Chen, J. Cong, and Y. Fan, “Low-Power High-Level Synthesis for FPGA

Architectures,” Int. Symp. Low Power Elec. and Design, Aug. 2003.
[8] K. Choi and S. Levitan, “A Flexible Datapath Allocation Method for Architectural

Synthesis,” ACM TODAES, Vol. 4, No. 4, Oct. 1999.
[9] J. Cong, et. al, “Bitwidth-Aware Scheduling and Binding in High-Level

Synthesis,” Asia South Pacific Design Automation Conf., Jan. 2005.
[10] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, Inc.,

1994.
[11] D. Gajski et. al., Editors, High-Level Synthesis – Introduction to Chip and System

Design, Kulwer Academic Publishers, 1992.
[12] CH Gebotys, “Low Energy Memory and Register Allocation Using Network

Flow,” Design Automation Conf., 1997.
[13] CH Gebotys and MI Elmasry, “Optimal Synthesis of High- Performance

Architectures,” IEEE J. of Solid State Circuits, 27, 3, 389-397, 1992.
[14] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, SPARK: A Parallelizing Approach

to the High-Level Synthesis of Digital Circuits, Springer, 2004.
[15] C.Y. Huang, et. al, “Data Path Allocation Based on Bipartite Weighted

Matching,” Design Automation Conf., 1990.
[16] T. Kim and C.L. Liu, “An Integrated Data Path Synthesis Algorithm Based on

Network Flow Method,” IEEE Custom Integrated Circuits Conf., 1995.
[17] D. Kirovski and M. Potkonjak, “Efficient Coloring of a Large Spectrum of

Graphs,” Design Automation Conf., June 1998.
[18] P. Kollig and B. M. Al-Hashimi, “Simultaneous Scheduling, Allocation and

Binding in High Level Synthesis,” Electronics Letters, vol. 33, 1997.
[19] E. Kusse and J. Rabaey, “Low-Energy Embedded FPGA Structures,” Int. Symp.

on Low Power Electronics and Design, Aug. 1998.
[20] F. Li, D. Chen, L. He, and J. Cong, “Architecture Evaluation for Power-efficient

FPGAs,” Int. Symp. on FPGA, 2003.
[21] T. A. Ly and J. T. Mowchenko, “Applying Simulated Evolution to High Level

Synthesis,” IEEE Tran. on CAD, Vol. 12, No. 3, Mar. 1993.
[22] S. Ogrenci Memik, G. Memik, R. Jafari, and E. Kursun, “Global Resource

Sharing for Synthesis of Control Data Flow Graphs on FPGAs,” Design
Automation Conf., 2003.

[23] A. Mujumdar, R. Jain, and K. Saluja, “Incorporating Performance and Testability
Constraints during Binding in High-Level Synthesis,” IEEE Tran. on CAD, Vol.
15, no. 10, Oct. 1996.

[24] B. Pangrle, “On the Complexity of Connectivity Binding,” IEEE Tran. on CAD,
Vol. 10, no. 11, Nov. 1991.

[25] S. Raje and R. A. Bergamaschi, “Generalized Resource Sharing,” Int. Conf. on
Computer-Aided Design, Nov. 1997.

[26] M. Rim, R. Jain, and R. De Leone, “Optimal Allocation and Binding in High-
level Synthesis,” Design Automation Conf., 1992.

[27] A. Singh and M. Marek-Sadowska, “Efficient Circuit Clustering for Area and
Power Reduction in FPGAs,” Int. Symp. on FPGA, Feb. 2002.

[28] C-J. Tseng and D. P. Siewiorek, “Automated Synthesis of Data Path in Digital
Systems,” IEEE Tran. on CAD, Vol. CADJ, No.3, Jul. 1986.

[29] xPilot: Platform-based Behavior Synthesis System,
http://cadlab.cs.ucla.edu/soc/index.htm.

[30] Y. Zhang, X. Hu, and D. Z. Chen, “Efficient Global Register Allocation for
Minimizing Energy Consumption,” SIGPLAN Notices, 37(4): 42-53, 2002.

 lmXRLF lmXRLF-Power xPlore-Power
Bench
marks

Power
(mW)

Fmax
(MHz)

Power
(mW)

Fmax
(MHz)

Power
(mW)

Fmax
(MHz)

dir 541.9 160.1 447.7 153.7 250.2 236.3
lee 3955.6 113.6 4129 107.9 1627 122.9
mcm 492.9 171.9 500.9 174.6 203.2 241.1
motion 56.5 139.3 56.6 145.6 51.8 142.1
pr 1418.8 114.2 1360.5 111.0 1304 111.3
sym_conv 155 71.2 155 71.2 146.5 73.7

5C-4

534

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

