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Abstract— Combinational equivalence checking is an essen-
tial task in circuit design. In this paper we focus on SAT based
equivalence checking making use of incremental SAT techniques
which are well known from their application in Bounded Model
Checking. Based on an analysis of shared circuit structures we
present heuristics which try to maximize the benefit from incre-
mental SAT solving in this application by looking for good orders
in which the equivalence of different circuit outputs is checked.
Moreover, we present a reset strategy for situations where the ben-
efit from the incremental SAT approach seems to decrease. Exper-
imental results demonstrate that our novel method outperforms
traditional methods significantly.

I. INTRODUCTION

Checking whether a circuit implementation fulfills its spec-
ification, is a crucial task in VLSI CAD. During the last few
years significant progress could be observed in this area, in-
cluding advances in property checking, state space traversal
and combinational equivalence checking. Many of these ad-
vances were based on the efficient symbolic representations of
Boolean functions [1]; and on improvements to DPLL based
satisfiability solvers – both concerning fundamental algorith-
mic methods and their efficient implementation [2–4].

For the purpose of this paper, combinational equivalence
checking is of particular interest. Here, the task is to check
whether the Boolean functions corresponding to the specifica-
tion and the implementation are the same. Excluding func-
tional validation by the application of test patterns, two main
approaches can be used to perform the equivalence check:
One possibility is the transformation of both implementation
and specification into canonical forms like BDDs [1]. Then
the equivalence check reduces to a comparison whether the
canonical representations of implementation and specification
are the same. Since BDD based methods may (depending
on the benchmarks used) suffer from a high need for mem-
ory resources, many researchers have looked into an alterna-
tive method during the last years: Here the implementation and
the specification are translated into one Boolean formula which
is satisfiable if and only if the implementation and the specifi-
cation do not realize the same Boolean function [5–7]. Mod-
ern SAT solvers may be used to solve the satisfiability prob-
lem [3, 4, 8]; they usually require a translation of the equiva-
lence checking problem into a Boolean formula in conjunctive
normal form (CNF) (union of clauses) [9]. In this paper we will
focus on SAT based combinational equivalence checking.

Apart from methods which exploit structural similarities be-
tween the implementation and the specification [10–15], which
will be discussed later on, there are basically two approaches
for SAT based equivalence checking of two combinational cir-

cuits with m outputs (i.e. specification and implementation):

1. translating the implementation and the specification into
one CNF which is satisfiable if and only if the implemen-
tation and the specification are not equivalent,

2. performing a translation into a corresponding CNF for
each output separately leading to m different satisfiabil-
ity checking problems.

Option 1) has the advantage that the SAT solver is able to ex-
ploit logic sharing between different output functions. But for
large circuits it will produce large CNF representations lead-
ing to difficult problems for the SAT solver. For large circuits,
where option 1) will lead to complexity problems, option 2)
should be preferred. However, then a straightforward applica-
tion of a SAT solver has the disadvantage that identical parts
of the circuit are processed more than once, if logic sharing
between the cones of different outputs exists.

For this reason, we will produce separate CNFs for each out-
put, and we make use of an incremental SAT solver. Incremen-
tal SAT solvers [16,17] are able to solve several SAT problems
S1, . . . Sn one after the other, if the CNF of Si+1 results from
the CNF of Si by adding clauses. The solution to a problem
Si+1 in an incremental SAT solver may profit from the knowl-
edge obtained during the solution to problems S1, . . . Si (this
knowledge is represented by so-called conflict clauses). Cur-
rently, incremental SAT solvers are mainly used in the con-
text of Bounded Model Checking (BMC) [18, 19] for property
checking. Incremental SAT problems naturally arise during
BMC: BMC applied to certain temporal properties (invariants
or, more generally, LTL formulas) ‘unfolds’ the transition rela-
tion of a system for k steps in order to find a counterexample to
the property. The BMC instance is translated into a SAT prob-
lem and, if no counterexample of length k is found by the SAT
solver, k is increased and the BMC procedure is used again.
Since CNF representations of unfoldings of the transition rela-
tion for k′ > k steps include the unfoldings for k steps, BMC
can certainly profit from incremental SAT techniques [20, 21].

In general SAT based equivalence checking is used with sep-
arate CNFs for each output function, earlier SAT problems will
not be completely contained in later SAT problems. However,
there will be an overlap between different SAT problems due to
logic sharing between different output functions. For this rea-
son, we add the corresponding CNFs to the incremental SAT
solver output by output and check for each output separately.
During the SAT check of a later output the incremental SAT
solver is able to profit from conflict clauses learnt in the SAT
checks for earlier outputs. In this paper we present heuris-
tics which try to maximize the benefit from incremental SAT
solving in combinational equivalence checking by looking for
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good orders in which the equivalence of outputs is checked.
Our experiments prove that incremental SAT together with an
optimized output ordering is able to significantly improve run
times.

Moreover, we provide a reset strategy which removes all
clauses (original clauses and conflict clauses) of previous out-
put functions (i.e., which resets the incremental SAT solver), if
we no longer expect to profit from the incremental SAT strat-
egy. This is the case when the clause database becomes large
and the number of shared clauses between the currently in-
serted output function and the existing clause data base is small.
Using the reset strategy the experimental results have been im-
proved further.

Our approach using incremental SAT with output ordering
and resets may be used in cases when the specification and the
implementation do not show any structural similarities. How-
ever, if structural similarities are present, methods which detect
equivalences between internal nodes should be used in order to
simplify the overall equivalence checking problem [10–15]. In
applications like [7, 22], simulation is used for detecting pairs
of candidate nodes for equivalence. Then ‘SAT sweeping’ de-
tects whether these pairs of candidates are really equivalent
or not. The generalization of our method to this scenario is
straightforward: In this case, our method will be applied to the
pairs of equivalence candidates rather than to pairs of outputs
of specification and implementation.

The paper is structured as follows: In Section II we give
a brief review of combinational equivalence checking, SAT
and incremental SAT. Section III gives an overview of our ap-
proach, whereas sections IV and V describe our output order-
ing heuristics and the reset strategy in more detail. Section VI
presents experimental results proving the efficiency of our ap-
proach, and finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Combinational Equivalence Checking of Circuits

A combinational circuit C with n primary inputs and m pri-
mary outputs represents a boolean function fC : B

n → B
m.

For the SAT based equivalence checking of two circuits, CA

and CB , usually the corresponding primary outputs are con-
nected by a miter structure which is simply an XOR-gate. The
corresponding primary inputs of the two circuits are connected,
i.e., the two circuits are depending on the same inputs. The
resulting circuit has one miter output for every pair of corre-
sponding outputs. See Fig. 1 for an illustration. To disprove
equivalence it is necessary to find at least one miter output
which evaluates to 1 for an arbitrary input assignment, i.e., it
is necessary to find an input assignment where the two outputs
evaluate to different values.

This can be achieved by checking one miter after another
(single output approach, see Fig. 1) or by a disjunction over
all miter outputs to check all miters in parallel (all outputs ap-
proach, see Fig. 2). Before applying a CNF based SAT solver
for solving the problem the resulting circuits have to be trans-
formed into conjunctive normal form (CNF). This is typically
done by doing a Tseitin transformation [9], which introduces
auxiliary variables for every signal in the circuits. The size of
the resulting CNF is linear w.r.t. the size of the corresponding
circuit.

For completeness we give the following definitions and an
example:

Definition 1 Let V be the set of boolean variables. Then the
expression bε with b ∈ V and ε ∈ {0, 1} is called a literal,

where b0 ≡ b and b1 ≡ b holds. A clause is a disjunction of
literals (e.g. c = (b1 + b2 + b3) is a clause c with the Boolean
variables b1,b2 and b3). A Conjunctive Normal Form (CNF) is
a conjunction of clauses.

The Tseitin transformation of the half adder in Fig. 3 e.g. is
performed in the following way: The AND gate leads to the

CNF (s1 + a)(s1 + b)(s1 + a + b) (= ‘s1 ≡ a · b’) and the

XOR gate is represented by (s2 + a + b)(s2 + a + b)(s2 +
a + b)(s2 + a + b) (= ‘s2 ≡ (a ⊕ b)’) The CNF resulting
from the conjunction of both descriptions evaluates only to 1,
if a consistent assignment to all variables (input variables and
auxiliary variables) is applied.

After transforming circuits with miter structures (see Fig-
ures 1 and 2) to CNF, we have to ensure that we only look for
consistent assignments which produce the value 1 at the out-
put of the miter (single output approach) or at the output of the
disjunction of miters (all output approach). Assuming that the
auxiliary variable for this output is sj , this can be achieved by
simply adding a unit clause sj to the CNF. The resulting CNF
is satisfiable iff the two circuits are not equivalent.

Checking the equivalence of all outputs at once or separately
for single outputs has specific advantages and disadvantages:

A.1 Single Output Approach (SOA)

The whole CEC problem is split into pieces, that are solved
one after another. Sometimes this is the only way to handle big
problem instances, where the whole problem exceeds memory
or time limits. Even when some of the sub-problems are too
hard for the SAT solver, normally a partial verification of some
outputs can be done. One disadvantage of this method is, that
structural sharing between the different sub-problems is not ex-
ploited. Therefore the SAT solver has to process identical parts
of the CNF repeatedly, duplicating Boolean reasoning already
performed before. When the circuit contains a large amount
of shared structures between different output cones, this may
result in a higher overall runtime.

A.2 All Output Approach (AOA)

Here Boolean reasoning performed for shared subcircuits can
be reused for several outputs. However due to the nature of
SAT, handling big problem instances may be hard, thus the ad-
vantage of sharing structure potentially does not pay off, lead-
ing to high run times for SAT solving.

B. SAT

Most modern CNF based SAT solvers implement the DPLL
Algorithm [2,23] to solve the satisfiability problem for a given
CNF. The basic algorithm performs in a competitive way with
other methods in CEC only if it is supplemented by addi-
tional techniques which have been developed during the last
few years. Most current state-of-the-art SAT solvers include
nonchronological backtracking [3], conflict clause learning
[3, 24], improved decision heuristics (e.g. VSIDS [4]), search
restarts [4, 25] and the two-literal-watching scheme [4].

C. Incremental SAT

To support the special structure of SAT problems which arise
for example in BMC several modern solvers implement also a
technique called incremental SAT solving [26]. Conventional
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Fig. 3. Example: Half Adder

SAT solvers prove whether a problem encoded in CNF is satis-
fiable or not and, if a second SAT problem is solved afterwards,
they restart from scratch. If the next problem instance shares
parts of the CNF with the previous problem, information al-
ready obtained in the previous step is lost (e.g. learned conflict
clauses, activity values). In contrast, incremental SAT solvers
preserve their internal state after a SAT run, allowing additional
CNF structures to be added after each run.

When incremental SAT is applied in applications like BMC,
it is not only necessary to be able to add clauses after each
step, but also to delete or disable clauses: After a step k which
fails to disprove a property by a counterexample of length k,
clauses for step k + 1 have to be added, and clauses describing
the property checked in step k have to be removed for the fol-
lowing steps (otherwise the following SAT problems would be
unsatisfiable, too).

Two approaches are used to handle this problem: The first
approach provides special measures to delete a set of clauses
from the clause database, including the removal of all conflict
clauses depending on the deleted clauses. (This approach is
used in zChaff [4].) The second approach (used in the solver
MiniSAT [8]) is based on additional activity variables which
may be set by so-called assignments. For example a clause
c = (l1 + ... + ln) with literals l1, ..., ln can be extended by an
activity variable a leading to clause (ā + l1 + ... + ln). If the
activity variable a is assigned to 1, the literal ā is false and the
extended clause reduces to (l1 + ...+ ln) again. If a is assigned
to 0, then the clause evaluates to true, thus the clause is de-
activated. The assignments to activity variables are performed
before the SAT solver is run, and they are always kept until
the solver returns the result. In this way, clauses (and all con-
flict clauses dependent upon them) may be effectively removed
before a SAT solver run [8].

III. OUR APPROACH

We propose an extension of the Single Output Approach
(SOA) using incremental SAT solving. In this way, we com-
bine the advantage of SOA (smaller SAT instances) with the
advantage of AOA (sharing of structures). To achieve this goal
we developed heuristics to guide the overall process.

The first heuristic method defines the order of the equiva-
lence checks. This is due to the fact that the order of the out-

puts in the circuit definitions may be arbitrarily bad or good for
the incremental approach. The basic idea here is to start with
simple problems and consecutively solve more and more dif-
ficult problems. The following problems should ideally share
as much of the structure as possible to support the incremental
SAT approach.

The second heuristic method is responsible for a complete
reset of the SAT solver before a new output pair is checked.
This may be necessary because the different SAT problems do
not necessarily share a reasonable amount of nodes. For in-
stance, a circuit with two completely independent structures
will not profit from incremental SAT, because the solution to
one sub-problem does not benefit from information learnt dur-
ing the solution of the other. In this case it is better to start a
completely new SAT instance, to prevent the processing of un-
necessary clauses. (This is a difference to the SAT problems
occurring in BMC, where the following SAT problems contain
all previous SAT problems besides the property checking struc-
ture.)

In our approach we use a SAT solver which supports variable
assignments in every run [8]. In our case we do not need ad-
ditional activity variables for removing clauses corresponding
to miters of previous equivalence checks: We do not add unit
clauses forcing miter outputs to a constant 1 in our approach,
but we assign variables before SAT solver runs instead. To ac-
tivate the miter of the current output pair being checked, it is
sufficient to assign the miter output variable to a constant 1 in
this step. Then the SAT solver can only find a model where a
boolean difference between the outputs exists. Since we do not
perform assignments to miter outputs of previous checks, these
miters do not hurt correctness. There always exists a consis-
tent assignment to that miter signals, since the output can be
freely assigned to 0 or 1 by the SAT solver. In this way the
boolean reasoning for parts of the circuits only connected to
the previous pairs of outputs is limited, since backtracks forc-
ing the miter outputs of previous checks to constant 1 will not
occur. (Either way, remember that our reset strategy will reset
the SAT solver whenever the size of the clause representation
in the SOA approach will be too large and we do not expect to
profit much from the previously learnt conflict clauses.)

The main CEC routine (see Fig. 4) has two input operands,
the two circuits which are checked for equivalence. It returns
whether the two circuits are equivalent or not as a boolean
value.
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In the first step, the two circuits are merged and miters are
added by the subroutine add_miters(A,B). Thereafter the out-
puts of the miters are ordered according to the ordering heuris-
tics. Then the main loop is entered. It checks the miters using
the order which was created by the ordering heuristics.

At the beginning of the main loop the function
threshold_exceeded(C.output(i)) is called. It returns
true when the current CEC problem does not share enough
with previous problems which are still present in the solver. In
this case a reset of the SAT solver is executed. Afterwards the
SAT solver does not contain any clause or other information.
After the reset the clauses corresponding to the current pair of
outputs are added.

Thereafter the output of the checked miter is set to true by an
assignment to the solver and the SAT procedure is started. If
this is successful, i.e. the solver returns true, then a inequality
of two outputs is found and the for-loop is exited. Otherwise
the next miter is checked. Equality of the two circuits is found
when all SAT checks were unsatisfiable.

In this section we assume that our approach is applied to
the primary outputs of the implementation and the specifica-
tion. However, note that a generalization of our approach to the
case where there are structural similarities between implemen-
tation and specification is straightforward: In that case usually
And-Inverter graph (AIG) representations for the implementa-
tion and the specification are constructed [15, 22]. During the
construction of AIGs local transformation rules like one-level
or two-level structural hashing are used in order to identify
equivalences between internal nodes which are easy to detect.
Then, a simulation of input vectors provides further pairs of
nodes which are candidates for equivalence. A following ‘SAT
sweeping’ run detects whether these pairs of candidate nodes
are really equivalent or not. In this scenario our method will
provide an order in which these pairs of candidate nodes are
presented to the SAT solver and a reset strategy for resetting
the SAT solver during SAT sweeping. In our algorithm ‘pairs
of outputs of the specification and the implementation’ just has
to be replaced by ‘pairs of candidate nodes for equivalence’.

IV. OUTPUT ORDERING HEURISTICS

As described above, the basic idea is to order the miter out-
puts in a way that assists the incremental SAT attempt. The
new miter output sequence is defined as follows.

Definition 2 Let Cf be the set of clauses which represents the
cone of output f (as described in Section II.A [9]). The set
Ci,j denotes the set of clauses which represent the cones of the
outputs occurring from position i up to j in the new order, with
1 ≤ i ≤ j ≤ m, where m is the number of miter outputs.

The order is computed iteratively beginning with position 1. In
the first step we choose the output f where |Cf | is minimal,
i.e. we start with the smallest cone. Then we select in every
following step j + 1 one of the remaining miter outputs where
|Cf \ C1,j | is minimal.

Thus we will always start with small problems and mini-
mize the count of new clauses which are added at each step to
the SAT solver during the CEC routine. Due to the nature of
SAT problems, it is better to solve small problems first and then
reuse the learnt information in larger problems.

This heuristic approach also favors an order where outputs
which have cones with a lot of sharing appear nearby in the
order and therefore supports the incremental approach. 1

1In the extreme case of all cones being completely disjoint this method will
lead to a sorting of the outputs depending on the cone size. Due to the reset

Fig. 4. Main CEC Routine

enum Result { EQUAL, UNEQUAL };

Result CEC(Circuit A, Circuit B)
{

bool solver_result = false;
SAT_Solver solver;

// Preprocessing
C = add_miters(A,B);

// apply new order
order_outputs(C);

// Main loop
for(int i=1; i <= C.nr_of_outputs(); ++i)
{

if( threshold_exceeded(C.output(i)) )
{

// Current sub-circuit shares not enough
// structure with its predecessors
Solver.reset();

}

// add current output cone
solver.add( C.cone(i) );

// assign miter output i to true
solver.assign( C.output(i), true)

// start solver and store the result
solver_result = solver.solve();

if( solver_result == true )
{

// Counterexample found
break;

}
}

// return the result of CEC
if( solver_result == true )
{

return UNEQUAL;
}
return EQUAL;

}

V. RESET STRATEGY

In this section we describe a heuristic approach to decide
whether or not to reset the SAT solver completely during a se-
quence of incremental SAT solver runs.

Definition 3 Let fj be the output f at position j of the or-
dering, with 1 ≤ j ≤ m. Let the position of the last reset
of the incremental SAT solver be immediately before output i
(1 ≤ i < j), i.e. the incremental SAT solver currently contains
clauses for outputs fi, ..., fj−1. Initially i is set to 1. Then the
reset ratio Rj of output fj is defined as follows:

Rj :=
|Cfj ∩ Ci,j−1|

|Ci,j−1|
The reset strategy considers all clauses which are present

at the moment in the SAT solver (Ci,j−1) and the clauses of
the current CEC problem which are already present in the SAT
solver (Cfj ∩ Ci,j−1). If the ratio is below a certain threshold

heuristics described in the next section our approach then reduces to SOA. The
only overhead is due the computation time of the heuristics, which is negligible
w.r.t. the complexity of SAT.
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0 ≤ t ≤ 1 a reset of the SAT-solver is performed. The variable
i is then updated to the value of j.

For instance when t = 0.2 and Rj = 0.15 holds then a reset
is triggered because the current CEC problem includes only a
fraction of 15 percent of the previous problems which are still
present in the solver, but 20 percent are at least needed.

If the threshold t is 0 then no reset is performed at all. A
threshold > 1 would perform a reset in every step, which is
equivalent to the SOA. Thus this parameter t indicates how ag-
gressive the SAT solver is reset.

VI. EXPERIMENTS

A. Experimental Setting and Benchmarks

Our approach has been implemented using MiniSAT 1.14
[8]. All experiments were performed on a Linux desktop with
a 2.8 GHz Intel Pentium IV processor with 1 GB of memory.
Every single experiment had a timeout of 7000 seconds.

In our experiments we used two public available benchmark
sets. The first is the ISCAS85 benchmark set [27], the second is
the ITC99 benchmark set [28], where we used the BLIF version
of the Torino subset. The second set contains only sequential
circuits. To perform CEC we extracted the combinational part
of them (we added to the circuit name an extension ‘.c’ to
indicate this).

In our experiments we confined ourselves to pairs of equiv-
alent CEC examples which form the harder case for SAT solv-
ing. For practical applications we recommend using a simu-
lation first in order to filter out erroneous designs where errors
are easy to detect. If simulation does not detect an error and the
benchmark size is not as large as to prevent the application of
the AOA approach, a AOA run with a strict limit on run times
should follow. This run may filter out erroneous designs with
errors which are not too hard to detect, since the AOA approach
looks for errors of different outputs in parallel, such that it may
be fast, if there is an error for some ‘easy output’. The approach
presented here should be applied only after filtering out these
easy cases.

To obtain for every circuit a different but equivalent coun-
terpart we used SIS [29] with the simplify command. Ver-
sions processed by SIS are marked by ‘.s’ at the end of the
circuit name. Since we did not spend much effort of apply-
ing more powerful logic synthesis algorithms, we compared
two versions of a circuit which are rather similar from their
structure. However, note that we could have also made use
of equivalent counterparts without any structural similarities, if
they had been at our disposal, since our current method does
not exploit structural similarities.

B. Experimental Results

The results of our experiments are listed in the Table VI.
Run times are given in CPU seconds. In the first two columns
the names of the circuits are shown. Column 3 and 4 are pre-
senting the run times for AOA and SOA. Columns 5 up to 10
contain our incremental approach with the ordering and reset
heuristics. We used six different values for the threshold t of
the reset strategy. In Column 11 (‘ordering, no reset’) we used
only ordering of the outputs. This corresponds to t = 0. The
last column shows the results of a straightforward incremental
approach, where no ordering and reset is used. The sequence
of equivalence checks was defined here by the original output
ordering of the BLIF file. For all benchmarks and approaches
we computed the speedup relative to the AOA run times. In the

last row we show the respective averages of speedups over all
benchmarks. (For cases when a timeout occurred these values
are only a lower bound for the real speedup.) The row before
shows the sums of run times for all benchmarks.

In the Table I we omitted benchmarks of the benchmark set
where for all methods run times of single experiments were
below 0.3 CPU seconds.

C. Discussion

The comparison of AOA and SOA confirmed our expecta-
tions: AOA has advantages in smaller experiments, where the
overall complexity of the SAT problem is not too big and the
reuse of information pays off. When examples become larger,
SOA does better.

The use of incremental techniques without reordering and
reset (last column) leads to considerable speedups compared
to the traditional approaches, the average speedup compared to
AOA is 7.35.

These results could even be improved to a large extent by
our output ordering heuristics (column 11, ‘ordering, no re-
set’): Without output ordering the run times are 210% higher
for C5315 and 112% higher for b21, e.g. . The average speedup
compared to AOA improved from 7.35 to 13.52. The results
demonstrate that output ordering, taking both the sizes of the
output cones and sharing between output cones into account
clearly pays off.

Although many benchmarks in the benchmark set contain
considerable amounts of logic sharing, our reset strategy is able
to provide further improvements in most cases. The overall run
time of 2952.62 s for the version without reset could be im-
proved to an overall run time of 2760.18 s for the version with
reset and threshold t = 0.4. For the C6288 benchmark (a mul-
tiplier circuit) however, no reset is performed at all and all run
times are in the same range. This is due to the high amount of
sharing in the multiplier circuit. For other examples like bench-
mark b17.c which contains more disjoint structure, run times
could be improved by resets (The number of resets ranges be-
tween 92 (for t = 0.1) and 278 (for t = 0.6) for b17.c, a circuit
with 1512 outputs.). For the set of benchmarks used in this pa-
per the selection of t = 0.4 seems to perform best, increasing
the threshold value even more tends to be counterproductive
(the behavior for t � 1.0 corresponds to the single output ap-
proach (SOA)). We expect that the reset strategy will become
much more important when we consider larger examples which
contain more parts which are more or less independent from
each other.

VII. CONCLUSION AND FUTURE WORK

We presented a novel approach to solve the CEC problem
with SAT based techniques. The results clearly show that
we are able to get significant speedups w.r.t. to traditional
techniques when incremental SAT is supplemented by clever
heuristics. In the future we expect to obtain an even more pre-
cise reset strategy by a tighter integration of our heuristics into
a SAT solver which would it make possible to make use of
more information, e.g., about the presence of conflict clauses
in the clause database for certain parts of the circuit. Moreover,
we will evaluate a generalization of our approach to the context
of exploiting structural similarities by And-Inverter Graphs and
SAT sweeping [15,22,30] (see also Section III). We expect that
the incremental SAT approach will profit from a higher sharing
of circuit structures in an And-Inverter Graph based intermedi-
ate representation.
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TABLE I
EXPERIMENTAL RESULTS

Benchmark CPU Time (s)
Incremental Approaches

Circuit A Circuit B AOA SOA Reset and Ordering Ordering No Ordering
t = 0.6 t = 0.5 t = 0.4 t = 0.3 t = 0.2 t = 0.1 No Reset No Reset

C499 C499.s 0.53 2.34 0.23 0.15 0.15 0.15 0.15 0.14 0.16 0.16
C880 C880.s 0.38 0.24 0.11 0.12 0.09 0.11 0.09 0.09 0.08 0.09
C1355 C1355.s 0.37 3.82 0.30 0.29 0.31 0.31 0.29 0.30 0.32 0.27
C1908 C1908.s 0.51 4.19 0.45 0.43 0.43 0.44 0.42 0.42 0.46 0.40
C2670 C2670.s 0.80 1.44 1.11 1.04 1.06 0.91 0.92 0.87 0.38 1.07
C3540 C3540.s 11.78 38.99 4.18 2.86 2.35 3.56 1.36 1.14 1.28 1.80
C5315 C5315.s 6.69 16.60 3.63 3.70 3.68 3.33 3.49 3.03 1.92 5.96
C6288 C6288.s >7000 >7000 2058.37 2048.43 2033.84 2045.77 2048.42 2062.81 2052.85 2859.98
C7552 C7552.s 17.86 4.96 3.03 2.98 3.20 3.10 2.94 2.93 4.61 4.32

b04.c b04.c.s 0.40 0.71 0.33 0.31 0.30 0.30 0.38 0.48 0.41 0.40
b05.c b05.c.s 0.91 1.68 0.49 0.48 0.48 0.43 0.49 0.46 0.47 0.56
b11.c b11.c.s 0.42 0.52 0.36 0.33 0.33 0.35 0.32 0.29 0.30 0.32
b12.c b12.c.s 0.79 0.83 0.55 0.49 0.43 0.43 0.45 0.43 0.53 0.81
b14.c b14.c.s 3465.80 792.30 56.10 70.80 46.47 46.83 45.12 49.52 37.71 87.53
b15.c b15.c.s 151.20 355.24 64.63 63.31 55.02 55.84 55.62 48.36 50.78 67.60
b17.c b17.c.s 749.75 1156.20 214.25 179.19 166.38 171.72 166.08 172.35 253.17 351.24
b20.c b20.c.s >7000 2893.42 155.41 121.22 121.35 126.01 126.01 154.14 173.55 272.41
b21.c b21.c.s >7000 3186.40 177.62 144.61 142.43 142.15 135.50 161.30 137.31 291.30
b22.c b22.c.s >7000 4229.34 227.44 183.95 181.88 182.59 185.05 186.67 236.33 441.80

Overall runtime >32408.19 >19689.22 2968.59 2824.69 2760.18 2784.37 2773.10 2845.73 2952.62 4388.02

Average Speedup: 1 1.18 11.12 12.16 13.69 13.44 14.01 12.80 13.52 7.35
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