
Ordered Escape Routing Based on Boolean
Satisfiability

Lijuan Luo and Martin D.F. Wong
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{lluo3,mdfwong}@uiuc.edu

Abstract— Routing for high-speed boards is largely a time-
consuming manual task today. In this work we consider the
ordered escape routing problem which is a key problem in board-
level routing. All existing approaches to this problem cannot
guarantee to find a routing solution even if one exists. We present
an algorithm to exactly solve this problem based on Boolean
satisfiability. Experimental results on escape routing problems
from industry show that our algorithm performs well.

I. INTRODUCTION

With ever increasing pin counts on denser boards, existing
CAD tools fail to provide an automatic solution to board-level
routing. As a result, routing for high-speed boards is largely a
time-consuming manual task today. In this paper, we consider
the ordered escape routing problem which is a key problem
in board-level routing.

The input to the ordered escape routing problem is a pin
array component and a required ordering of escaped pins
on the component boundary. The required pin ordering is a
way to ensure routing between components can be done in
a planar fashion. Without loss of generality, we may assume
that the escape pin ordering is 1, 2, 3, · · · , n where n is the
number of pins, by suitably renaming the pins if needed. In
the escape problem, we are asked to find disjoint paths to
route all pins within the pin array to the component boundary
while satisfying the escape pin ordering. Fig. 1(a) shows an
example of the ordered escape problem where all pins are
required to escape at the right side of the component. This is
a 1-side escape problem. We can also specify escapes to be
on 2 sides, 3 sides, or 4 sides. Fig. 1(b) shows a 4-side escape
problem. (Although 4-side escape is permissible, only 2 sides
are actually used in this solution)

There is a large body of literatures [1][2][3][4] on the ”un-
ordered” escape routing problem, i.e., there is no constraint
on the ordering of the escape pins. It is well known that the
un-ordered problem can be solved optimally by a network
flow approach. However, when it comes to ordered escape,
all existing approaches [5][6] to the problem cannot guarantee
to find a routing solution even if one exists. (Actually, [5] and
[6] only solve a more restricted problem, where each pin has a
fixed escape destination. However, we believe their approach
can be extended to allow floating escape destinations, but the
escape side for each pin has to be fixed.) The algorithm in
[5] can only route nets in monotonic (or detour-free) patterns.
Note that the solution in Fig. 1(a) is non-monotonic (Net 2’s

1

3

4 2

(a) 1-side escape

1
2
3
4

Order requirement

Planar routing

1
2
3
4
5

(b) 4-side escape

1

2 3 5

4

Fig. 1. Ordered escape routing problem

route is a detour) and the problem can not be solved by mono-
tonic routing. The most recent work [6], although partially
uses Integer Linear Programming, heuristically considers non-
monotonic routing only when the routing graph has a cycle.
Note that [6] can’t find the routing solution in Fig. 1(a), where
detour is needed for routing resource conflict, even though
no cycle exists in the routing graph. Also, the 4-side escape
problem in Fig. 1(b) can’t be solved by both [5] and [6], since
there is no way to know the escape side of each pin in advance.

We present in this paper an algorithm to exactly solve
the escape routing problem based on Boolean satisfiability.
Experimental results on escape problems from industry show
that our algorithm performs well.

II. SAT FORMULATION

A SAT problem is to find an assignment of variables to
staisfy the equation

F (x1, x2, ..., xn) = 1 (1)

where F is a Boolean function with variables x1, x2, · · · , xn.
Most often, F is expressed in Conjunctive Normal Form
(CNF). A CNF expression is a logical and of one or more
clauses, where each clause is a logical or of one or more
literals. A literal is either the positive or the negative form of
a variable.

Although the SAT approach has been widely used
in CAD applications such as testing and verification
[10][11][12][13][14], its application to physical design prob-
lems has been very limited [7][8]. This is because of the

3A-4

244978-1-4244-1922-7/08/$25.00 ©2008 IEEE

myth that Boolean SAT instances in physical layout prob-
lems are always too large to be computationally feasible
[9]. However, significant progress has been made in SAT
solvers such that state-of-the-art SAT solvers can solve CNF
formulas of millions of variables and clauses [15]. Moreover,
we observe that most of the escape routing problem instances
extracted from industrial boards are of moderate sizes, making
SAT potentially a viable approach. In this paper, we provide
a practical approach to optimally solve the escape routing
problem using a SAT formulation.

A. Construct Boolean functions

For a given pin array, we construct its corresponding routing
grid G. (See Fig. 2, which is the routing grid for Fig. 1(b).)
We place additional cells called slots adjacent to the boundary
of the routing grid to model the locations of the escape routes
exiting the pin array. We define a graph on this routing grid.
There are three types of nodes. Each free grid cell is called a
grid node, each pin is called a pin node and each slot is called
a slot node. An edge (shown as a dashed line in Fig. 2) is
a connection between two neighboring nodes. We note that,
due to the physical nature of the pin array, each pin can only
connect ”diagonally” to four neighboring grid nodes in the
NW, NE, SW, and SE directions, and each pin-slot connection
can only be horizontal or vertical.

To formulate the escape routing problem as a SAT problem,
we define three types of Boolean variables: grid variable, slot
variable and edge variable. For each grid node in G, we
introduce a grid variable which is a string of Boolean variables
corresponding to the binary representation of the index of the
net routing through the node. Note that we can introduce a
pin variable for each pin in a similar way except the string
of Boolean variables is a constant (equals to the net index
of the pin). Similarly, for each slot node, we introduce a slot
variable, which is a string of Boolean variables corresponding
to the binary representation of the index of the net exiting the
pin array at that slot. Finally, an edge variable is a Boolean
variable defined for each edge where it is 1 if and only if a
net is routed on the edge.

We now show that the escape routing problem can be
transformed into a SAT problem of the form

F = FGFEFP FS = 1 (2)

where G, E, P , and S are the sets of all grid nodes, edges,
pin nodes, and slot nodes, respectively. In other words, we are
looking for a variable assignment to simultaneously satisfy the
equations FG = 1, FE = 1, FP = 1, and FS = 1. Essentially,
these equations specify various feasibility conditions on the
Boolean variables in a feasible escape routing solution. The
details of the constructions of FG, FE , FP , and FS are given
in the following.

1) Construct FG: For each grid node g, there are at most
8 edges attached to it, corresponding to the connections with
4 neighboring grid nodes and 4 neighboring pin nodes. It is
obvious that the number of attached edges can’t be fewer
than 2. The variable assignment must satisfy the following

32

4

5

Grid Node

S

S2 S3 S4 S5

Edge

S6

S7

S8

S9

S10

S24

S23

S22

S21

20

S1

1

S17 S16 S15 S14 S13

S11

S12S18

S19

Slot Node

Pin on another layer

Pin on current layer

Pin Node

1

2 3 5

4

Fig. 2. Variable definition and slot index

condition: Among all the edges attached to g, either no edge
variable is equal to 1 or there are exactly two edge variables
equal to 1. In other words, either g is not used in routing, or
it is used by routing one net from one neighboring edge to
another neighboring edge. Let e1, · · · , em be all the edges
attached to node g, (2 ≤ m ≤ 8). We define a Boolean
function fg for this condition.

fg = (
m∏

i=1

ei) + (
m∑

i,j=1
i�=j

(eiej(
m∏

k=1
k �=i,j

ek))) (3)

For example, the grid node highlighted in Fig.2 has four
neighboring edges e1, e2, e3, e4. For this node, we have

fg = (e1e2e3e3) + (e1e2e3e4) + (e1e2e3e4) + (e1e2e3e4)
+(e1e2e3e4) + (e1e2e3e4) + (e1e2e3e4) (4)

Note that in each clause, either no edge variable or exactly
two variables are positive.

Letting fg range over all grid nodes, we get

FG =
∏

g∈G

fg (5)

2) Construct FE : For each edge e, either the edge variable is
equal to 0, or the two nodes connected by e are equal. This
is obvious, since the edge can not be used simultaneously by
two nets. Suppose the two node variables connected to e are
n1 and n2. Define fe to be the function corresponding to the
above requirement. In the following, we also use e to represent
the edge variable. Then we have

fe = e + (n1 = n2) (6)

Letting fe range over all edges, we get

FE =
∏

e∈E

fe (7)

3) Construct FP : For each pin p there should be one and
only one neighboring edge equal to 1, corresponding to the
edge through which the net routes away from p. Let e 1, · · · ,
em be all the edges attached to p, We define fp as follows:

fp =
m∑

i=1

(ei(
m∏

j=1
j �=i

ej)) (8)

3A-4

245

For example, consider Pin 4 in Fig. 2, which has three
neighboring edges e1, e2, e3, then we have

fp = (e1e2e3) + (e1e2e3) + (e1e2e3) (9)

Letting fp range over all pins, we get

FP =
∏

p∈P

fp (10)

4) Construct FS : This is for satisfying the given escape
ordering. We first index the slots in clockwise order starting
from the left topmost slot as shown in Fig. 2. (The starting
point can also be changed to any other slot.) Use S i to
stand for the ith slot, and si for the slot variable. Then an
escape ordering is correct if and only if for each pair i, j,
where i < j and Si, Sj are both involved in routing, we
have si < sj . However, since we can’t predict which slots
are used in routing in advance, it is hard to come up with
a Boolean function to define this order condition. Thus we
propose another order condition: An escape order is correct if
and only if for each pair i, j, where i < j, we have s i ≤ sj . To
prove the correctness of the second condition, we compare its
differences from the previous one. First, for the two slots used
by routing, we require si ≤ sj instead of si < sj . The two
requirements are actually equivalent, since it is not possible for
the two slots used by the same net, and si = sj is never true.
Second, empty slots (slots not used in routing) are involved
in the second condition. This requirement is equivalent to the
first condition. Since the variable of an empty slot does not
have any real meaning, we could give it any value. Suppose
we get a value assignment which satisfies the first condition,
then we can always make this assignment satisfy the second
condition by setting the values of the empty slot variables in
the following way. If si is an empty slot variable, then let
si = sj , where j < i and Sj is the closest non-empty slot. If
Sj does not exist, set si = 0. Hence, the second condition is
totally equivalent to the first one. And now we can define FS

as follows:

FS =
|S|∏

i=2

(si−1 ≤ si) (11)

B. Transform into CNF

Nearly all the Boolean functions introduced in Section II.A
are not expressed in CNF. In order to transform them into
concise CNF expressions, we use several techniques, which
will be introduced in the following.

1) Negative expression and De Morgan’s law
Instead of constructing the Boolean function by enumerating

all the legal cases as before, we enumerate all the illegal ones
and write a negative expression. For example, for the fp in
(9), we have

(e1e2e3) + (e1e2e3) + (e1e2e3)
⇔ (e1e2e3) + (e1e2e3) + (e1e2e3) + (e1e2e3) + (e1e2e3)
⇔ (e1 + e2 + e3)(e1 + e2 + e3)(e1 + e2 + e3)

(e1 + e2 + e3)(e1 + e2 + e3) (De Morgan′s law)
(12)

32

4

5

1

1
2
3
4
5

101101101101101

100

011

011

011

010

010

010001 010 011

011

011

011

011

100

100

100100100100100

100

101

110

110

xxx xxx xxx

xxx

xxx

xxx xxx

xxxxxx xxx xxx xxx

xxx xxx 100100

Fig. 3. SAT solution

2) Recursive procedure
Some Boolean functions constructed in Section II.A are

based on strings of Boolean variables, such as a = b, a ≤ b,
where a and b are two strings of Boolean variables. For
convenience of explanation, we suppose both of them have
only two bits, i.e. a = a1a2, b = b1b2. The method for
transforming a = b to CNF is quite straightforward,

a = b ⇔ (a1 = b1)(a2 = b2) (13)

⇔ (a1 + b1)(a1 + b1)(a2 + b2)(a2 + b2)

However, the transformation for a ≤ b is much more
complex. It not only needs using a negative expression and
De Morgan’s law, but also a recursive procedure. First, we
have

a ≤ b ⇔ a > b (14)

We can enumerate all the possible cases for a > b. There are
only three cases: (1) a = 1x, b = 0x, (2) a = 11, b =x0, (3)
a =x1, b = 00, where ”x” means ”don’t care”. (Note that the
three cases are not exclusive with each other.) So we have

a ≤ b ⇔ a > b (15)

⇔ (a1b1) + (a1a2b2) + (b1a2b2)
⇔ (a1 + b1)(a1 + a2 + b2)(b1 + a2 + b2)

For a general case, where a = a1 . . . ak, b = b1 . . . bk, we
come up with a recursive procedure to enumerate the three
possible cases for a > b. (1) a1 = 1, b1 = 0 (2) a1 = 1,
a2 . . . ak > b2 . . . bk, (3) b1 = 0, a2 . . . ak > b2 . . . bk. Based
on this recursive procedure, we can get the Boolean function
for a > b, and then the Boolean function for a ≤ b.

One solution for the problem in Fig. 2 is shown in Fig.3.
Here, the number in each slot or free grid cell is the Boolean
value of the slot variable or the node variable. For conciseness,
only the edges, with the edge variables equal to 1 are drawn
in the figure, the other edges are omitted.

III. HANDLING INFEASIBLE PROBLEMS

Usually there is only one track used in each grid cell, since
one track is the best for signal integrity. However, in some
occasions, when no escape solution exists by using only one

3A-4

246

3

2 1 Two tracks

One track
54

Fig. 4. 2-track solution

track, the design rule also tolerates another track in local
regions, as shown in Fig. 4 . The SAT solution not only
judges whether a one-track solution exists, but also gives a
clue to add additional tracks when necessary. This judgement
and dynamic track addition ability was never considered by
the monotononic router [5] or the ILP method [6]. Moreover,
in the field of SAT-based physical design algorithms, this is
also the first work to take advantage of the unsatisfiable result.

A typical SAT solver works in this way: by continuously
trying variable assignments and learning from the failed as-
signments, the solver finds more and more necessary variable
values for satisfying the boolean function. There are two
ending conditions for this search process: one is successfully
finding a set of variable assignments, which make the function
equal to 1; the other is finding a conflict clause, which can
never be true based on the necessary variable values. In the
second case, the conflict clause gives us hints about the cause
of the failed escape, or the regions where additional tracks are
needed.

Define the variables in the conflict clause to be conflict
variables. Based on the types of conflict variables, we have
different track addition strategies.

Hint 1 A node variable is a conflict variable. In this case, the
most possible reason for the failure of routing is that several
nets are competing for this node. Once this node is allocated
to one net, the routing of the other nets can not be finished
and conflict happens. The solution is to add an additional track
within this node. For Fig. 4, the variable corresponding to the
highlighted node is a conflict variable.

Hint 2 An edge variable, which is attached to a pin, is
a conflict variable. In this case, the possible reason for the
failure of routing is that the net is routing away from the pin
in a wrong direction. If the variable has a positive sign in the
conflict clause, then the correct direction to route the net away
from the pin should be along this edge. This is obvious, since
using this edge means the edge variable is equal to 1, and then
the conflict clause is equal to 1. On the contrary, if the variable
has a negative sign, then the correct direction should be any
direction but the one along that edge. The router (actually the
SAT solver, since we have transformed the routing problem
into a SAT problem) failed to use the correct direction in
the first place, because there was not enough routing resource
there. Hence, the solution to this kind of conflict is adding
tracks around the pin in the correct direction.

Coarse route

Partition into sub-problems

Define boundary constraints

Resolve the sub-problem by SAT

Get next sub-problem?

Combine sub-solutions

Yes No

Fig. 5. Flow of SAT-involved routing engine

3 1

2

1.0

1.0
1.0

1.0 0.5

0.5

0.5

Candidate partition line
Probabilistic coarse route

cut value = 1.0

cut value = 0.5

Fig. 6. Coarse route

Note that usually a conflict clause has more than one
variables, so it is possible that Hint 1 and Hint 2 will be used
together to resolve conflicts.

Hint 3 A slot variable is a conflict variable. In most of
the cases, this kind of conflict should be handled in the same
way as Hint 1. However, if the conflict clause is composed
of only slot variables, this is a hint of ordering problem. This
situation is more complex than the other two, since ordering
problem is a global problem, which can not be easily solved
by adding additional routing resource around the slots. Most
often, a wrong ordering in slots is caused by choosing wrong
directions when the nets route away from the pins. Thus the
solution is to trace back to the pins of the conflict nets and
add more routing tracks around these pins. Hopefully with the
additional tracks, the router will find a way to route the nets
away from the pins in correct directions.

IV. SOLVING LARGE PROBLEMS

The SAT approach introduced in Section II can also be
embedded into other routing engines to resolve very large
escape problems. This section introduces one possible engine.
It works in the way as shown in Fig. 5. Several main mod-
ules are introduced as follows. Coarse Router An example
of coarse routing is shown in Fig. 6(a). The coarse router
routes all the boundary pins directly out of the grid without
inward detour. (This is also the typical practice in industry.)
The only exception occurs when direct escape violates order
requirement, such as Net 1. All the remaining nets are routed

3A-4

247

1

3

2
1

3

2

4

1 2

(a) Coarse route and partition line (b)Sub solutions

1

3

2

(c)Combined solution

4

4

4

Fig. 7. Sub-problem definition and final solution

by L-shape pattern, and slots are evenly allocated to each net
under the constraint of ordering requirement. If more than one
slot belongs to a net, e.g. Net 3, then these slots are used with
equal probability. The decimal on each routing segment is the
probability value.

Partitioner Given a number U , we divide the original grid
into sub-grids, each with at most U rows. (For simplicity,
only one-dimensional partition is discussed here.) Under this
constraint, we try to minimize the number of nets cut by sub-
grid boundaries, since we want to limit the routing within
each sub-grid. Note that the cut number is usually a decimal
since we use the probabilistic course routing. Take Fig. 7 for
example. Suppose U = 3, then there are only two candidate
cuts which satisfy the sub-problem size constraint. We choose
the lower cut with cut value equal to 0.5, and then the routing
of all the three nets will be limited in one sub-grid.

Boundary Constraints If there are global nets (nets routing
through several sub-grids) after partition, this module is used
to define additional constraints for global nets. Take Fig. 7(a)
for example. There are three global nets. Net 1 and Net 2
need to pass from the lower sub-grid to the upper one, while
Net 4 from the upper to the lower. To guarantee sub-solutions
will be finally combined into a complete solution in planar
fashion, we try two possible orderings on the boundary: the
nets routing downward being to the left of the nets routing
upward, or vice versa. For the example problem, when we try
the first choice, i.e. Net 4 is to the left side of Net 1 and
Net 2 on the boundary, the two sub-problems are defined as
in Fig. 7(b). Take the definition for the lower sub-problem
for example. First, add another row of pins at the top of this
sub-grid, and pin 4 is placed on the left end of this row, since
boundary constraint requires it to be left. Second, to make sure
Net 1 and Net 2 will route into the upper sub-grid,we require
that Net 1 and Net 2 should escape only through the upper
boundary. Fig. 7(c) shows the final routing result.

V. EXPERIMENTAL RESULTS

We implemented the SAT based escape routing algorithm
in C++. The whole SAT based router includes three modules.
One is the pure SAT router introduced in Section II. If the

TABLE I

EXPERIMENTAL RESULTS

#Row #Col #Pin #Slot #Var #Clause Run time

Case 1 13 4 16 25(1-side) 288 1782 0.02s

Case 2 11 5 25 39(3-side) 420 3369 0.94s

Case 3 10 6 25 41(3-side) 475 3509 0.14s

Case 4 10 10 15 76(4-side) 684 3214 6.93s

Case 5 17 6 32 44(2-side) - - 4.21s

Case 6 32 8 41 93(3-side) - - 1.85s

12

3

4

5

6 78

9 10 11

12 1314

15

16 17

18

19

20

21

22

23

24

25

1 2 4

6

8

9

10

12

14

16

19

212325

Fig. 8. Escape result for Case 3

escape pattern does not exist with current routing resource, the
second module adds additional tracks in resource-insufficient
area and then calls the first module again. This process iterates
until a solution is found, or any more tracks are unacceptable.
For large cases, which pure SAT router can’t handle, the third
module is used. It exploits the partition technique in Section
IV, and calls the first module, and also the second module if
needed, for each sub-grid.

We performed the experiments on a Pentium 4 2.8 GHz
system with 4GB memory, and a Unix operating system. We
use MiniSat [16] as the SAT solver. We tested four escape
problems of real board design from industry, and two artificial
cases (Case 3 and Case 6), which have even more complex
escape patterns than industrial ones. The characteristics of
these cases, as well as the experimental results, are shown
in Table I. Each case has a #Row×#Col pin array as input.

3A-4

248

1

2

3 45

6

7

89 10

11

12

13

14

15

16

17

18

19

20

21

22 23

24 25

26

27

28

29

30

31

32 333435

36

37

38

39

40

41

1 2 4

6

8

9

11

13

14

16

17

18

20

21

22

23

24

25

26

27

28

30

31

32

34

35

373940

Fig. 9. Escape result for Case 6

#Pin is the number of pin terminals which need to be escaped
on current layer. These cases cover 1-side, 2-side, 3-side, and
also 4-side escape situations. The number and directions of
escape sides are given as input, based on the distribution of
routing resource outside the pin array. #Var and #Clause are
the numbers of variables and clauses in SAT formulation. Case
2 and Case 5 have no solution under one track constraint,
so additional tracks were added based on the technique intro-
duced in Section III. The final two cases have large scales and
were resolved by using the partition technique of Section IV.
Since the two cases are corresponding to several SAT problems

after partition, we did not fill in the #Var and #Clause columns
for them. The escape results for the artificial cases are shown
in Fig. 8 and Fig. 9.

Extensive experiments show that for pure SAT router, the
maximum scale it can handle in acceptable time (within ten
minutes for us) is approximately 10×10 pin array and the
number of nets to be escaped does not affect the run time as
much as the size of the pin array. For further larger cases,
partition technique is necessary. Fig. 9 shows the ability of
the escape router for finding non-trivial escape patterns for a
very large case.

VI. CONCLUSION

A SAT based ordered escape routing approach is proposed
in this paper. For the moderate cases from industry, it guaran-
tees to find the solutions in reasonable CPU time. It can also
handle the infeasible cases by dynamically adding tracks, and
large scale cases by partition technique.

VII. ACKNOWLEDGEMENT

This work was partially supported by the National Science
Foundation under grant CCF-0701821 and a grant from the
Fujitsu Laboratories.

REFERENCES

[1] V. P. Roychowdhury, J. Bruck, and T. Kailath, ”Efficient Algorithms for
Reconfiguration in VLSI/WSI Arrays”, IEEE trans. on Comp., 39(4):
480-489, April 1990.

[2] Y. Birk, and J. B. Lotspiech, ”On Finding Non-Intersecting Straightline
Connections of Grid Points to the Boundary”, J. of Algorithms, 13(4):
636-656, Dec. 1992.

[3] W.-T. Chan, and F. Y. L. Chin, ”Efficient Algorithms for Finding
Maximum Number of Disjoint Paths in Grids”, SODA, pp. 454-463,
1997.

[4] J. W. Fang, I. J. Lin, P. H. Yuh, Y. W. Chang, and J. H. Wang, ”A Routing
Algorithm for Flip-Chip Design,” Proc. of ICCAD, pp. 753-758, 2005.

[5] Y. Tomioka, and A. Takahashi, ”Monotonic Parallel and Orthogonal
Routing for Single-Layer Ball Grid Array Packages,” Proc. of ASP-
DAC, pp.642-647, 2006

[6] J.W. Fang, C.H. Hsu, and Y.W. Chang, ”An Integeer Linear Program-
ming Based Routing Algorithm for Flip-Chip Design”, Proc. of DAC,
pp. 606-611, 2007.

[7] S. Devadas, ”Optimal Layout Via Boolean Satisfiability,” Proc. of
ACM/IEEE ICCAD, pp. 294-297, 1989.

[8] R. G. Wood, and R. A. Rutenbar, ”FPGA Routing and Routability
Estimation Via Boolean Satisfiability,” IEEE Trans. VLSI Systems, pp.
222-231, June 1998.

[9] Gi-Joon Nam, ”An Exploration of Physical Design Problems Via
Boolean Satisfiability (SAT)”, Ph.D forum at DAC, 1999

[10] T. Larrabee, ”Eficient Generation of Test Patterns Using Boolean Satis-
fiabiliy”, Ph.D. Dissertation, Department of Computer Science, Stanford
University, STAN-CS-90-1302, February 1990.

[11] T. Larrabee, ”Test Pattern Generation Using Boolean Satisfiability”,
IEEE Trans. on CAD, 11(1):4C15, Jan 1992.

[12] H. Konuk and T. Larrabee, ”Explorations of Sequential ATPG Using
Boolean Satisfiability”, Proc. of the 11th IEEE VLSI Test Symposium,
pp. 85-90, April 1993.

[13] P. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, ”Combi-
national Test Generation Using Satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
pp. 1167C1176, 1996.

[14] M. Velev, and R. Bryant, ”Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW Mi-
croprocessors,” Proc. of DAC, July 2001.

[15] E. Goldberg, ”Practical SAT Solving: Achievements, Problems and
Opportunities”, Algorithms for the SAT-problem Workshop, 2006

[16] http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

3A-4

249

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

