
An Innovative Steiner Tree Based Approach for Polygon Partitioning

Yongqiang Lu, Qing Su and Jamil Kawa
Advanced Technology Group, Synopsys Inc.

Abstract— As device technology continues to scale past 65nm,
the heavy application of resolution enhancement techniques (RET)
makes the complexity, run time and quality issues in mask data
preparation (MDP) grow severely. As one major and core step
in MDP, polygon partitioning converts the complex layout shapes
into trapezoids suitable for mask writing. The partitioning run
time and quality of the resulting polygon partitions directly im-
pacts the cost, integrity, and quality of the written mask. In this
work, we introduce an innovative approach to solve the polygon
partition problem by constructing a variant Steiner minimal tree:
minimal partition tree (MPT). We prove the equivalence between
MPT and the optimal polygon partition. Also, the solution search
space for MPT is further reduced for the efficiency of the MPT al-
gorithms. Finally, a generic MPT algorithm flow and a linear-time
heuristic algorithm based on it are proposed. Experiments show
that MPT solves the polygon partitioning with very promising and
high quality results.

I. INTRODUCTION

The application of Steiner tree based algorithms have been
widely used in many EDA areas, especially in physical design.
Researches have accomplished many efficient heuristic and ex-
act solutions, [1–4]. In this paper, we apply Steiner minimal tree
approach to another EDA field, Mask Data Preparation (MDP),
to solve the polygon partitioning problem.

VLSI masks are written by electron beams with either one of
the two mask writing varieties: Raster mask or variable shaped
beam (VSB) mask. One core step for mask data preparation
(MDP) is to fracture the polygons of the data of a design into
either rectangles or parallel-axis trapezoids in the most general
case. With the VLSI technology scaling down deep into the
nano meter era, complexity and quality issues for MDP have
grown dramatically in severity. This is due to the ever de-
creasing dimension of the layout objects and to the application
of more aggressive RET. Therefore, guaranteeing high quality
polygon partition results for modern designs is becoming in-
creasingly difficult.

Traditionally, people applied cut line based heuristics to
solve the polygon partitioning problem [5–7]. The use of
these heuristics implies going through a cycle of local cut line
evaluation, correction, and re-evaluation. However, the ever-
increasing demand for a high quality of partitions dictates a big
improvement from current algorithms. For example, the main

criteria for a high quality polygon partition are: to minimize
the number of small unprintable geometries known as slivers,
to minimize the exposed boundary length of such slivers, and to
avoid CD (critical dimension) slicing [8]. Meeting all those cri-
teria in current cut line based heuristics is becoming harder and
the algorithms used are frequently trapped in achieving local
optima. Additionally, each cut line based heuristic is designed
and tailored toward a specific optimization objective such as
minimizing the cut line length, or minimizing the figure count,
and so on. If the need to change one or more objectives arises
the whole algorithm has to be completely changed. The flexibil-
ity and portability to such changes of objective for classical al-
gorithms are low. Furthermore, memory demands and runtime
limitations imposes restrictions on the use of more powerful cut
line based standard algorithms.

In this paper, we propose an innovative approach for solv-
ing the polygon partitioning problem by formulating a variant
Steiner minimal tree which is referred to from here on as the
minimal partition tree (MPT). Comparing MPT to traditional
approaches, this new approach offers a global and systematic al-
gorithm for obtaining an optimal solution. Besides, since MPT
inherits a solid theoretical foundation from existing Steiner tree
researches, there are several mature and efficient algorithms
available that can be applied to solve the reformulated Steiner
tree problem. Furthermore, in our generic MPT optimization
framework, changing optimization objectives is an easy task
and does not imply changing algorithms. An example would
be that if the objective is changed from minimizing the total
cut length to minimizing the maximum cut length, the variant
Steiner tree can simply be switched from a Steiner minimal tree
to a min-max Steiner tree. In summary, the key contributions of
the proposed work are:

1. A new approach for solving the polygon partitioning prob-
lem is introduced by formulating a variant Steiner minimal
tree, MPT.

2. A generic algorithm and flow for solving MPT and a linear
time heuristic based on it is proposed.

3. A guidance for reducing the size of the solution search
space of to improve the efficiency of the new Steiner tree
problem is provided.

4. The theoretic and algorithmic foundation of the proposed
approach may serve as the basis of applying other Steiner
tree algorithms to the polygon partitioning problem.

The paper is organized as follows. In Section II, we briefly
introduce some preliminaries related to the rectangular polygon

4C-3

358978-1-4244-1922-7/08/$25.00 ©2008 IEEE

partitioning problem. In Section III, a variant Steiner tree is for-
mulated to solve the rectangular polygon partitioning problem.
In Section IV, the solution search space for the MPT problem
is analyzed and its size is reduced. A heuristic algorithm for
solving MPT is introduced in details in Section V. Then in Sec-
tion VI experimental results are shown to demonstrate the qual-
ity of partition provided by the proposed algorithm. Finally, we
summarize our work in Section VII.

II. PRELIMINARIES

In most designs the vast majority of the layout objects have
rectilinear boundaries. Hence the rectilinear polygon partition-
ing problem is the main focus of this work. In this paper, for
simplicity of presentation, the word “polygon” always refers to
“rectilinear polygon”. The proposed work in this paper can be
applied to any rectilinear polygon, with or without holes. To
keep the illustrations simple we use rectilinear no-hole polygon
only. Extension to the “with-hole” case is straightforward.

A. Terminologies of Polygon Partitioning

bg

a s

ef

d

c

Fig. 1. Partitioning on rectilinear polygon. The dashed lines partition the
polygon into a certain number of rectangles.

The terms introduced in this section are all illustrated in Fig-
ure 1. The polygon in the figure is a rectilinear polygon, which
is defined to be a polygon with all the boundaries being axis
parallel. An inflection vertex (or I-vertex for short) of a rec-
tilinear polygon is a concave vertex where its internal angle is
270-degree, such as the points a, b, c, d and e in the figure.
Rectangular partitioning on the polygon is to divide the poly-
gon into a set of disjoint rectangles whose union equals to the
polygon, such as the rectangles separated by the dashed lines in
the figure. The cut lines are the maximum line segments across
the polygon interior that divide the polygon into rectangles. The
endpoints of a cut line can only be either on boundaries or on
other cut lines. In Figure 1, āf , ās, ēg, b̄c and c̄d are examples
of cut lines; while ḡs and ēs are not because they are not the
maximum line segments. If a cut line has both I-vertex end-
points then it is called a chord, such as b̄c and c̄d. Otherwise
the cut line is a cutting ray, such as āf , ās and ēg. Draw
cutting rays from every I-vertex in two directions toward the

polygon interior; they will intersect the closest polygon bound-
ary. The intersection points are called ray crossing vertices
or R-vertices for short, such as the points f and g in the fig-
ure. Therefore, every inflection vertex has two corresponding
R-vertices: one generated by a horizontal cut ray and one by
a vertical cut ray. Each inflection vertex is called the parent
I-vertex of the two R-vertices generated from it.

In polygon partitioning, the cut lines rather than the rectan-
gles are critical components for problem formulation. All the
cut lines, the endpoints and the intersecting points of these cut
lines form a graph which is called a partition graph (or par-
tition in short). The cost of a partition is generally measured
by the total cut line length. If the graph has no cycles, the cor-
responding partition is referred to as a acyclic partition; other-
wise the graph-corresponding partition is referred to as a cyclic
partition. More particularly, an anchored partition is defined
as a partition with each of its cut lines having at least one end-
point being an inflection vertex.

B. MCLRP: Minimum Cut Length Rectangular Partition

A general used objective for rectangular partitioning is to
make the final partitioned rectangles as close to squares as pos-
sible [9]. In other words, the objective is to have the aspect ratio
of the partitioned rectangles as close to one as possible. This ob-
jective is equivalent to minimizing the total cut line length [9]
of a partition, which is traditionally formulated as minimum
cut length rectangular partition (MCLRP) problem. This is
the optimization problem to be solved in this paper.

The MCLRP for a given polygon is not necessarily unique.
In [10], it is proved that there always exist an MCLRP as an
anchored partition, i.e. a partition with all cut lines anchored
on inflection vertices. Hence without any loss of generality we
only need to focus on the anchored MCLRP. Since an MCLRP
has the minimal total cut line length among all the possible par-
titions, its cut length is minimal among all the anchored parti-
tions as well. Therefore, it is sufficient to study only the set of
anchored partitions for the optimal anchored MCLRP. For sim-
plicity, throughout this paper, an MCLRP refers to a anchored
MCLRP and a partition refers to an anchored rectangular parti-
tion. The anchored MCLRP has an important property stated in
the following Theorem which will be used in subsequent sec-
tions.

Theorem II.1 In a polygon’s MCLRP, each inflection vertex of
the polygon must have one and only one cut line, unless it has
two chords.

Proof. In an MCLRP of a polygon, if there are two cut lines
originated from the same inflection vertex, at least one of them
must be movable unless the two cut lines are both chords. A
movable edge in a partition is by definition able to be moved
by a non-zero distance toward either side in the orthogonal di-
rections without affecting the validity of the partition. For ex-
ample, in Figure 1, ās or āf is movable; while c̄b and c̄d are

4C-3

359

not movable because they are chords. The movable edge can
be moved until it overlaps with the polygon boundary or an-
other cut line, which will lead to a reduction in the total cut line
length. This contradicts with the definition of an MCLRP.

�

The statement above gives us an introductory grasp for the
rectangular partitioning problem. In the next section we will
present a novel approach to solve this problem. The approach
is based on a variant Steiner tree formulation.

III. A VARIANT STEINER MINIMAL TREE: MINIMAL

PARTITION TREE (MPT)

The Steiner tree problem has been intensively studied for
decades and there have been many efficient and mature algo-
rithms proposed [1–3] with good suboptimal solutions and fast
runtime approximations (sub quadratic complexity). In Steiner
tree problem, rectilinear Steiner minimal tree (SMT) is used to
minimize the total Manhattan wire length connecting the tree
terminals. In the partitioning problem, MCLRP solution should
minimize the total cut line length. These two problems are very
closely related. Solving the MCLRP problem with Steiner tree
based approach can bring in many mature and efficient algo-
rithms from Steiner tree researches to solve the partitioning
problem. More important, Steiner tree approach enables us
to optimize in global view, and avoid re-evaluation of the tree
edges again and again. In addition, the Steiner tree approach al-
lows easy change to other objectives. For example, if the objec-
tive of partitioning is changed from MCLRP to minimizing the
maximum cut length rather than total cut line length, the vari-
ant Steiner tree can be switched to be based on min-max Steiner
tree. Furthermore, The Steiner tree based algorithms have clear
data structure and presentation, hence the implementation is
easier and the algorithms can be made very efficient. Motivated
by the those benefits, we formulate a variant of Steiner minimal
tree, denoted as MPT, to solve the MCLRP problem.

A. Formulation of MPT

The tree to be formulated is constructed on the Hana grid
on a polygon (HGP), which is defined as the Hana grids [11]
originated from all the polygon vertices and bounded by the
polygon. Hence both the portions of the grid lines that are com-
pletely interior to the polygon and the polygon boundary lines
are included in HGP. The edges that are not overlapped with
polygon boundaries are referred to as cut-state edges or edges
in cut-state.

Since MCLRP has all the cut lines anchored on polygon in-
flection vertices, it follows that all its cut lines lie on the above
defined HGP. Therefore, it is sufficient to search through all the
partitions on HGP for MCLRP. The variant Steiner tree to solve
the MCLRP problem is formulated as an MPT.

Definition III.1 Minimal Partition Tree Problem (MPT):
Given a rectilinear polygon, it has the I-vertex set I and R-
vertex set R. Using the points in I ∪ R as terminals we build
a rectilinear Steiner tree on the HGP of the polygon connect-
ing these I-vertices and R-vertices subject to the special cost
formulation and additional constraints listed as follows:

1. The tree edge cost between any two connected vertices is
defined as the non-boundary portion of the rectilinear dis-
tance between the two points. That is, the tree edge over-
lapping with the polygon boundary has a zero-cost;

2. The tree has no L-shapes (which is defined as a group of
two orthogonal tree edges connected by a degree-2 ver-
tex);

3. Every I-vertex must have at least one edge in cut-state.

The above formulated rectilinear Steiner tree is defined as a
partition tree (PT). The rectilinear Steiner minimal tree in the
set of PTs is the minimal partition tree (MPT).

B. Equivalence between MPT and MCLRP

In this subsection, we will prove that the above formulated
MPT is equivalent to MCLRP on HGP if the MCLRP is an
acyclic partition. Hence solving the MPT problem can lead us
the optimal partition solution MCLRP that we need. Toward
the end of the subsection, we will discuss solutions to the other
cases when the MCLRP is cyclic type.

Lemma III.1 A partition tree (PT) on the HGP of a given poly-
gon is equivalent to an acyclic partition on the HGP of the poly-
gon.

Proof. (=⇒) A PT corresponds to an acyclic partition on
HGP with same cost. From the formulation of PT defined in
Definition III.1, all the tree edges of PT are either completely
inside the given polygon or on the polygon boundary. The PT
edges that are completely inside the polygon divide the polygon
interior into a certain number of closed sub regions. Because
there is no L-shape and each of the polygon vertex must have at
least one cut line, all sub regions have only 90-degree corners
in the interior of polygon. Meanwhile, the non-inflection ver-
tices of the polygon are 90-degree as well. Hence all the closed
sub regions that compose of the partition of the given polygon
are rectangles. which forms a rectangular partition on HGP. Be-
cause the PT edges on the polygon boundaries have zero cost,
the PT and the resulting partition have the same cost.

(⇐=) An acyclic partition on HGP corresponds to a PT
with same cost. Let G1 be the graph that the cut lines of the
partition forms on HGP and R1 (R1 ⊆ R) be the set of the R-
vertices in G1. Firstly, G1 must includes all the I-vertices of
the polygon. Otherwise, the cut lines forming G1 would not be
a rectangular partition. Secondly, all the points in R − R1 are
isolated points from the graph G1, each of which can be con-
nected to G1 by adding portion of polygon boundaries between

4C-3

360

it and its closest I-vertex. Thus a new graph G2 is formed. Be-
cause each point in R − R1 is connected to only one vertex in
graph G1, and there is no additional connections between any
two points of R−R1, the newly formed graph G2 has no cycle
as well. Finally, if G2 is a connected graph, it is a tree covering
I ∪ R; otherwise it is a forest which is formed by a set of sub-
trees. Since the partition is anchored partition, the subtrees are
all anchored on polygon boundary. So, any two subtrees can be
connected via polygon boundaries to form a tree G3 covering
I ∪ R. Since edges on polygon boundary have 0-cost and do
not introduce any L-shapes in interior, the final tree is on HGP,
has no L-shape, covers I ∪ R, and has the same cost with the
partition. By definition, it is a PT. �

Theorem III.1 MPT is equivalent to minimum cut length
acyclic partition.

Proof. (=⇒) Given an MPT, it must correspond to an mini-
mum acyclic partition with the same cost. From Lemma III.1,
the MPT with cost tm must correspond to an acyclic partition on
HGP with cost pm and pm = tm. If the partition with cost pm

is not the minimum acyclic partition, there must be an acyclic
partition with pi < pm. From the Lemma III.1, pi must corre-
spond to a partition tree with cost pi = ti. Hence ti < tm. This
contradicts to the fact that the PT with tm is an MPT. Therefore
the corresponding partition is the minimum acyclic partition.

(⇐=) Given an minimum acyclic partition, it must corre-
spond to an MPT with the same cost. From Lemma III.1, the
given minimum acyclic partition with cost pi must correspond
to a PT with cost ti, and pi = ti. If the PT with cost ti is not
the minimum, there must be an MPT with cost tm < ti. From
Lemma III.1, MPT with tm corresponds to an acyclic partition
with cost pm, and pm = tm. Therefore, we have pm < pi.
This contradicts to the fact that the partition with cost pi is the
minimum acyclic partition. Therefore, the PT is an MPT. �

Theorem III.1 indicates that we can solve the MCLRP prob-
lem by solving the MPT problem if the polygon has an MCLRP
being an acyclic partition. In the case when there is no MCLRP
being an acyclic partition, the problem can be solved sub-
optimally either with the MPT suggested acyclic minimal parti-
tion, or by post processing the constructed MPT to form cycles.

Note that the Steiner minimal tree problem is a NP-complete
problem in general case [12]. And the MCLRP is a NP-hard
problem in general case [10]. Therefore the computational
complexity of solving MPT in practice is a big issue. In the
next section, we will give an analysis on how to reduce the size
of search space for solving the MPT problem.

IV. REDUCING THE SOLUTION SEARCH SPACE

For any optimization problem, the computational complexity
and the quality of results of a heuristic algorithm are very much
affected by the properties of the solution search space for the

optimal solution. Two extremely important properties of the
search space are the number of local optima and the “depth”
of local optima [13]. They indicate the scale and the nature
(smoothness or lack of) of the search space. In order to avoid
the search algorithm being stuck at a local optimum one effi-
cient way is to reduce the size of the search space. This will not
only reduce the number and “depth” of the local optima, but it
will also reduce the computational complexity of the algorithms
searching for the optimal solution since it reduces the number
of candidate solutions.

The size of the MPT search space is directly related to the
number of the terminals connected by the tree. From the for-
mulation, this variant Steiner tree uses the set I ∪ R as tree
terminals. By definition, each I-vertex has two corresponding
R-vertices formed by horizontal and vertical cut rays from it.
If there are N I-vertices in the polygon, the problem size will
be 3N for MPT. Reducing the problem size can effectively im-
prove the efficiencies of MPT solvers.

The size of the search space is also related to the number of
candidate solutions. By analyzing the MPT properties we can
reduce the search space by removing the redundant candidate
PTs from the search space. As long as the optimal solution
is still in the reduced subset of the search space, this effort of
reducing the search space will not affect the quality of results
but will only improve the computational efficiency.

Below are two of the very useful and special properties asso-
ciated with the formulated MPT. These properties can help us
reduce the size of the MPT problem and the size of candidate
solution set. Due to page limit, we omit the proofs that the re-
duced solution search space according to these two properties
still contain the optimal solution MPT.

1. For any two partition trees, if the trees have the same cut-
state portions in spite of different boundary-overlapping
portions, we only need to keep one of them in the search
space.

2. In an MPT, if there is a cut-state edge e having one end-
point as an R-vertex, the cut line that contains e must have
the other endpoint to be that R-vertex’s parent I-vertex.

The first property indicates that the solution search space for
MPT can be reduced by keeping only one of the several PTs as
candidate if these several PTs have same portions of tree edges
in the polygon interior. The second property implies that the
problem size of MPT can be reduced by not considering the
full connections between all the terminals in the set I∪R during
tree construction. Each R-vertex can only be directly connected
to its parent I-vertex rather than to all the other I-vertices and
R-vertices. Therefore the problem size will be far less than 3N .

In addition to the above two properties, the search space can
be reduced further by using the properties in Theorem II.1.
Since MPT is equivalent to an acyclic type of MCLRP it must
have the same properties as stated in Theorem II.1. Therefore
any PT that has two cut-lines on one inflection vertex (except

4C-3

361

when it has two chords) is not an MPT, and thus can be removed
from the candidate PT set for MPT.

V. A GENERIC MPT SOLVER AND A LINEAR-TIME

HEURISTIC FOR MPT

The generic MPT algorithm contains two core parts. The first
part is the sub-tree fetcher and the second part is the tree cost
evaluator. The sub-tree fetcher is used to get a sub Steiner tree
rooted by a given tree node. The evaluator uses the cost func-
tion which considers all the constrains illustrated in the generic
optimization formulation of MPT in Section IV to give the cost
of the current sub-tree. The sub-tree fetcher determines the way
the MPT algorithm constructs the final tree, and it can be used
to construct the tree edge by edge, or sub-tree by sub-tree. Thus
many rectilinear Steiner minimal tree construction algorithms
can be applied here as long as the algorithm’s cost evaluator is
adapted to the sub-tree fetcher.

In this paper we adopt an L-path based suboptimal rectilinear
Steiner tree construction algorithm [2] as a example to demon-
strate the generic MPT algorithm flow. The formulation of the
edge cost is modified according to the constraints in the generic
optimization formulation of the MPT where the partition qual-
ity constraints required by MDP should be also added. The ef-
forts listed in Section IV for reducing the scale of the problem
and the search space are utilized in our heuristics to improve the
efficiency of the algorithm.

In [2], it is proved that the computational complexity of the
rectilinear Steiner tree construction is O(n) on a separable min-
imal spanning tree with n nodes. We use an O(n log n) nearest
neighbor algorithm [14] to build a separable minimal spanning
tree to determine the connectivity between the I-vertices. Then
we construct the MPT on this separable minimal spanning tree
after adding R points to their parent I-vertices in spanning tree.
We also prove that the computational complexity of MPT con-
struction from the separable minimal spanning tree is O((3N))
where N is number of I-vertices. Due to length restriction, the
proof is omitted here.

The following flow summarizes the proposed algorithm.

1. Read in the polygon, collect inflection vertices, store poly-
gon edges, and generate the R vertices. One inflection ver-
tex corresponds to only two R vertices.

2. Use all the I-vertices vertices as terminals. Build separable
minimal spanning tree.

3. Connect all the R-vertices to the tree with their respective
parent I-vertices only.

4. Starting from a leaf vertex of the separable minimal span-
ning tree do the following recursively:

• For each vertex, enumerate all possible polygon-
interior rectilinear path combinations of this vertex
and all its children vertices.

• Choose the combination with smallest total cost.

• The cost is determined by the definition III.1, and all
the partition quality constraints should be addressed
as well.

• The constraints in Section IV are enforced to elimi-
nate some unnecessary combinations and to speed up
the execution of the algorithm.

VI. EXPERIMENTAL RESULTS

We ran the L-path based heuristic on a Redhat Linux server
with two 2.8GHZ AMD Opteron CPUs and 8GB memory. We
tested our algorithm on many hand-crafted as well as on indus-
try examples. Many of them were large and complex. We also
used other MDP tools which use traditional polygon fracturing
methods on these same examples. The comparison shows that
our proposed new algorithm has similar run time but has better
quality of results than the that of other tools used in the form
of fewer slivers, better fracturing uniformity, and smaller as-
pect ratio of the final figures, etc. Due to confidentiality issues,
we cannot show the results obtained from the standard industry
tools used. In this section we will only show the results of our
own algorithm. We demonstrate 5 representative benchmarks
for the examples that we have tested. Examples p3 and p5 are
created manually; the other 3 examples are from real industry
circuits.

The benchmark characteristics are shown in Table I, includ-
ing the number of polygons, the number of holes, the number
of original polygon vertices, and the number of polygon inflec-
tion vertices. Of those, the number of inflection vertices is an
indicator of the problem size. The threshold for sliver size is
also listed in Table I. We define the sliver threshold (unit is nm)
as the minimum allowable size of a printable feature specified
by the mask shop. If the smallest dimension of any partitioning
figure is smaller than this value, it is considered to be a sliver.

TABLE I
THE BENCHMARK CHARACTERISTICS.

Bench #poly #hole #vertex #I-vertex sliver
threshold

p3 1 1 18 9 1
p5 1 0 26 11 1

ex02 1 1470 18260 12068 100
ex05 7 0 792 382 100
ex12 471 0 19524 9070 100

Using the listed sliver thresholds, Table II lists the quality of
results generated by our MPT algorithm. The 2nd column is the
number of partitioned rectangles, which is also referred to as the
final figure count. The 3rd column is the total number of slivers.
Among the slivers, there are two types: embedded slivers and
edge slivers. The embedded slivers are the slivers that are in
between two big figures. The edge slivers are the ones on the
side of polygon. The embedded slivers can be handled by the

4C-3

362

mask writing tools. They will not cause quality issues. The real
problematic ones are the edge slivers. In column 4 of Table II,
we listed the number of edge slivers as a criteria to indicate the
partitioning quality.

TABLE II
THE PARTITION RESULTS.

Bench #rectangle #sliver #edge sliver # CPU(s)
p3 6 2 0 0
p5 12 2 2 0

ex02 7568 35 35 3
ex05 343 83 6 0.2
ex12 8792 19 1 0.5

Figure 1 shows the full layout of the partition results on the
two hand-crafted examples. The solid lines are the original
polygon edges. The dashed lines are the partition cut lines.
Example “p3” (Figure (a))demonstrates how the polygon with
holes are handled during partition. Example “p5” (Figure (b))
demonstrates partition of a more complex example and consid-
eration of sliver constraints. Note that there often exist some
unavoidable slivers in practical benchmarks. The preferences
among all unavoidable slivers is as follows. An embedded sliver
is better than an edge sliver; an edge sliver with a shorter total
exposed boundary length is better. These preferences are incor-
porated in our algorithm.

The edge slivers in ex02 are all unavoidable, which is related
to the benchmark itself. For other two realistic benchmarks
ex05 and ex12, the edge sliver number is very small. Due to
confidentiality reason, we do not show the snapshots of the par-
tition results from these 3 industry examples (ex02, ex05, and
ex12). Their result statistics can be found in Table II.

Fig. 1. Partition results on two simple benchmarks. Figure (a) is for “p3” and
(b) is for “p5”.

VII. CONCLUSIONS

This paper presents an efficient Steiner tree based approach
for rectangular polygon partitioning. We solve the traditional
polygon partitioning problem as a variant Steiner minimal
tree: minimal partition tree (MPT). The equivalence between

the MPT and the minimum cut length rectangular partition is
proved. The properties of MPT are analyzed and utilized to re-
duce the size of the corresponding search space. Based on the-
oretical and practical analysis a generic algorithm and a linear
time heuristic algorithm are proposed to construct the MPT. The
experimental results clearly demonstrate the very high quality
of the partitioned results. In future work we plan to extend this
algorithm to handle non-rectilinear polygons as well.

REFERENCES

[1] A. B. Kahng and G. Robins. A new class of iterative Steiner
tree heuristics with good performance. IEEE Transactions on
Computer-Aided Design, 11:893–902, 1992.

[2] J. Ho, G. Vijayan, and C. K. Wong. New algorithms for the rec-
tilinear Steiner tree problem. IEEE Transactions on Computer-
Aided Design, 9:185–193, 1990.

[3] Hai Zhou. Efficient Steiner tree construction based on span-
ning graphs. IEEE Transactions on Computer-Aided Design,
23(5):704–710, 2004.

[4] Chris C. N. Chu. FLUTE: Fast lookup table based wirelength
estimation technique. In International Conference on Computer-
Aided Design, pages 696–701, 2004.

[5] T. Asano and H. Imai. Partitioning a polygonal region into trape-
zoids. Journal of ACM, 33:290–312, 1986.

[6] T. Ohtsuki. Minimum dissection of rectilinear regions. In Proc.
ISCS, pages 1210–1213, 1982.

[7] J. O’Rourke, I. Pashchenko, and G. Tewari. Partitioning orthogo-
nal polygons into fat rectangles. In Proc. of 13th Canadian Conf.
on Comp. Geom., pages 133–136, 2001.

[8] P. D. Buck M. Bloecker, R. Gladhill and etc. Metrics to assess
fracture quality for variable shaped beam lithography. In proc.
SPIE international society of optical engineering, volume 6349,
2006.

[9] A. Lingas, R. Pinter, R. Rivest, and A. Shamir. Minimum edge
length partitioning of rectilinear polygons. In Proc. 20th Allerton
Conf. on Communication, Control, and Computing, pages 53–63,
1982.

[10] Ding-Zhu Du and Ker-I Ko. Chapter 7: Adaptive partition. In
Design and Analysis of Approximation Algorithms, 2002.

[11] M. Hanan. On Steiner’s problem with rectilinear distance. SIAM
Journal on Applied Mathematics, 14:255–265, 1966.

[12] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree prob-
lem is NP-complete. SIAM Journal on Applied Mathematics,
32:826–834, 1977.

[13] Gelsey A. and Smith D. A search space toolkit. In Proceeding of
11th Conference on Artificial Intelligence for Applications, pages
117–123, 1995.

[14] L.J. Guibas and J. Stolfi. On computing all northeast near-
est neighbors in the l1 metric. Information Processing Letters,
17:219–223, 1983.

4C-3

363

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

