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Abstract 

Phase shifting mask (PSM) is a promising resolution enhancement 
technique, which is used in the deep sub-wavelength lithography of 
the VLSI fabrication process. However, applying the PSM 
technique requires the layout to be free of phase conflicts. In this 
paper, we present a mixed integer linear programming (MILP) 
based layout modification algorithm which solves the phase 
conflict problem by wire spreading. Unlike existing layout 
modification methods which first solve the phase conflict problem 
by removing edges from the layout-associated conflict graphs and 
then try to revise the layout to match the resultant conflict graphs, 
our algorithm simultaneously considers the phase conflict problem 
and the feasibility of modifying the layout. The experimental 
results indicate that without increasing the chip size, the phase 
conflict problem can be well tackled with minimal perturbation to 
the layout. 

I. Introduction 
Optical lithography has been a critical step in the VLSI fabrication 
process. As the pitches of leading-edge products scale down, phase 
shifting mask (PSM) and immersion lithography are viewed as 
potential solutions to carry the 193nm lithography beyond 65nm 
node. The key of immersion lithography lies on high-index fluids 
which increase the numerical apertures of the lithography system. 
Nevertheless, ASML and Nikon recently announced that the 
numerical apertures had essentially reached their limit for water-
based immersion lithography [1]. In the 45nm technology node, the 
pitch of metal 1 (M1) is reduced to 90nm, which necessitates the 
incorporation of immersion lithography and strong PSM techniques 
such as alternating PSM (altPSM).  

Assume that the minimum spacing which can be resolved by 
applying conventional mask is �. Beyond this spacing, strong 
constructive diffraction effect interferes the imaging of critical 
features. Applying altPSM extends the limit of resolution to � 
(=�/2) by destructive interference. However, this resolution 
improvement can be achieved only if the apertures of two adjacent 
critical features are assigned to opposite phases. Although altPSM 
shows great potential in resolution enhancement, a layout must be 
compliant to the phase assignment constraint.  ����� 	 shows a 
layout which cannot satisfy the phase assignment constraint. Since 
spacing between any two of the three rectangular wire segments in 
����� 	 is critical, any two of these features must be in opposite 

phases. However, no matter what phase we assign to the bottom 
feature, it will be the same as one of the upper two features. Thus, 
this layout has the phase conflict problem.  

Masks can be categorized into dark field masks and bright field 
masks. The dark field masks are mainly used for metal layers, and 
the bright field masks are usually used for poly layers.  Targeting 
on the dark field altPSM, McCullen reported routing restrictions 
that enable the generation of phase-correct layout [2]. Berman 
���. 
[3] proposed a graph based algorithm for solving the phase conflict 
problem. To obtain altPSM compliant layouts, conflict graphs are 
constructed according to given layouts, and then a minimum-
weight set of edges is removed from each graph to ensure the 
resultant graph 2-colorable. The edge deletions in the conflict 
graphs are accomplished by changing the placement of the features. 
Although their algorithm is efficient, it is hard to assign edge 
weights since we cannot compute how far each layout object needs 
to be moved before replacement is done. Moreover, this approach 
may induce area overhead. 

To handle the phase conflict problem for bright field masks, Cao 
��
�. proposed a Boolean satisfiability based method to generate PSM 
compliant and composiable cell libraries [4]. Although their 
algorithm considered the phase conflict problem within and 
between library cells, it does not consider phase conflicts among 
interconnections. In addition, the areas of resultant library cells 
increase. Chiang 
���. proposed a layout correction algorithm for 
standard-cell layouts [5]. The proposed algorithm targets on bright 
field AAPSM (alternating aperture PSM) for the poly layer. It 
inserts end-to-end spaces into layouts to solve the phase conflict 
problem. Although it completely eliminates phase conflicts in a 
given layout, unfortunately it also induces area increasing.  

Since the pitch of critical metal layers continues to scale down, it 
becomes urgent to find a solution to solve the phase conflict 
problem for critical metal layers. In addition, the advanced VLSI 
technology adopts the dual damascene (DD) process flow to 
accomplish the copper metallization. Therefore, in this paper, we 
focus on the dark field altPSM which pertains to the DD process. 
Although [3] has presented an efficient algorithm to remove phase 
conflicts, unfortunately the algorithm not only induces area 
overhead but also changes the placement, which is costly from the 
viewpoint of a physical design flow. To cope with these drawbacks, 
we propose a new layout modification algorithm to solve the phase 
conflict problem. Our algorithm uses the wire spreading technique 
to adjust the wire segment positions on the critical metal layers 
within the predefined die size. In addition, to effectively reduce the 
perturbation to a layout, our algorithm tries to reduce phase 
conflicts as many as possible and to minimize the total amount of 
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wire segment movement. Our algorithm is designed based on 
mixed integer linear programming (MILP), and is applicable to 
both standard-cell and custom layouts. The MILP based algorithm 
is flexible enough to take other practical issues, such as the lengths 
of critical nets, into consideration as well. Different from existing 
works which first solve the phase conflict problem by removing 
edges from the layout-associated conflict graphs to make the 
resultant graphs 2-colorable and then try to revise the layout to 
match the resultant conflict graphs, our algorithm ���
��� fixes the 
phase conflict problem through wire spreading while at the same 
time minimizing the total amount of wire segment movement. 
Compared with the number of edges deleted from conflict graphs, 
the total amount of wire segment movement is a more direct metric 
to reflect the cost for revising a layout. Furthermore, the recently 
remarkable improvement on linear programming solvers [6] has 
made our algorithm become competitive, and the experimental 
results well support the effectiveness of our algorithm.  

The rest of this paper is organized as follows. In Section II, we 
describe the preliminaries and our strategy to solve the phase 
conflict problem using wire spreading. Section III describes our 
algorithm. Section IV provides the experimental results which 
demonstrate the effectiveness of our approach. Finally, this paper 
ends with the conclusions in Section V. 

 

�����	 A layout which has the phase conflict problem. 

II. Preliminar ies and Problem Formulation 
A. Preliminaries  
The phase assignment of wire segments on a metal layer can be 
done by coloring the corresponding conflict graph with two colors. 
In the graph each node represents a wire segment. If the spacing 
between a pair of adjacent wire segments falls in [�, �], the two 
wire segments must be assigned to opposite phases and we create 
an edge between their corresponding nodes. The layout is said to 
be ������ �������� if and only if all associated conflict graphs 
are 2-colorable. If two nodes connected by an edge have the same 
color, we say they incur a ����
��������.  

For simplicity and clarity, we assume all wire segments are 
rectangles1. The construction of a conflict graph is described as 
follows. First, we bloat each wire segment by the distance �. Next, 
we apply the line sweeping algorithm to check if two bloated 
regions intersect or not. Then, the edges are constructed between 
pairs of nodes whose corresponding bloated segments intersect. 
However, according to our empirical study, we observed that if a 
wire segment is placed at the lower-left or lower-right position of 
another wire segment and their bloated regions intersect, the phases 
of these two wire segments can be identical without causing 
unresolvable aerial image. To demonstrate this observation, we use 
a layout with four wire segments �, �, � and � as shown in �����
�(�). The dashed rectangles show their bloated regions, and the 
shaded area highlights the bloated region of �. The four red solid 
lines and two red dashed lines are the edges of the conflict graph. 
����� �(�) shows the simulated aerial image of the four wire 
segments as well as their phases. The simulation is performed by 
Silvaco Athena [7], where the wavelength and NA are 193nm and 
0.85, respectively, and the wire width and spacing are both 90nm. 

                                                                 
1 In general, wires can be rectilinear. However, we can always slice any 

complex rectilinear polygon into a set of rectangular segments and 

enforce the phase consistency among these resultant segments.  

From the result, we can see that although the bloated regions of � 
(the upper-left wire segment) and � (the lower-right wire segment) 
overlap, no image bridging occurs between them and therefore they 
both can be assigned to the same phase. As a result, we can remove 
the edge between their corresponding nodes from the conflict graph 
(i.e., the red dashed edge connecting � and � in ������ (a) can be 
removed). The same observation applies to ��(the upper-right wire 
segment) and � (the lower-left wire segment) as well, and 
therefore the edge (�, �) in ����� � (a) can be removed. By 
removing these “crossing” edges, we can guarantee the planarity of 
the conflict graph. Throughout the rest of this paper, we will 
assume conflict graphs are all planar.  

It is not hard to see that a metal layer is altPSM compliant if and 
only if its conflict graph does not have any odd face2. On the other 
hand, the minimum number of phase conflicts among all possible 
phase assignment solutions of a metal layer is bounded by half the 
number of the odd faces in the corresponding conflict graph, which 
can be derived from [8]. Therefore, we use the number of odd faces 
as a metric to measure the amount of phase conflicts.  

In this paper, we use wire spreading to remove phase conflicts 
among wire segments. A proper wire spreading solution induces 
edge deletion to remove odd faces of a conflict graph. Thus, our 
goal is to use the wire spreading technique to reduce the number of 
odd faces as many as possible. For an easier presentation, we only 
focus on wire spreading along the vertical direction throughout the 
rest of this paper, unless stated otherwise. In order to maintain the 
correct circuit functionality and avoid over distortion for a given 
layout, the following constraints must be satisfied after wire 
spreading: 

1. Die region constraint:  
Since the dimensions of a die have been specified in the very 
beginning of a physical design flow, it is costly to fix phase 
conflicts by relaxing the die size. Thus, all the wire segments 
must locate within the original die region. 

2. Fixed pin constraint:  
Since we do not alter the placement results, the I/O pins of 
cells or hard macros are thought to be immovable. If one end 
of a wire segment connects with an immovable pin, then the 
coordinate of this end must be left unchanged.    

3. Connection constraint:   
If wire segments in different layers are connected through vias, 
then these connections must be maintained.   

4. Ver tical order  constraint: 
To ensure that routing patterns will not be drastically changed, 
if the horizontal spans of two wire segments in the same layer 
overlap, then their relative positions in the vertical direction 
must be held.    

5. Minimum spacing constraint:  
The spacing between any two wire segments cannot be 
smaller than minimum spacing �. 

6. Maximum movement constraint 
        Each wire segment can be moved only within a user defined 

range. 

Besides, it is favorable to size down the conflict graphs and not to 
over modify the original layout. Therefore, the following constraint 
should also be satisfied after wire spreading: 

 

                                                                 
2 For any face in a planar graph, it is said to be an odd face if the number of 

edges along the face is odd; otherwise it is said to be an even face. 

4C-4

365



 

����� � (a) The conflict graph of four wire segments. (b) The 
simulated aerial image.   

7. Graph simplicity constraint 
If the distance between two wire segments is longer than �, 
then this spatial relation should be kept in the revised layout. 
Otherwise, it will introduce a new edge in the conflict graph. 
This constraint ensures not to add edges into conflict graphs. 

A wire spreading solution is said to be �
����
 if it meets the above 
seven constraints. 

B. Problem Formulation 
The problem of applying wire spreading to remove phase conflicts 
is stated as follows:   

Given a layout which contains � metal layers, we first construct a 
conflict graph for each of the � layers. The problem asks for 
finding a new arrangement for the wire segments lying in each of 
the � layers such that the sum of the numbers of odd faces of the 
resultant conflict graphs is minimized and the total amount of wire 
segment movement is also minimized. In addition, the wire 
spreading solution must satisfy all the constraints stated in Section 
II.A. 

To reduce the number of odd faces in a conflict graph, we need to 
delete edges from the graph. Each edge in a conflict graph can be 
exactly categorized into one of the following four types: 

(1) Shared by two odd faces: If the edge is deleted, it will merge 
two odd faces into one even face and therefore the number of 
odd faces can be reduced by two. 

(2)  Shared by two even faces: If the edge is deleted, it will merge 
two even faces into one even face and therefore the number of 
odd faces will be unchanged. 

(3) Shared by one odd face and one even face: If the edge is 
deleted, it will merge the two faces into one odd face and 
therefore the number of odd faces will be unchanged. 

(4) Not shared by two faces: If the edge is deleted, it does not 
merge any face and therefore the number of odd faces will be 
unchanged. 

From the above observations, we have the following lemma.  

Lemma�1: For each edge deletion, the number of odd faces can be 
reduced if and only if the deleted edge is shared by two odd faces.   

Although merging an odd face with an even face by deleting one of 
their common edges does not immediately reduce the number of 
odd faces, it makes the odd face grow. After several iterations, this 
growing odd face may directly abut with another odd face and then 
we can delete one of their common edges to merge them into an 
even face. The series of mergings can be regarded as pairing two 
odd faces through a series of even faces. �����  shows an example 
of how to pair two odd faces which are not directly abutted. 
Initially, two odd faces �	 and �  are not abutted as seen in (a). By 

sequentially removing edges 7 and 8 from the graph, �	, �� and �  
gradually merge into an even face �! which is shown in (�). In this 
paper, we aim to reduce the number of odd faces by pairing odd 
faces (which may or may not be directly abutted at the beginning). 
In the following, we define a special edge set called �
�������
�.     

Definition 1 (Merging set): Given a conflict graph, a merging set 
is a set of edges whose deletion from the graph can merge two odd 
faces into one even face. For a pair of odd faces, there may exist 
more than one merging set. A merging set is said to be ������ if 
there exists no edge 
 in the set such that after deleting the edge 
, 
the resultant set is still a merging set.  

According to the above definition and Lemma 1, deleting all edges 
in a minimal merging set from a conflict graph reduces the number 
of odd faces by 2. It is also worth noting that a set of odd face 
pairings may not always reduce the number of odd faces by twice 
the number of pairings, or may not be always achievable by wire 
spreading. We use ����� "(�) and ����� "(�) to explain these two 
cases, respectively. In �����"(�), we have the merging sets {(#, $)} 
and {($, %)} for odd face pairs (�, �) and (�, �), respectively. 
Deleting edge (#, $) or edge ($, %) alone merges faces � and �, or 
� and � into one even face. Intuitively, deleting two merging sets 
simultaneously implies to eliminate two pairs of odd faces, and the 
number of odd faces should be reduced by four. However, because 
the two odd face pairs share a common face �, simultaneously 
deleting (#, $) and ($, %) merely merges the three odd faces into 
one odd face and thus the number of odd faces is reduced only by 
two. �����"(�) shows an example where simultaneously performing 
two odd face pairings may be infeasible. According to the conflict 
graph shown in �����"(�), both odd face pairs in the upper and the 
lower parts can be merged individually by deleting edges (�, &) and 
(&, �), respectively. However, the wire segments � and � are 
connected with immovable pins indicated by black squares, and 
therefore � and � cannot be moved through wire spreading. Now, if 
the vertical moving range for & (i.e., the range between the bottom 
boundary of � and the top boundary of �) is not large enough to 
move & to a location such that both edges (�, &) and (&, �) can be 
removed from the conflict graph, then simultaneously performing 
two odd face pairings in this graph becomes impossible.   

 

�����  � Iteratively removing the edges which are shared by odd 
faces and even faces may eventually eliminate two odd faces which 
are not abutted.  

 

����� "� (a) A case which overestimates the number of eliminated 
odd faces. (b) A layout infeasible case. 
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We next define another special edge set called �����������
�. 

Definition 2 (Orthogonal set): Given the conflict graphs 
corresponding to a layout, an orthogonal set is a union of a 
collection of minimal merging sets and satisfies the following two 
conditions: (1) In this set, edges belonging to different minimal 
merging sets do not share any common face. (2) There exists at 
least a feasible wire spreading solution such that all the edges in 
this set are no longer in the new conflict graphs. The cardinality of 
an orthogonal set is defined to be the number of merging sets 
involved in the set, which is also equal to half the amount of 
eliminated odd faces after removing from the conflict graphs all the 
edges in the set.  

Definition 3 (Deviation): The deviation induced by an orthogonal 
set is the minimum total amount of wire segment movement among 
all feasible wire spreading solutions corresponding to this 
orthogonal set.     

In this paper, instead of solving the general wire spreading problem 
as described at the beginning of this subsection, we only focus on�
��
� �#��'��
�� ���� ���
� �������� ����
� which asks to find an 
orthogonal set with maximum cardinality and a corresponding wire 
spreading solution with the minimum deviation.   

III. Algor ithm 
In this section, we first introduce another special edge set called 
��������
� �
��$�� �
��and show the relation between a candidate 
removal set and an orthogonal set. We then derive an MILP model 
to find a candidate removal set (and thus an orthogonal set as well) 
and a corresponding wire spreading solution such that the total 
cardinality and the total deviation are both optimized.   

A. Candidate Removal Set 
Candidate removal set is defined as follows: 

Definition 4 (Candidate removal set): Assume that we are given � 

conflict graphs (�=()�, *�)’s, 1 �, corresponding to a �-layer 

layout. Let (=(), *), where )=)	 )�… )�, and 

*=*	 *�… *�.  A candidate removal set *+ is a subset of * such 

that there exists at least a feasible wire spreading solution to 
remove all the edges in *+�from (. In addition, *+ must satisfy the 
following constraints: 

(1) For every odd face ,� in (, either there is exactly one edge in 
*+ which is also in ,�, or no edge in *+ is also in ,�.   

(2) For every even face *� in (, either there are exactly two 
edges in *+ which are also in *�, or no edge in *+ is also in 
*�. � 

In the remaining subsection, we step-by-step explain the relation 
between a candidate removal set and an orthogonal set. We first 
have the following lemma which can be proved based on Lemma 1, 
Definition 1 and the concept of graph duality. 

Lemma 2:�Given a conflict graph (� and its dual graph ��, a set � 
of edges is a minimal merging set in (� if and only if the set �- of 
the dual edges of � forms a path in �� such that each of the two 
end nodes of the path corresponds to an odd face in (� and each of 
the other nodes in the path corresponds to an even face in (�.  

We use �����! to facilitate the understanding of the above lemma. 
�����! (�) depicts a conflict graph which includes 8 nodes, 11 edges 
and 5 faces. The faces are denoted by �	 to �!, where �	 and �� are 
the only two odd faces. A minimal merging set � to merge �	 and 
�� into an even face consists of the edges ", . and 		. ����� !(�) 
illustrates the dual graph. The nodes /	 to /! are the corresponding 
nodes of faces �	 to �!, respectively. Same tag number is used for 
each edge and its dual edge, except a superscript of star mark is 

used to distinguish a dual-graph edge and a conflict-graph edge. 
The edges "-, .- and 		- which are dual edges of � form a path /	-
/ -/"-/� in the dual graph. The two end nodes /	 and /� 
correspond to the odd faces �	 and �� while the other nodes /  and 
/" correspond to the even faces �3 and �".   

Lemma 3: If two minimal merging sets of a conflict graph are 
involved in the same orthogonal set, their corresponding paths in 
the dual graph are node-disjoint. 

Proof: By Lemma 2, the dual edges of each minimal merging set 
form a path. By Definition 2, the two minimal merging sets do not 
share any common face. Thus, the corresponding paths of the two 

merging sets are node-disjoint in the dual graph.   

Theorem 1 (Orthogonal set inclusion theorem): Any candidate 
removal set contains an orthogonal set.  

Proof: According to the concept of graph duality and the 
constraints (1) and (2) imposed on a candidate removal set, the dual 
edges of a candidate removal set *+ can only compose two kinds of 
connected components - paths and cycles. We can further uniquely 
decompose *+ into two disjoint edge sets � and �, and use �- and 
�- to denote their dual edge sets, respectively, where �- is 
composed of a set of node-disjoint paths and �- is composed of a 
set of cycles. Moreover, the two end nodes of each path in �- 
correspond to odd faces in ( and the other nodes in the path 
correspond to even faces in (. Therefore, according to Lemma 2 
and Lemma 3, � is a collection of minimal merging sets which do 
not share common faces in (. Besides, if � is a feasible wire 
spreading solution for *+, then � is also a feasible wire spreading 
solution for �, according to Definitions 2 and 4. As a result, � is an 

orthogonal set.                                                                                

It is not hard to see that in the proof of Theorem 1, the number of 
paths in �- is half the number of odd-degree nodes in �-. Thus, the 
cardinality of � is half the number of odd-degree nodes in �-��For 
convenience, we define the 
&#�$�
������������� of the candidate 
removal set *+ to be the number of paths in �-. Based on Theorem 
1, the multi-layer odd face pairing problem will now be tackled by 
solving the following problem. 

Candidate removal set problem: Given an �-layer layout, this 
problem asks for finding a candidate removal set and a 
corresponding feasible wire spreading solution such that the 
equivalent cardinality of the candidate removal set is maximized 
and the induced deviation is minimized. 

B. An MILP-Based Wire Spreading Algorithm 
0��
�	 lists the notations and the definitions of the variables to be 
used in the description of our MILP based algorithm. First, we 
construct a conflict graph (� for the �th layer of the layout. Each 
node /�12 is represented by a five tulpe (341�12, �41�12, 3	1�12, �	1�12, %�12) 
which records the geometric information of the wire segment of /�12. 
Then, the candidate removal set problem is formulated as an MILP 
model below. 

 
Fig. 5: An illustration of a conflict graph and its dual graph. 

4C-4

367



Maximize  

subject to:  

�2�2� �2��2�%� 1 ,1:, ,0,,,0  (1)

�2�2� �2��2�5%� 1 ,1:, ,,,,0  (2)

pin fixed a with connects         

 ,1 ,1:, ,

,,0

*

,,0,,0

2�

�2�2�

0
�2��2���

 

(3)

pin fixed a with connects         

 ,1 ,1:, ,

,,1

*

,,1,,1

2�

�2�2�

0
�2��2���

 

(4)

�

2�2�2�

�2��2�
��$
�
������$
�
���

1 ,1:,        

,*

,,0,,0

*

,,0
 

(5)

�

2�2�2�

�2��2�
��$
�
������$
�
���

1 ,1:,        

,*

,,1,,1

*

,,1
 

(6)

6�2��

�6�2�

00�6
�2��62���

,1,0,,01

,1,0,,0

 connects  ,1        

 ,1 ,11:,, ,
 

(7)

  overlap  and  of regions bloated        

  theof spans horizontal  the, ,        

 ,1 ,1: ,, ,

,,

,,1,,0

,,1,,,,0

6�2�

6�2��

�6�6�2�2�

//
���62

�2��62���%%�
 

(8)

segment.  wirehorizotal a is         

,1 ,1:, , 

,

,,1,,0

2�

�2�2�

/
�2��2���

 

 (9)

   , ,        

 ,1 ,1: , , ,

*

,,1

*

,,0,,

,,1,,,,0

6�2��62��

�6�6�2�2�

��(*�62

�2��62���%%�
 

(10)

*

,,1

*

,,0,,

,,,,1,,,,0

 ,  ,  ,1        

 ,1:,, ,

6�2��62���

62�6�6�2�2�

��(*�62�2

��62�
��%%�
 

(11)

�

��

2

��

26
��62�62��

����

��*
�

1 ,1:,         

)face oddan  is  and |(
1

,,,,,,,
 

(12)

�

��

2
��62�

��

26
6�12�

����

��*
�

1 ,1:,         

face)even an  is  and   |(2
1

,,,,
.

,,
 

(13)

�2�2�2�2� �2��2��� 1 ,1:,  ,0 and ,0 ,,0,,0

*

,,0,,0
(14)

�2�2�2�2� �2��2��� 1 ,1:,  ,0 and ,0 ,,0

*

,,0,,0,,0
(15)

�2�2�2�2� �2��2��� 1 ,1:,  ,0 and ,0 ,,1,,1

*

,,1,,1
(16)

�2�2�2�2� �2��2��� 1 ,1:, ,0 and ,0 ,,1

*

,,1,,1,,1  (17)

�

2�2�2�2�2�2�2�2�

�2��2�
7�3�3

1 ,1:,        

,,,,,,,, ,,0,,0,,1,,0,,1,,1,,0,,0
 

(18)

�62�

��62�

(*
�62�2��62�


,,

,,

        

,  ,1 ,1:,, ,}1,0{
 

(19)

�� ����� 1 ,1:,  },1,0{,  (20)

The objective function can be decomposed into two terms. The first 
term is the gain function which is equal to the reduction of number 
of odd faces; i.e. twice the cardinality of a candidate removal set. 
The second term is the penalty function which is equal to the 
deviation induced by revising the layout. A constant  is introduced 
to provide a tradeoff between these two terms. Constraints (1) and 
(2) require wire segments to locate within a fixed die area. 
Constraints (3) and (4) bind the ends of wire segments with fixed 
pins. Constraints (5) and (6) confine wire segments to move within 
the given allowable range. Constraint (7) maintains the 

connectivity among wire segments. To satisfy the minimum 
spacing rule of altPSM and to keep the relative vertical order of 
wire segments, we have constraint (8). To maintain the orientations 
of horizontal wire segments, we have constraint (9). To preserve 
the graph simplicity constraint, we have constraint (10). In 
constraint (11), we use a Boolean variable 
�1216 to determine 
whether edge *�1216 is removed or not. If 
�1216 is assigned to 1, *�1216  is 
removed from the corresponding conflict graph. As a consequence, 
the spacing between wire segments /�12 and /�16 must be greater 
than �. To satisfy the constraints imposed on a candidate removal 
set, we have constraints (12) and (13). To calculate the deviation of 
both ends of a wire segment, we apply a relaxation technique. With 
constraints (14) and (15), the sum of 41�12 and 41�12 is exactly the 
absolute value of difference between �41�12 and �-41�12, when we 
minimize 41�12 and 41�12. Similar principles are applied to calculate 
the deviation of 0	1�12. Thus we have constraints (16) and (17). 
Finally, the value ranges of all variables are given by constraints 
(18), (19) and (20).  

In this MILP model, we introduce six real variables for each node, 
one binary variable for each edge and one binary variable for each 
face. Assume that the number of nodes, edges and faces are $, 
 
and �, respectively. The total number of variables is 6$+
+�. In the 
given planar graphs, both 
 and � are of the same order as $. Thus, 
the number of variables is ,($). Obviously we can see that, except 
constraint (8) whose number grows with $2, the number of the rest 
of the constraints linearly grows with $, 
 or �. Therefore, the 
number of constraints is ,($2). 

Table 1: Var iables and notations used in our  formulation. 

5 The height of the die region 

� The minimum spacing without applying altPSM 

� The achievable minimum spacing of altPSM   

��$
�
�� Maximum allowable vertical movement of wire 

segments  

�� The number of layers  

(� The conflict graph of the �th layer 

�� The number of nodes in (�  

�� The number of faces in (� 

/�12 The 2th node in the conflict graph (�  

*�1216 The edge between /�12 and /�16 

041�12 If /�12 is a horizontal wire segment, 041�12�is the left end 

of the center line of /�12. Otherwise,� 041�12� is the lower 

end of the center line of /�12.  

0	1�12 If /�12 is a horizontal wire segment, 041�12�is the right end 

of the center line of /�12. Otherwise,� 041�12� is the upper 

end of the center line of /�12. 


�1216 A Boolean variable to control the deletion of edge 

*�1216 . If 
�1216 is 1, edge *�1216 is removed from (�� 

��1 A Boolean variable to determine the number of deleted 

edge(s) of face ��1. If ��1 is an odd face, we remove 

one edge from ��1 when ��1 is 1. If ��1 is an even face, 

we remove two edges from ��1 when ��1 is 1. If ��1 is 0, 

no edge is removed from from���1 . 

(341�12�1�41�12) The coordinate of 041�12 after wire spreading 

(3	1�12�1�	1�12) The coordinate of 0	1�12 after wire spreading 

(3-41�12�1�-41�12) The original coordinate of 041�12  

(3-	1�12�1�-	1�12) The original coordinate of 0	1�12  

�%�12 The half width of wire segment /�12 

41�12, 	1�12,

41�12, 	1�12

Four relaxation real variables to calculate the deviation 

of both ends of wire segment /�12 

�

�

��

2
2�2�2�2�

�

�

��


�� ��

1 1
,,1,,0,,1,,0

1 1
,, )()face oddan  is (
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IV. Exper imental Results 
Our algorithm was implemented in C++ and run on an Intel 
1.6GHz Linux machine. We used CPLEX [9] to solve the MILP 
problems. The values of � and � are 160nm and 80nm, respectively. 
We adopted randomly generated layouts with the same minimum 
spacing and wire width to test the robustness and stability of our 
algorithm. All the layouts use 4 metal layers. 0��
� � shows the 
statistics of each layout. The names of layouts are listed in the first 
column. The 8���
,� 8
��
� and� 8���9���
� respectively show the 
numbers of nodes, edges and odd faces of the conflict graphs 
before wire spreading. The number of nets for each layout is 
indicated in the column #�
�. For general consideration, we assume 
that some pins are immovable.  

The experimental results are summarized in 0��
�  . Besides our 
algorithm, we also present the results of two other algorithms (the 
adjacent pairing algorithm and the aggressive algorithm) for 
comparison. The adjacent pairing algorithm removes the odd faces 
by deleting edges which are shared by two abutted odd faces, and 
the aggressive algorithm eliminates odd faces as many as possible 
without considering the deviation. Both of these two algorithms are 
derived from our algorithm by either modifying some constraints 
or the objective function. For each layout, each algorithm 
performed one run of vertical wire spreading followed by 
horizontal wire spreading. The columns 8���, �
$������, :���� 
and �#����
 in 0��
�  show the number of remaining odd faces, 
the induced deviation (nm), the reduction rate of odd faces, and the 
run time (sec), respectively. To make comparisons among these 
algorithms, we normalize the value of each column with respect to 
the results of our algorithm. The adjacent pairing algorithm 
intuitively solves the phase conflict problem using the observation 
of Lemma 1. Although it is the fastest algorithm among the three 
algorithms, the solution space is only a subset of the other two 
algorithms. Many odd faces which are surrounded by even faces 
have no chance to merge with other odd faces. Therefore, there are 

still many odd faces left after wire spreading. On the contrary, the 
aggressive algorithm completely eliminates all odd faces and the 
runtime is shorter than our algorithm. However, it induces a large 
amount of deviation, which may impact the circuit timing. In order 
to emphasize the importance of deviation, we assigned � a 
relatively small value in our algorithm.   The results indicate that 
our algorithm shows a good tradeoff among runtime, deviation, and 
completion rate of odd face elimination. Our completion rate is 
only slightly lower than the aggressive algorithm, and the deviation 
is significantly smaller than the aggressive algorithm. In addition, 
the experimental results demonstrate that the runtime of our MILP 
algorithm is reasonable.  

Table 2: Benchmark layout parameters. 

 

V. Conclusion 
In this paper, we present an MILP-based wire spreading algorithm 
to solve the phase conflict problem with minimal perturbation to 
the given layout. Different from the previous works which ask for 
finding a minimum weighted edge set or a minimal edge set whose 
removal makes the conflict graph 2-colorable, our algorithm use 
the exact deviation of wire segments as cost. The experimental 
results show the effectiveness of our algorithm; less than 2% of 
odd faces are left in the modified layout and no area increase is 
needed for the modification. In addition, the modification will not 
alter the lengths of the critical nets, if we add linear constraints to 
control the critical wire lengths. The flexible MILP model also 
allows integrating with a variety of practical issues such as 
redundant via insertion [10].  
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 #node #edge #odd_face #net 

C1 1009 436 14 254 

C2 4984 2088 58 1702 

C3 10974 6668 330 3514 

C4 19642 12578 668 6175 

C5 57182 36373 1908 17787 

Table 3: The exper imental results of layout modification. 

Our  algor ithm Adjacent pair ing algor ithm Aggressive algor ithm 
 

#rof deviation %comp runtime #rof deviation %comp runtime #rof deviation %comp runtime

C1 0 629 100% 0.2 0 629 100% 0.2 0 677424 100% 0.2 

C2 0 3667 100% 1.8 0 3503 100% 2.9 0 3504300 100% 1.3 

C3 2 18691 99.39% 9.1 48 13599 85.45% 8.2 0 13756230 100% 8.6 

C4 8 33967 98.88% 24.0 102 23339 84.73% 9.9 0 23933200 100% 22.1 

C5 30 96535 98.43% 297.7 324 70711 83.02% 131.4 0 69980000 100% 140.8 

normalized normalized normalized 

#rof deviation %comp runtime #rof deviation %comp runtime #rof deviation %comp runtime 

1 1 1 1 11.85 0.73 0.85 0.46 0 728.7 1.01 0.52 
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