
Exploring Adjacency in Floorplanning∗
Jia Wang

Electrical and Computer Engineering
Illinois Institute of Technology

Chicago, IL, USA

Hai Zhou
Fudan University, China

Northwestern University, USA

Abstract— This paper describes a new floorplanning approach called
Constrained Adjacency Graph (CAG) that helps exploring adjacency in
floorplans. CAG extends the previous adjacency graph approaches by
adding explicit adjacency constraints to the graph edges. After sufficient
and necessary conditions of CAG are developed based on dissected
floorplans, CAG is extended to handle general floorplans in order to
improve area without changing the adjacency relations dramatically.
These characteristics are currently utilized in a randomized greedy
improvement heuristic for wire length optimization. The results show
that better floorplans are found with much less running time for
problems with 100 to 300 modules in comparison to a simulated
annealing floorplanner based on sequence pairs.

I. INTRODUCTION

Floorplanning is an important technique in VLSI circuit design
since it determines the locations of the modules in the circuit on a
chip. In its original meaning [1], it focuses on realizing adjacency
relations for soft modules. Grason graphs [2] and rectangular
dualization techniques [3], [4], [5] were developed to address
the requirement for adjacency. The floorplanning flow commonly
started with the structure graph [5], where the edges were the
desired adjacency relations. Then, the graph was planarized and
properly triangulated such that the resulting graph has a rectangular
dual. Algorithms with linear complexity were developed [4] to
identify the graphs that have rectangular duals and to construct
the rectangular duals. Several perturbations were designed in the
work [5] such that the adjacency graph could be used in iterative
algorithms like simulated annealing. However, those algorithms
were still complicated and not widely used today.

Then, floorplan representations emphasizing more on placement,
which focuses on placing hard modules without overlap, than
floorplanning [1], [6] were developed. Most of the time, simulated
annealing is used to improve the floorplan according to a cost func-
tion via randomized perturbations. The drawback was that although
searching for a floorplan with the least white-space was efficient by
using area as the cost function, including the interconnects in the
cost function may result in large time overheads in evaluating the
cost function and the overheads were worsen with the increasing of
the problem sizes.

So, floorplanning with adjacency relations is still preferable for
connectivity centric methodologies. Returning to the rectangular
dual approaches, despite the complexity involved, several issues
must be addressed before their applications to current floorplanning
problems. The rectangular dual consists of rectangular rooms that
contain modules. In some situations, the requirement of keeping
adjacency relations may result in rooms that are significantly larger
than the modules contained by them, which in turn enlarges the
whitespace in the floorplan. One such case is that when a small
module has several large neighbors, the room containing the small
module should be large enough to realize the adjacency relations.
Another issue is that although modules were thought to be soft
such that they could be fit into rooms, hard modules are common

∗The research was conducted at Northwestern University and supported
in part by NSF under CNS–0613967.

in today’s floorplanning problems with the introduction of hard
Intellectual Property (IP) cores. We propose to allow more freedom
in NOT keeping the adjacency relations to achieve small whitespace.
The intuition behind this is that when the whitespace is small, two
modules are close to each other if there are only a few modules
separating them. The freedom allows us to design perturbations
targeting at separating area and interconnect optimizations: first,
the area optimization will not change the adjacency relations
dramatically such that good relative positions for interconnects are
preserved; second, the overheads of interconnect estimations are
only added to the interconnect optimization.

Besides previous works on adjacency graphs [2], [3], [4], [5],
adjacency relations in floorplans were captured partially in mosaic
floorplan approaches and constraint graph based approaches. In
mosaic floorplan approaches, e.g. Corner Block List [7] and Twin
Binary Sequences (TBS) [8], as the floorplan area is divided into
rectangular rooms, many adjacency relations are captured. However,
since the non-crossing segment of the T-junction may slide [7], the
adjacency relations among the rooms on either side of the crossing
segment are not specified. On the other hand, in constraint graph
based approaches Adjacent Constraint Graph (ACG) [9] and Linear
Constraint Graph (LCG) [10], it was proposed to capture adjacency
by removing redundancies in the constraint graph. However, being a
constraint graph, there are still edges not between adjacent modules.
In this work, we focus on developing a representation based on the
adjacency graph, named Constrained Adjacency Graph (CAG). We
present sufficient and necessary conditions of CAG and a linear
complexity algorithm to construct dissected floorplans (defined in
Section II) from CAGs. After we extend CAG to handle general
floorplans through packing, a “tree-weaving” algorithm and an
iterative packing heuristic are developed by us to improve a CAG
in area without changing the adjacency relations dramatically. The
practical usages of CAG are confirmed by the experiments on
floorplanning problems with 100 to 300 modules in a randomized
greedy improvement heuristic, in comparison to a simulated anneal-
ing floorplanner based on sequence pairs [11].

The rest of this paper is organized as follows. In Section II, CAG
is defined and the sufficient and necessary conditions are presented.
Then the algorithm to construct dissected floorplans from CAGs
are described in Section III. Packing based whitespace reduction
techniques including the “tree-weaving” algorithm and the iterative
packing heuristic are developed in Section IV. After experimental
results are given in Section V, Section VI concludes the paper.

II. CONSTRAINED ADJACENCY GRAPH

A. Definitions

Given a bounding box, we can dissect it into rectangular rooms
by horizontal and vertical segments. There should be no overlap
of the rooms and no empty space outside the rooms. We call
this dissection a dissected floorplan if every room accommodates
exactly one module and there is no degenerated topology where
four rooms share a common point. An adjacency graph whose
vertices represents the rooms can be constructed corresponding to



the dissection: there is one edge connecting two vertices iff the two
rooms are adjacent. The adjacency graph is a planar graph and when
the dissection is a dissected floorplan, all the faces in the adjacency
graph are triangles.

Constrained Adjacency Graph (CAG), as indicated by its name,
extends the adjacency graph corresponding to a dissected floorplan
by adding constraints to its edges. More formally,

Definition 1 (Constraitned Adjacency Graph): Suppose G =
(V, E) is a directed graph with the vertices representing rooms and
the edges representing adjacencies. There are two types of edges:
a vertical edge from b to t means the room t should be touched
from bottom by the room b; a horizontal edge from l to r means
the room r should be touched from left by the room l.

The graph G is a Constrained Adjacency Graph (CAG) iff there
is a dissected floorplan such that there is an edge connecting two
vertices iff the two rooms are adjacent and the edge describes the
adjacency relationship between them.

An example of a dissected floorplan along with its CAG is shown
in Fig. 1.

Fig. 1. A dissected floorplan with 5 rooms along with its CAG. Solid
arrows are vertical adjacency relations and dashed arrows are horizontal
ones.

In comparison to grason graphs [2], CAG does not need to
handle the degenerated topology; comparing to rectangular dual-
ization techniques [3], [4], [5], CAG explicitly adds constraint to
the adjacency relations. These two merits make maintaining and
optimizing CAGs less complicated and details will be given in the
following sections.

B. Sufficient and Necessary Conditions

The necessary conditions for a graph G to be a CAG can be
obtained by inspecting a dissected floorplan. Straightforwardly, a
CAG should be a directed acyclic graph (DAG) and every vertex
in a CAG is reachable from the vertex representing the room at
the bottom-left corner. The other conditions apply to every single
vertex as illustrated in Fig. 2. The detail follows.

Let EV be the set of the vertical edges and EH be the set of
the horizontal edges. The vertical and horizontal subgraphs of G
are defined as GV = (V, EV ) and GH = (V, EH) respectively.
Obviously both GV and GH are directed acyclic graphs (DAG).
A horizontal/vertical path is a path whose edges are all horizon-
tal/vertical ones. Since G is a DAG, every horizontal/vertical path
is simple, i.e., it never passes one vertex more than once.

For an arbitrary vertex v, its top edges are all the vertical edges
leaving it and its top neighbors are the vertices at the end of its top
edges. From dissected floorplans, it is true that if v has at least one
top neighbor, there is a unique horizontal path, denoted by Ptop(v),
containing exactly all the top neighbors. Therefore, the left-most
top neighbor and the right-most top neighbor can be defined as the
starting vertex and the ending vertex of Ptop(v) respectively. The
above definitions can be easily extend to the other three boundaries.
The following lemmas hold for v in a CAG.

Lemma 1 (Neighbor Condition for v):
Suppose Ptop(v) = (v1, v2, . . . , vm). Then vi is the bottom-most

left neighbor of vi+1 and vi+1 is the bottom-most right neighbor

Fig. 2. (a) Neighbor condition for v; (b) (c) Corner condition for v.

of vi for all 1 ≤ i < m. For Pbottom(v), Pleft(v), and Pright(v),
there are similar relations.

Lemma 2 (Corner Condition for v):
The room v’s bottom-left corner is not on the boundary of

the dissected floorplan iff it has both bottom and left neighbors.
Suppose the left-most bottom and the bottom-most left neighbor of
v are b and l respectively. Then either l is the top-most left neighbor
of b or b is the right-most bottom neighbor of l. There are similar
relations for the other three corners.

These conditions are also sufficient for a graph to be a CAG, as
stated in the following theorem.

Theorem 1: A directed graph G = (V, E), whose edges E are
divided into vertical edges EV and horizontal edges EH , is a CAG
iff

1) G is a DAG and there is a vertex such that every vertex is
reachable from it.

2) The neighbor condition holds for every vertex.
3) The corner condition holds for every vertex.
The proof for the necessary conditions is straightforward and so

will be omitted here. The proof for the sufficient part will be given
Section III by constructing dissected floorplans from the directed
graphs satisfying those conditions.

III. DISSECTED FLOORPLAN FROM CAG

When the module sizes, which are also the minimal sizes of the
rooms, are given along with the CAG, we design an O(n) algorithm
to construct a dissected floorplan satisfying all the adjacency
constraints with minimum area as presented below. Since only
the conditions in Theorem 1 are used to derive the algorithm, the
algorithm proves the conditions in Theorem 1 are sufficient.

For a vertex v, suppose that the width of the module to be
accommodated in the room v is v.width and the height is v.height .
Define (v.left , v.bottom) to be the coordinates of the bottom-left
corner of the room v and (v.right , v.top) to be the top-right corner.
Assume (0, 0) is the bottom-left corner of the floorplan and (W, H)
is the top-right corner. The algorithm will determine the coordinates
in the horizontal direction and the ones in the vertical direction
separately. Because of the geometric symmetry, it is enough to focus
on the algorithm H-CAG-Place that determines the coordinates in
the horizontal direction only, i.e., v.left and v.right for all v as
well as W . The algorithm is shown in Fig. 3 and the details follow.

Input: A CAG G.
Output: The v.left and v.right for every v and the width W .
1: Add HeadV .
2: HeadV .left ← 0.
3: Order the vertices by their DFS discovery times of GV from HeadV .
4: For every vertex v except HeadV following the order in 3:
5: Compute v.left according to the cases as shown in Fig. 5.
6: Compute W using (4).
7: Compute all the v.rights using (5).

Fig. 3. The H-CAG-Place algorithm.

First of all, a dummy vertex HeadV and corresponding edges are
added such that HeadV is the bottom neighbor of all the vertices
in G that do not have a bottom neighbor yet. The following lemma
can be proved.

Lemma 3: The neighbor condition for HeadV holds and every
vertex in G is reachable from HeadV through only vertical edges.



Now by performing a depth-first-search (DFS) [12] in GV starting
from HeadV and visiting top neighbors from left to right for each
vertex, the vertices can be sorted in the order of their discovery
times, i.e., the times they are first discovered in the DFS. An
example of a CAG with the dissected floorplan as well as the depth-
first tree with the ordering are shown in Fig. 4. This order is defined
as the V-CAG order. (Similarly the H-CAG order can be defined.)

Fig. 4. (a) A CAG with the dissected floorplan; (b) The depth-first tree
with vertices labeled according to the V-CAG order.

Then, the v.left for each v is determined by dynamic program-
ming following the V-CAG order. The HeadV .left is set to 0 at
the beginning. Since every vertex v except HeadV has a bottom
neighbor, there are three cases for calculating each v.left as shown
in Fig. 5. In the first case, the vertex v does not have a left neighbor.
So the room v should be on the left boundary of the floorplan, i.e.

v.left = 0 (1)

In the second case, the vertex v have both left and bottom neighbors
where the bottom-most left neighbor l of v is the top-most left
neighbor of the left-most bottom neighbor b of v. Now the vertex
v should have the same left boundary as b, i.e.,

v.left = b.left (2)

In the third case, b should be the right-most bottom neighbor of l
because of the corner condition. A series of vertices l1, l2, . . . , lk
can be find such that l1 = l, li+1 is the right-most top neighbor of li
and li is the right-most bottom neighbor of li+1 for all 1 ≤ i < k,
and either lk does not have a top neighbor or its right-most top
neighbor t does not have lk as its right-most bottom neighbor. When
lk does not have a top neighbor, a dummy vertex t with t.left = 0
can be added temporarily to simplify the following procedure. Now,
v.left should be no less than li.left + li.width for all 1 ≤ i ≤ k
since they are on the two sides of a vertical segment. For the vertex
b and t, v.left should be no less than b.left and t.left to satisfy the
T-junctions formed by the vertical segment and the top side of b
and the bottom side of t. So, the v.left in an area optimal dissected
floorplan should be

v.left = max{b.left , max
1≤i≤m

(li.left + li.width), t.left} (3)

The following lemmas can be proved for the validity and the
complexity of the dynamic programming.

Lemma 4: In the V-CAG order, for each Equation (2) and (3),
the vertices appearing at the right hand side come before the vertex
appearing at the left hand side.

Lemma 5: Each vertex v appears at most mtop + 2 times (once
at the left hand side, once as t, and mtop times as b and li) in
Equation (1), (2), and (3) where mtop is the number of the top
neighbors of v.

The next step is to calculate W . This is straight-forward since

W = max
v∈V

(v.left + v.width) (4)

must be true for an area optimal floorplan.

Fig. 5. Three cases for calculating v.left .

Finally, all the right boundaries are determined as follows.

∀v ∈ V, v.right =


r.left if v has a right neighbor r
W if not

(5)

The algorithm called V-CAG-Place that determines the coordi-
nates in the vertical direction can be derived similarly. In summary,
the corresponding minimal area dissected floorplan is constructed
by the H-CAG-Place algorithm and the V-CAG-Place algorithm, as
stated in the following theorem.

Theorem 2: Once the CAG and the minimal room sizes are
given, applying the H-CAG-Place and the V-CAG-Place algorithms
constructs a dissected floorplan with the minimal area satisfying
the adjacency constraints. The algorithms consume O(n) time and
space where n is the number of the rooms.

IV. WHITESPACE REDUCTION VIA PACKING

Rooms could be much larger than the contained modules because
of the requirements on adjacencies. In this sections, we will present
techniques that reduce whitespace without change the adjacency
relations dramatically.

A. Packing of Dissected Floorplans

As shown in Fig. 6, some modules in a dissected floorplan
can be pushed downward since there are vertical vacancies in
the rooms below them. The resulting floorplan is no longer a
dissected floorplan. We call it the V-packing of a dissected floorplan.
Similarly, the H-packing of a dissected floorplan is obtained by
pushing all the modules leftward.

Fig. 6. (a) A dissected floorplan with the vertical subgraph GV ; (b) The
V-packing of the dissected floorplan. Both rooms and modules (gray ones)
are shown here.

Since GV describes the vertical adjacency relations, the above
pushing downward is formulated as the V-CAG-Pack algorithm as
shown in Fig. 7. There is a H-CAG-Pack algorithm as well.

Input: A CAG G.
Output: The v.bottom and v.top for every v. and the height H .
1: Add HeadV .
2: Assign v.height as the edge weight for every vertical edge (u, v).
3: For every vertex v except HeadV :
4: v.bottom ← the longest path length from HeadV to v in GV .
5: v.top ← v.bottom + v.height .
6: H ← maxv∈V,v 6=HeadV

v.top.

Fig. 7. The V-CAG-Pack algorithm.

The V-CAG-Pack algorithm will not generate overlap because in
a dissected floorplan, if there are two rooms whose projections to
the x-axis are overlapped for a segment longer than 0, there is a
vertical path from one of them to the other. This is stated as the



following lemma which includes the horizontal direction for the
H-CAG-Pack algorithm as well.

Lemma 6: For two vertices u and v, if u.left < v.left < u.right
or v.left < u.left < v.right , there is a vertical path from u to v or
one from v to u; if u.bottom < v.bottom < u.top or v.bottom <
u.bottom < v.top, there is a horizontal path from u to v or one
from v to u.

In summary, given a CAG G, the V-packing of the dissected
floorplan, written as VP(G), is obtained by applying the V-CAG-
Pack and the H-CAG-Place algorithm; the H-packing, written as
HP(G), is obtained by applying the H-CAG-Pack and the V-CAG-
Place algorithm.

B. Packed Dissected Floorplans

In the V-packing of a dissected floorplan, since the modules are
not packed along the horizontal direction, there are still possibilities
for large whitespace. Similarly, in the H-packing of a dissected
floorplan, large whitespace may appear along the vertical direction.
It is not easy to perform packing on both directions simultaneously.
Intuitively, if a dissected floorplan can be constructed such that it is
“packed” along the horizontal direction, the whitespace after the V-
packing would not be significant. The idea is formalized as follows.

Definition 2 (Packed Dissected Floorplans):
A dissected floorplan is H-packed if the H-CAG-Pack algorithm

gives the same v.left for every vertex v as the H-CAG-place
algorithm. A dissected floorplan is V-packed if the V-CAG-Pack
algorithm gives the same v.bottom for every vertex v as the V-
CAG-place algorithm.

In the V-CAG-Pack algorithm, since v.bottom is calculated as
the length of the longest path in GV , a longest-path tree rooted at
HeadV can be identified, in which a vertex u is the parent of a
vertex v only if (u, v) is the last edge on the longest path from
HeadV to v. We call this tree the V-LP tree of the CAG. Similarly
the H-LP tree rooted at HeadH is defined after the H-CAG-Pack
algorithm.

Given a tree T rooted at HeadH containing all the vertices, the
H-Tree-Weaving algorithm as shown in Fig. 8 creates a new CAG
whose H-LP tree is T and the corresponding dissected floorplan is
H-packed. The details follow.

Input: A tree T rooted at HeadH .
Output: A CAG G∗ whose H-LP tree is T .
1: HeadH .left← 0;HeadH .width← 0.
2: Order the vertices by their discovery times in a DFS of T from HeadH .
3: For every vertex v except HeadH following the order in 2:
4: Find if the left-most bottom neighbor u of v exists

and all the left neighbors of v according to Fig. 10.
5: If u exists:
6: Find the bottom neighbors of v starting from u as Fig. 11.
7: If (d) happens:
8: u← y. Go to 6.
9: Finalize the G∗.

Fig. 8. The H-Tree-Weaving algorithm.

The new CAG G∗ is created by adding vertices one by one
following the order of their discovery times computed by a DFS
on the tree T where the children of a vertex are visited from the
bottom to the top. During the progress of the algorithm, G∗ is kept
as a H-stepwise CAG instead of a CAG in order to simplify the
computation. As shown in Fig. 9, the H-stepwise CAG relaxes the
constraints along the right boundary of the bounding box: instead
of one vertical path from the bottom to the top along the right
boundary, multiple vertical paths joined by horizontal paths are
allowed, e.g., vertical paths from f to e, from d to c, and from
b to a are joined by horizontal paths from d to e and from b to

c. In addition, modules sizes are taken into consideration such that
the rooms represented by the end point of those vertical paths can
be extended to the top boundary, e.g., d.left + d.width is no less
than v.left + v.width for every v on the path from d to c and
b.left + b.width is no less than u.left + u.width for every u on
the path from b to a. When all the vertices are added to G∗, it
is finalized into a CAG. This finalization process can be divided
into three steps. First, a dummy vertex assumed to have HeadH as
its parent with infinite width is added to G∗ to represent the top
boundary using the same method as from line 4 to line 8. After the
rooms along the top boundary are identified with the help of the
dummy vertex, the dummy vertex and the edges connected to it are
removed. Finally, the rooms along the right boundary are extended
horizontally to touch the boundary.

Fig. 9. (a) A H-stepwise CAG; (b) Finalize the H-Stepwise CAG into a
CAG.

The details from line 4 to line 8 in order to add a vertex v to
G∗ are as follows. Assume HeadH .left = HeadH .width = 0.
Suppose v’s parent is p. The v.left is set to p.left +p.width . Then,
the left-most bottom neighbor u of v is determined: if v has a
bottom sibling, u is that bottom sibling; if v does not has a bottom
sibling, u is found by following the right-most bottom neighbor
starting from p such that u.left + u.width > v.left ; if no such
u exists, v won’t have bottom neighbor. The left neighbors of v
are found at the same time: for the first case, only p is the left
neighbor; for the two latter cases, every vertex reached except u is
a left neighbor. These three cases are shown in Fig. 10.

Fig. 10. Find the left-most bottom neighbor u of v: (a) v has a bottom
sibling u; (b) v does not have a bottom sibling but u can be found; (c) v
has no bottom neighbor. Rooms are extended accordingly for clarity.

After the left-most bottom neighbor u of v is found, all the
bottom neighbor of v are found from left to right. There are four
cases as shown in Fig. 11. They all starts by identifying a horizontal
path from u following the top-most right neighbors. In Fig. 11 (a),
the path ends at a vertex w satisfying that:

w.left < v.left + v.width < w.left + w.width

In Fig. 11 (b) and (c), the path ends at a vertex w without a right
neighbor satisfying that:

w.left + w.width ≤ v.left + v.width

Then a vertical path to w is identified by following the right-most
bottom neighbors. For (b), every vertex x on the path does not have
a right neighbor and satisfying that:

x.left + x.width ≤ v.left + v.width

For (c), there is a vertex x on the path such that:

v.left + v.width < x.left + x.width



In any of the above three cases, all the vertices on the horizontal
path from u to w are added as v’s bottom neighbor and G∗ is kept
as a H-stepwise CAG. For the fourth case in Fig. 11 (d.1), there is
a vertex x on the vertical path to w with a right neighbor satisfying
that:

x.left + x.width ≤ v.left + v.width

Suppose the top-most right neighbor of x is y. As shown in Fig. 11
(d.2), y can be extended vertically to touch v from the bottom. All
the vertices on the vertical path from x to w except x should be
added as the left neighbor of y on top of x. All the vertices on the
horizontal path from u to w should be added as the bottom neighbor
of v. Then, y is treated the same way as u and this whole process
is repeated again until one of the first three cases is reached.

Fig. 11. Four cases for finding all the bottom neighbors of v.

Similarly, the V-Tree-Weaving algorithm can be derived. The
following theorems state the correctness of the algorithms.

Theorem 3: The H-Tree-Weaving algorithm creates a CAG with
the given H-LP tree. The V-Tree-Weaving algorithm creates a CAG
with the given V-LP tree.

Fig. 12. Improve a dissected floorplan by applying weaving and packing
alternatively. (a) The initial dissect floorplan; (b) The V-packing and the
V-LP tree of (a); (c) The dissected floorplan after V-Tree-Weave; (d) The
H-packing and the H-LP tree of (c); (e) The dissected floorplan after H-
Tree-Weave; (f) The V-packing of (e).

C. Iterative Packing

Intuitively, when the H-LP tree is generated from a dissected
floorplan whose H-packing contains little whitespace, the adjacency
relations belonging to the H-LP tree are preserved and other
adjacency relations will not be changed dramatically during the H-
Tree-Weaving algorithms. On the other hand, the H-Tree-Weaving
algorithm not only creates a H-packed dissected floorplan with a
given H-LP tree: it relaxes some vertical adjacency requirements
such that modules are allowed to be pushed downward further in
the V-packing. This also true for the V-Tree-Weaving algorithm and
an example of applying them alternatively is shown in Fig. 12.

Actually applying the two algorithm alternatively will reach an
admissible placement as proposed along with the O-Tree represen-
tation [13]. In admissible placements, modules cannot be pushed
either leftward or downward overlapping-freely without moving
other modules. This motivates us to design the iterative packing
heuristic as shown in Fig. 13 that improves the CAG in area
without changing the adjacency relations dramatically. The resulting
floorplan of the iterative packing heuristic is alway calculated as
HP(G).

Input: A CAG G.
Output: Improved CAG G.
1: Compute HP(G), i.e., the H-packing of the dissected floorplan.
2: T0 ← the H-LP tree; W0 ← the width.
3: Create a new CAG G1 from T0 by the H-Tree-Weaving algorithm.
4: Compute VP(G1).
5: T1 ← the V-LP tree; H1 ← the height.
6: Create a new CAG G2 from T1 by the V-Tree-Weaving algorithm.
7: If width of HP(G2) = W0 and height of HP(G2) = H1, return.
6: G← G2. Go to 1.

Fig. 13. The iterative packing heuristic.

V. EXPERIMENTS

A. CAG Floorplanning for Interconnects

Here we present the preliminary flow of CAG floorplanning for
interconnects: an initial CAG is generated by quadratic program-
ming and then optimized iteratively by a greedy heuristic.

Given a group of modules with the interconnects and terminals
(which are the fixed pins on the floorplan boundary), the initial CAG
is generated as follows to have good interconnect characteristics.
First, a single quadratic programming step depending on the inter-
connects is used to compute the relative positions of the modules
in the bounding box. The weights for the nets are all set to 1. The
details of the quadratic programming can be found in placement
works like [14]. After this, the modules are sorted according to
their x positions and placed in a column-by-column manner from
left to right: once the height of a column exceeds the square root
of the total area of all the modules, a new column is created and
modules are added from bottom to top again. If a dummy module
representing HeadV is put below all the modules, this column by
column placement actually creates a V-LP tree rooted at HeadV

with the columns as paths in the tree. Then the V-Tree-Weaving
algorithm is used to construct the initial CAG from the tree.

Once the initial CAG is obtained, we improve it iteratively
through a randomized greedy improvement heuristic by applying
randomized moves. In each iteration, the move is to randomly pick
up two modules and swap them. Currently we assume that the
orientations are fixed and rotations are not taken into consideration.
The intuition behind these randomized moves is that the intercon-
nects are mostly affected by the relative positions of modules when
the whitespace is limited. Good relative relations can be found by
following good moves using a proper cost function. Then the CAG
is packed via the iterative packing heuristic to improve the area
without changing the current adjacency relations dramatically. After
that, the cost function is evaluated and the cost is compared to the
one before this iteration. If there is any improvement, the current
move is accepted and the current CAG will be the starting point of
the next iteration; if there is no improvement, the current move is
rejected and the CAG before this iteration is restored as the starting
point. In practice, this heuristic can be terminated by adding a limit
on the rejecting rate or on the running time.



B. Experimental Setup

We implemented the CAG algorithms in the C++ language.
The Parquet tool [11] version 4.0 is used as a comparison. Both
programs are compiled with GCC 3.4.3 and run on a Linux machine
with 933MHz Pentium III processor and 512M memory.

TABLE I
STATISTICS OF THE BENCHMARKS

name # modules # terminals # nets total area
n100 100 334 885 179.5K
n200 200 564 1585 175.7K
n300 300 569 1893 273.2K

Three GSRC benchmarks with only hard modules are used: n100,
n200, and n300. The statistics of these benchmarks are shown in
Table I.

The Parquet tool is running in the free-outline mode with the
sequence pairs representation and starting with a quadratic pro-
gramming solution. The other representation in Parquet, which is
B∗-tree, generates similar results according to the work [15] and
thus is not compared here.

The cost function used is the weighted sum of the area and the
HPWL. We use a weight ratio of 1 : 1. We implement the HPWL
calculation in the same manner as Parquet for fairness.

C. Experimental Results

We ran our floorplanner for 10 times with a pre-set time limit
for each benchmark. For comparison, we ran Parquet twice for
each benchmark: the first one is to let it run 10 times with the
same time limit as ours; the second one is to let it run 10 times
with a longer time limit such that the results are with the same
quality as the ones in the work [15]. The results are reported in
Table II. Results from our floorplanner are listed in the rows with
the method “CAG” and those from Parquet are listed in the rows
with the methods “Parquet A” and “Parquet B” respectively. For
each benchmark and each group of the 10 runs, the “area” column
shows the minimal/maximal area; the “HPWL” column shows the
minimal/maximal HPWL; the “time” column shows the average
running time in seconds; the “#moves” column shows the average
number of the randomized moves for our approach and that of the
perturbations for Parquet.

TABLE II
COMPARING CAG AND PARQUET

name method area HPWL time(s) #moves
n100 CAG 195.9K/204.5K 302.1K/312.8K 15.30 31.3K

Parquet A 196.8K/206.0K 320.2K/342.9K 14.90 96.5K
Parquet B 195.0K/203.5K 313.6K/338.5K 29.80 175.8K

n200 CAG 197.0K/205.4K 540.9K/553.3K 30.86 26.0K
Parquet A 207.4K/218.2K 613.8K/647.9K 29.40 54.0K
Parquet B 197.4K/202.5K 578.9K/624.5K 149.2 256.6K

n300 CAG 304.4K/315.6K 649.0K/665.8K 61.61 33.8K
Parquet A 335.2K/351.0K 750.6K/800.0K 58.89 62.5K
Parquet B 306.9K/314.6K 709.2K/757.3K 290.6 325.7K

From the results it can be seen that the CAG approach can
find better floorplans in much less time compared to the simulated
annealing floorplanner Parquet. Although the CAG approach still
relies on randomized moves, the far less number of moves required
to reach a optimized floorplan shows that the iterative packing
heuristic enables efficient explorations of the solution space when
the interconnects are taken into consideration. In addition, the
iterative packing heuristic does not add significant overhead when
the interconnect estimation is part of the cost function. These
two factors add up to the reduction in running times with better
floorplans.

An optimized floorplan for n100 along with the CAG is shown
in Fig. 14 to conclude this section.

Fig. 14. A floorplan of n100 with the CAG.

VI. CONCLUSION

In this paper, we proposed to use CAG as the adjacency repre-
sentation of the floorplanning problems. Algorithms were presented
to construct floorplans as well as improve CAGs. A randomized
greedy iterative heuristic was used to utilize the characteristics in
the CAG approach and the experimental results were promising
for both the quality and the running time compared to existing
simulated annealing floorplanners. Research work to combine CAG
in a hierarchical floorplanning framework, e.g. [16], is expected to
be done in the future to fully utilize its advantages as an adjacency
graph.

REFERENCES

[1] R. H.J.M. Otten. What is Floorplan? In ISPD, pages 201–206, 2000.
[2] J. Garson. A Dual Linear Graph Representation for Space-Filling Location

Problems of the Floor-planning Type. G. T. Moore (ed.) Emerging Methods
in Environmental Design and Planning, MIT Press, 1970.

[3] K. Kozminski and E. Kinnen. An Algorithm for Finding a Rectangular Dual of
a Planar Graph for Use in Area Planning for VLSI Integrated Circuits. In DAC,
pages 655–656, 1984.

[4] J. Bhasker and S. Sahni. A Linear Algorithm to Find a Rectangular Dual of a
Planar Triangulated Graph. Algorithmica, 3:247–278, 1988.

[5] Y. T. Lai and S. M. Leinwand. Algorithms for Floorplan Design via Rectan-
gular Dualization. IEEE Trans. on Computer-Aided Design, 7(12):1278–1289,
December 1988.

[6] A. B. Kahng. Classical Floorplanning Harmful? In ISPD, pages 207–213, 2000.
[7] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C. Cheng, and J. Gu. Corner

Block List: An Effective and Efficient Topological Representation of Non-Slicing
Floorplan. In ICCAD, pages 8–12, 2000.

[8] F. Y. Young, C. C. Chu, and Z. C. Shen. Twin Binary Sequences: A Non-
redundant Representation for General Non-Slicing Floorplan. IEEE Trans. on
Computer-Aided Design, 22(4):457–469, April 2003.

[9] H. Zhou and J. Wang. ACG–Adjacent Constraint Graph for General Floorplans.
In ICCD, pages 572–575, 2004.

[10] J. Wang and H. Zhou. Linear Constraint Graph for Floorplan Optimization with
Soft Blocks. In ICCAD, pages 9–15, 2008.

[11] S. N. Adya and I. L. Markov. Fixed-outline Floorplanning: Enabling Hierarchi-
cal Design. IEEE Trans. On VLSI Systems, 11(6):1120–1135, December 2003.

[12] T. H. Cormen, C. E. Leiserson, R. H. Rivest, and C. Stein. Introduction to
Algorithms. 2nd ed., MIT Press, 2001.

[13] P. N. Guo, C. K. Cheng, and T. Yoshimura. An O-Tree Representation of Non-
Slicing Floorplan and Its Applications. In DAC, pages 268–273, 1999.

[14] N. Viswanathan and C. C. Chu. FastPlace: Efficient Analytical Placement Using
Cell Shifting, Iterative Local Refinement and a Hybrid Net Model. In ISPD,
pages 26–33, 2004.

[15] H. H. Chan, S. N. Adya and I. L. Markov. Are Floorplan Representations
Important in Digital Design? In ISPD, pages 129–136, 2005.

[16] J. Z. Yan and C. C. Chu. DeFer: Deferred Decision Making Enabled Fixed-
Outline Floorplanner. In DAC, pages 161–166, 2008.


