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Abstract— Recent advances in statistical timing analysis (SSTA) achieve
great success in computing arrival times under variations by extending
sum and maximum operations to random variables. It remains a
challenge problem to apply such results in order to address the variability
in circuit optimizations. In this paper, we study the statistical retiming
problem, where retiming is a powerful sequential transformation that
relocates flip-flops in a circuit without changing its functionality. We
formulate the risk aversion min-period retiming problem under process
variations based on conventional two-stage stochastic program with
fixed recourse and a risk aversion objective of the clock period. We
prove that the proposed problem is an integer convex program, show
that the subgradient of the objective function can be derived from
the combinational paths with the maximum path delay, and present
a heuristic incremental algorithm to solve the proposed problem. Our
approach can handle arbitrary gate delay model under process variations
through sampling from a black-box and the effectiveness is confirmed
by the experimental results. Further more, we point out how the
current state-of-the-art SSTA techniques could be improved for future
optimization algorithms when analytical models are available.

I. INTRODUCTION

With aggressive scaling down of VLSI feature sizes, process
variations have become a critical issue in VLSI fabrication that
the designers must face. Because of the increasing variations, chip
characteristics, e.g. the clock period and the power consumption, fall
into larger intervals instead of being single values or within narrow
ranges. As statistical analysis approaches enable the designer to
analysis the variations, statistical optimization algorithms will finally
equip the designers with the necessary tools to control such stochastic
effects in order to improve chip yield and system reliability.

A review of the recent advances in statistical timing analysis can be
found in the paper [1]. In summary, state-of-the-art SSTA algorithms
can achieve a good balance in terms of accuracy and efficiency to
compute the arrival times and the clock period under variations by
extending the sum and maximum operations to random variables. To
advance SSTA in order to handle other aspects of the circuits and to
apply SSTA for efficient statistical optimization remain the challenge
problems.

Conventional circuit optimizations have been extended to ad-
dress the issue of variability through statistical optimization. For
example, for the gate sizing problems, numerous approaches have
been proposed for statistical sizing optimizations. In [2], Lagrangian
relaxation based sizing technique was extended through introducing a
safety margin to the circuit timing according to path delay variations.
In [3], [4], [5], sensitivity guided iterative improvement heuristics
were developed. Convex formulations with provable global optimality
were proposed in [6], [7] to optimize the circuit under the worst cases
considering variations, and in [8] through conventional two-stage
stochastic programs with fixed recourse [9] to optimize the binning
yield. With those successes, it is natural to ask if such approaches can
provide insights into future SSTA researches and can be extended to
other deterministic optimizations.

Among the many deterministic optimization techniques, retim-
ing [10] is one of the most powerful sequential transformations.
Intuitively, one can apply retiming to improve the timing yield of
a circuit under process variations since relocating the FFs could
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balance the combinational paths. Such idea was previously explored
by Wang and Zhou [11], where a heuristic algorithm was proposed
by combining SSTA with a deterministic min-period retiming algo-
rithm [12]. However, there is little theoretical guarantee that such
heuristic would result in a good retiming solution. In this paper, we
study the statistical retiming problem with a more sound theoretical
basis and propose a new heuristic algorithm to optimize the circuit
for better clock period distribution under process variations. Our
contributions in this paper include:

1) We formulate the risk aversion min-period retiming problem for
statistical retiming optimization. Our formulation is based on
conventional two-stage stochastic programs with fixed recourse.
A coherent measure of risk called conditional value-at-risk [13]
is used as the objective function to be minimized. We prove
that the proposed problem is an integer convex program by
presenting a continuous convex relaxation of it.

2) We derive an analytical formula for the subgradient of the
objective function based on the continuous relaxation. Com-
pared to the previous works [4], [8] where the subgradients
are computed through perturbing the circuits and evaluating
the changes statistically for multiple times, our approach is
much more efficient. We can use any random gate delay model
through sampling from a black box model representing the
underlying variation model. Moreover, we show how current
SSTA techniques can be improved to further speed-up the
subgradient computation and thus the statistical retiming op-
timizations.

3) We extend the concept of timing critical paths, which is
essential for deterministic retiming optimizations [10], [12],
[14], to a statistical sense. We propose a practical simplification
of the concept such that it can be efficiently integrated into our
algorithm for the risk aversion min-period retiming problem.

4) We propose the Incremental Risk Aversion Retiming algorithm
to solve the risk aversion min-period retiming problem heuris-
tically, guided by the subgradient and the statistical timing
critical paths.

The rest of this paper is organized as follows. The retiming prob-
lems, the two-stage stochastic programs, and the coherent measure
of risk are introduced in Section II. We formulate the risk aversion
min-period retiming problem in Section III and show that it is a
integer convex program in Section IV. We propose our Incremental
Risk Aversion Retiming algorithm in Section V. After experimental
results are given in Section VI, Section VII concludes the paper.

II. PRELIMINARIES
A. Deterministic Retiming Problems

For retiming, a synchronous sequential circuit is modeled by a
directed graph G = (V,E) as in Leiserson and Saxe [10]. The
vertices V' represent combinational gates and the edges E represent
signals between vertices. The gate delays are given as the nonnegative
vertex weights d : V' — R*. The numbers of FFs on the signals are
given as the nonnegative edge weights w : £ — N.

To guarantee that the circuit functionality will be preserved after
FF relocation, a retiming is given by a vertex labeling r : V — Z,



which represents the number of FFs moved backward over each gate
from its fanouts to its fanins. The FF number on the edge (u, v) after
retiming is wr(u, v) = w(u,v)+7r(v)—7r(w). The retiming r is valid
iff the FF number of every edge remains nonnegative,

wy(u,v) > 0,V(u,v) € E. (1)

For a given valid retiming r, the retimed circuit works under a
given clock period ¢ iff the maximum combinational path delay in the
circuit is at most ¢. In such case, the retiming r is called feasible for
¢. To compute the maximum path delay, arrival times ¢t : V' — R are
introduced at the outputs of all the gates. The following constraints
should be satisfied.

wy(u,v) =0 = t(v) >d(v)+t(u),V(u,v) € E, (2)
d(v) < t(v) < ¢, Vv € V.

Conventionally, the min-period retiming problem asks for a min-
imum clock period such that there exists a feasible retiming for it,
and the min-area retiming problem asks for a feasible retiming for
a given clock period to minimize the total FF area. To solve both
problems, it would be helpful to investigate the timing critical paths,
each of which is a directed path connecting two vertices satisfying
that the total number of FFs along the path is the minimum among all
the paths with the same endpoints, and the total delay along the path
exceeds the desired clock period. For any pair of vertices, if there
exists a timing critical path connecting them, a feasible retiming will
require at least 1 FF along the path. However, because it is usually
expensive and sometimes prohibitive to generate all such critical
timing constraints, practically efficient algorithms [12], [14] are able
to identify those critical timing constraints from Eq. (2) only when
they are required and to organize them into proper data structures in
order to guide the optimization and to assert optimality with a low
storage overhead.

B. Two-Stage Stochastic Program with Fixed Recourse and Coherent

Measure of Risk
A decision problem whose output depends not only on the decision

itself but also some uncertain parameters not available at the time
of decision making is usually formulated as a two-stage stochastic
program with fixed recourse [9], [15], [16], [17]. In such programs,
the uncertain parameters unknown at the time of decision are modeled
as random variables. The program is separated into two stages as
suggested by its name. In the first stage, a decision is made and will
incur an initial cost. In the second stage, the uncertain parameters are
realized and a second stage cost is determined from both the decision
and the realized uncertain parameters through a known deterministic
program, i.e. the fixed recourse. The objective of the program is to
make a decision in the first stage to minimize the “total cost” of the
two stages — as the outcome is random, such cost may have many
possible interpretations.

Let X be the random variable representing the outcome of the
two-stage stochastic program. An interpretation can be formalized by
introducing a measure of risk M [X] that maps X into a real number.
Usually a random variable mapped to a smaller value is better than
the ones mapped to larger values. For example, a family of the most
popular measures are the following ones involving the mean and the
standard deviations of the random variable X, M,[X] = E[X] +

v4/E[(X = E[X])?]. On the other hand, if X represents the random
clock period of a circuit under process variations, given a target clock
period ¢, one can measure X by the timing yield, i.e.,Yields[X] =
P(X < ¢). However, as pointed out by Rockafellar [13], the above
measures are not favorable objectives for optimizations because they
are not coherent. A coherent measure of risk should satisfy a few
conditions as follows.

Definition 1 (Coherent Measure of Risk [13]): A measure of risk
M 1is coherent in the basic sense if,

M|[C] = C for all constants C.

M[(1-=XMNX+ Y] < (1 -XMNM[X]+ AMIY] for X € [0,1].
M[X]|<M[Y]if P(X<Y)=1.

M[X] < 0 when there exists a infinite sequence of random
variables X3 such that limk_,+ooE[(Xk — X)2] = 0 and
M[X:] <0.

5. M[AX] = AM[X] for A > 0.

Intuitively, the first condition indicates that if a deterministic value is
treated as a random variable taking a single value, the measure should
interpret it by the deterministic value; the second condition requires
that the measure to be convex with respect to the random variables;
the third condition ensures the measure to be monotonic, i.e., if one
random variable is no smaller than the other with probability 1, the
measure of the former should be no smaller than that of the latter;
the fourth condition guarantees that if a random variable can be
approximated by some other random variables, one will accept it
when all the approximations are acceptable; and the fifth condition
implies that the measure is insensitive to scaling.

Coherent measures of risk do exist. For example, the expectation
E [X ] of the random variable X is a coherent measure of risk, though
it is feeble and cannot capture the risk associated with X. A more
interesting coherent measure of risk, as proposed by Rockafellar [13],
is the conditional value-at-risk that measures the risk in a random
variable beyond a risk aversion level a. For a risk aversion level
a, a measure of risk VaR[X] called value-at-risk is first defined
as the value satisfying that P(X < VaRa[X]) = . Intuitively, the
value-at-risk measure can be treated as the inverse of the timing yield
measure: while the timing yield measure computes the risk aversion
level (the timing yield) from a given value (the target clock period),
the value-at-risk measure computes the value at a given risk aversion
level. The value-at-risk measure is not coherent, the conditional value-
at-risk measure, which is coherent, is defined as follows based on
value-at-risk: CVaRa[X] = E[X|X > VaRq[X]]. For any = € R,
let z* denote max{0,z}. One can prove that [13],

CVaRa[X] = VaRa[X] + mE[(X —VaRa[X])*]. @)
Therefore, if the conditional value-at-risk should be minimized, it has

the advantage to optimize both the value-at-risk and the tail beyond
the value-at-risk.

e

III. PROBLEM FORMULATION

Under process variations, the delays of the gates in the circuit
are no longer deterministic but random variables. Let 2 be the
probabilistic space representing process variations. For a particular
variation w € (2, assume that the random gate delays are realized
as the deterministic nonnegative vertex weights d., : V' — R*. For
a valid retiming r, let the minimum clock period for the retimed
circuit under the variation w be ¢, (). According to Section II-B, we
formulate the following risk aversion min-period retiming problem
as a two-stage stochastic program with fixed recourse.

Problem 1 (Risk Aversion Min-Period Retiming): Given a risk
aversion level of «, find an integer-valued vertex labeling r for the
following program:

Minimize CVaRq [¢w ()] s.t. wy(u,v) > 0,V(u,v) € E,
where for every variation w belonging to the probabilistic space (2,
¢w (1) is the minimum objective of the following program,

Minimize ¢ s.t.
wr(u,v) =0 = t(v) >du(v)+t(u),V(u,v) € E,
dw(v) < t(v) < p,Vv € V.

It is clear that in the first stage of the risk aversion min-period
retiming problem, a valid retiming will be chosen with an initial cost
of 0. In the second stage, when the random gate delays are realized as
d.,, the minimum clock period is computed through the fixed recourse



by solving the second stage program. The second stage cost is the
coherent risk aversion measure of the minimum clock period.

IV. A CONVEX RELAXATION

Note that the proposed risk aversion min-period retiming problem
is difficult, not only because r should be integer-valued, but also
because the second stage program is not a mathematical program.
To overcome such difficulty, we propose to relax the program before
attempting to solve it.

A. Continuous Relaxation Formulation

Consider an arbitrary simple path p from u to v, i.e. a path without
cycles, in the circuit graph G. Let the total number of FFs along the
path be w(p). Let the total path delay be d., (p) for a particular w € 2.
Then for a valid retiming 7, the minimum clock period should satisfy
that duu(p) < u (r) (wr (p) + 1), where w, (p) = w(p) +r(v) —r(u)
is the total number of FFs along the path p in the retimed circuit.
Moreover, because r is valid, we should have that w,(p) > 0. On the
other hand, there must exist a combinational path p* in the retimed
circuit with the maximum combinational path delay. For such path p*,
it must satisfy that w,(p*) = 0 and d,,(p*) = ¢u (). Therefore, we
have the following lemma that transforms the second stage program
into a mathematical program by enumerating paths.

Lemma 1: For a valid retiming r, the minimum clock period for
a particular w € {2 can be computed as th;t,( )

w (P
¢w (T) o simplerlr)tx%?; inG Wy (p) + 1 ’ (4)
Note that although the second stage program as formulated in
Lemma 1 is a mathematical program, its size is exponential in terms
of the size of the circuit graph G, while the size of the second stage
program as formulated in Problem 1 is linear. As the mathematical
program formulation will be only applied to theoretical analysis, its
size will not be a concern for practical implementations.

Based on Eq. (4), we can relax the requirement that r should be
integer-valued by extending ¢, (r) to real-valued r. First, we define
a real-valued r to be valid iff w,(u,v) > 0 holds for every edge
(u,v) € E. Then for any simple path p from u to v in G, it remains
true that wy(p) > 0. Therefore, for any valid real-valued r, we can
define ¢, (r) using the same equation as Eq. (4). In summary, we
have the following continuous relaxation of the risk aversion min-
period retiming problem.

Problem 2: Given a risk aversion level of «, find a real-valued
vertex labeling r for the following program:

Minimize CVaRq [¢o ()] s.t. wr(u,v) > 0,¥(u,v) € E,
where for every variation w belonging to the probabilistic space €2,

bo(r) = d.(p)

max —_—
simple path p in G W, (p) +1
B. Convexity of Formulation

A very important property of Problem 2 is that it is a convex

program. The proof is as follows.
Let 7’ and 7 both be valid and real-valued. For a particular w € €,
assume that for the simple path p, from wu, to v,, we have that

du(r) = %. Let the vertex labeling s, : V — {—1,0,1}
be that s, (uw) = 1, su(vw) = —1, and s, (z) = 0 for any other
x € V. On the other hand, we should have ¢, (r') > %.
Therefore, doloo) dolou) "
: w(Pw w(pw
b (1) — du(r) > o (o) 1 wr(po) +1 ®)

- wr(pw) +1 N _ Wy (Pw) — W, (Pw)

= (G poyat ~ ) = O G

_ wr(po) = (po) | (wr(po) = wr (pu))?

_¢W(T)< wr(pw) + 1 w ’(pu)""l )

zmmwr(zwzp )w+,1pu > ff(;)sw(u v (w) = r(w)).

ueVv

Given a risk aversion level «, let I,(r) be 1 if ¢,(r) >
VaRa[¢w(r)] and O otherwise. For ease of presentation, denote
VaRa|¢w(r)] by A and VaRa[¢. (r")] by A’. Then, we have that,

E[l,(r)] = P(¢u(r) > A) =1 —a, ©)
(b () = AT = (du(r) — A)Lus(r), )
(6w () = AN > (¢ (') — A (r). ®)

Thus,

CVaRaq[¢w (1)] — CVaR [bw ()]

’ E[(¢w(Tl) - A/)+} E[(¢w (7") - A)+]
:(AJr 1—« )7(A+ 1—« )
> (v ¢ B0 =) = () = ) Latr)

(A/ —A) (1 _ E[Ii(:;)} ) + E[(¢w(rl);_¢:(r))lw("‘)}
E[(¢w (1) = ¢u(r)) 1w (r)]
l-«o
> Bl 3 20l () )]

wey Wr (Pw)

_ Z ' (u) — r(u) B[l (r) Gw(T)sw (“)]

= 1—« wy(pw) + 1

Therefore, the following lemma must hold.
Lemma 2: CVaRq[dw(r)] is a convex function of r for all real-

valued valid r. For a particular valid r, define g, : V' — R as that,
a 1 P (1) 8w (1)

(1) 2 —E[I,(r) 2220 V) 9

gr(v) 1—a [ (r)wr(pw)Jrl} ©)

Then g, is a subgradient of CVaRq[¢w (7)].

As the set of all the valid real-valued r is convex, we have the
following theorem according to Lemma 2.

Theorem 1: Problem 2 is a convex program. The optimal solution
to the risk aversion min-period retiming problem is an integer optimal
solution to Problem 2.

V. INCREMENTAL ALGORITHM FOR RISK AVERSION
MIN-PERIOD RETIMING

We have shown in Section IV that the risk aversion min-period
retiming is an integer convex program and derived a subgradient of
the objective function. Intuitively, such subgradient can be used to
guide iterative heuristic searches. In this section, we will first show
the method to compute the subgradient in practice and then present
a heuristic algorithm based on the idea of incremental retiming.

A. Computing Subgradient from Black Box Model

According to Lemma 2, the subgradient of the objective function
can be computed as Eq. (9). Obviously, how to compute such
subgradient in practice depends on how the probability space 2
and the random gate delays are specified. There are two typical
models, where in the first model, the joint distribution of the gate
delays is explicitly given, and in the second model, one can only
obtain knowledge of the distribution by drawing independent samples
from a black box. In this paper, we are interested in the latter
black box model because the black box model is independent of
the underlying distribution and thus our proposed algorithm can
handle arbitrary variation models. Moreover, since the subgradient
will be computed from each sample drawn from the block box model,
established deterministic analysis frameworks can be reused. One
may be concerned about the efficiency of the algorithms relying on
the black box model because of the multiple samplings. However,
since the subgradient is used to guide the optimization, absolute
accuracy is not necessary and a limited number of samples will be
suffice for effective optimizations. Note that in case of the former
model where the distribution is explicitly given, it would be helpful if
current SSTA techniques can be extended to compute the subgradient



according to Eq. (9) efficiently and accurately. Such extensions are
out of the scope of this paper and are left as one of the future
directions of SSTA.

Subroutine ComputeSubgrad
Inputs
G the circuit graph. 7: a valid retiming. «: the risk aversion level. N: the
number of samples.
Outputs
An approximation §, of the subgradient g,..
1 Draw the samples w; for ¢ =1,2,..., N.
2 Fori=1to N:
3 Compute the minimum clock period ¢, and
the arrival times ¢ by Eq. (2); use g(v) to record
the source of the critical path to the vertex v.
Identify the sink v; of a critical path whose delay
is ¢, . The source of the path u; «— q(vy).
A « the maximum value such that [{i : ¢, < A} < aN.
Gr(v) — 0, Vv e V.
For i = 1to N:
If ¢, > A:
P N buw; -
Gr(ui) «— gr(ui) + W_Za)’ Gr(vi) < gr(vi) —
Fig. 1.

Since the risk aversion min-period retiming problem requires an
integer solution of Problem 2, we maintain an integer solution through
our algorithm. Therefore, only the subgradients at integer solutions
should be computed. Let  be a valid retiming. Eq. (9) suggests that
the subgradient can be approximated by taking the average of the
corresponding values from the individual samples. Suppose that N
samples, w;, ¢ = 1,2, ..., N, are independently drawn from the black
box. We design the ComputeSubgrad subroutine as shown in Fig. 1
to obtained an approximation g, of g, by averaging the samples.
In this algorithm, after the samples are drawn, we perform timing
analysis on line 3 for each sample to determine the minimum clock
period and the arrival times according to Eq. (2). As the same time,
we maintain a vertex labeling g(v) to record the source of the critical
path to the vertex v. Then, the combinational path with the maximum
path delay is identified implicitly on line 4 by its endpoints u; and
v;. Note that the path delay should be ¢.,, and there is no FF along
the path in the retimed circuit. An approximation of VaRq[¢dw] is
obtained on line 5. Finally, in the loop on line 7, we compute an
approximation g, of the subgradient g, according to Eq. (9).

Note that many previous statistical optimization works, e.g. [4],
[8], employed a different approach to approximate such subgradient.
For a decision variable, the previous approaches will first perturb
the variable and then approximate the subgradient of this variable by
the change of the objective function under such perturbation. Such
approach incurs large runtime overhead because, first, although for
some decision variables, perturbation will not change the objective
function and thus they can be excluded from the above computation,
the number of the decision variables that the above computation
must be applied to will increase as the circuit size increases; second,
evaluating the objective function usually requires expensive SSTA
algorithms. On the other hand, our analytical formula for the subgra-
dient, as in Eq. (9), allows us to compute the subgradient comparably
efficiently via sampling from a black box model. Moreover, as
mentioned before, the efficiency of our approach can be further
improved with future relevant SSTA researches.

IS

O 00N W

Pw;
N(i—a)"

The ComputeSubgrad subroutine.

B. Statistical Timing Critical Paths

An intuitive idea for optimization is to iteratively improve a valid
retiming r following the subgradient obtained via the ComputeSub-
grad subroutine by solving the following problem for 7.

Minimize Z () (r'(v) = r(v)) s.t.

veV

wyr (u,v) > 0,¥(u,v) € E, and 0 < 7' (v) —r(v) < 1,Yv € V.
In this problem, the objective function is an first-order approximation
of CVaRa[¢w (r')]. As this first-order approximation would become

10)

inaccurate when r’ is faraway from r, we require the difference
between ' and r to be at most 1. Because the constraints are a system
of difference inequalities, this problem can be solved by network-flow
techniques and it is not necessary to round a non-integer solution
to an integer one for a valid retiming since there always exists an
integer-valued optimal solution.

However, this intuitive idea does not perform well in practice. The
reason is that even changing r(v) by 1 for some vertex v will result in
huge changes in the minimum clock period. Cutting plane techniques,
similar to the statistical gate sizing work [8], can be applied to form
a more accurate approximation. However, such techniques no longer
guarantee the existence of an integer-valued optimal solution and may
require a heuristic to round a non-integer optimal solution. Therefore,
they cannot be applied directly to our retiming problem.

We propose to overcome such difficulty by introducing the concept
of statistical timing critical paths. These paths can be treated as
a natural extension of the deterministic timing critical paths as
mentioned in Section II-A to the statistical sense. Let r be the
current valid retiming. Consider a simple path p in G. For any
variation w € €, let d.,(p) be the path delay. If CVaR.[d.(p)] >
CVaRa[¢w ()], then there is at least one FF along the path p in
the retimed circuit; otherwise, we should have CVaRq[dw(p)] <
CVaRa[¢w ()] since du(p) < ¢w(r) holds for the combinational
path p. Similarly, the same condition will hold for any valid retiming
r’ satisfying CVaRa[pw(r')] < CVaRa[dw(r)], as stated in the
following lemma.

Lemma 3: Given a constant C, we define a simple path p to be
a statistical timing critical path if CVaRa[dw(p)] > C. For any
valid retiming r satisfying CVaRq[¢. ()] < C, we must have that
wr(p) > 1.

Based on Lemma 3, we can augment the formulation in Eq. (10)
by the following constraints without affecting the optimality.

w, (p)>1, VYp satisfying CVaRa [dw (p)|>CVaRa[¢u (r)].  (11)
Note that the constraints in Eq. (11) have the same structure as
those in Eq. (10), i.e., they are a system of difference inequalities.
Therefore, the existence of an integer-valued optimal solution is still
guaranteed.

C. Incremental Risk Aversion Retiming Algorithm

One difficulty of the constraints in Eq. (11) is that since the risk
measure should be computed for many simple paths, it could be
inefficient in practice. We propose to simplify the computation in
our implementation by identifying similar paths through deterministic
timing analysis. Let d(v) = E[d.,(v)] be the nominal delay for each
gate v. For a simple path p, let d(p) be the nominal path delay with
respect to the nominal gate delays d. For a given valid retiming 7,
let ¢(r) be the nominal minimum clock period, i.e., the minimum
clock period with respect to d. Then, we assume a simple path to
be a statistical timing critical path if d(p) > B¢(r), where 3 > 1
is a parameter specified by the designer. In summary, given a valid
retiming r, we propose to solve the following incremental retiming
problem to obtain another valid retiming 7’ in order to improve the
conditional value-at-risk measure of risk.

Problem 3: Minimize Y, §r(v)(r'(v) — r(v)) s.t.

wyr (u,v) > 0,¥(u,v) € E, and 0 < 7' (v) —r(v) < 1,Vv €V,

w,(p) > 1,V simple path p satisfying d(p) > Bp(r).

In Problem 3, since path enumeration is required to construct the
constraints, the number of the constraints can be quadratic in terms
of the number of the vertices, i.e. ©(|V|*). This may impose huge
storage and runtime overhead if we are going to solve Problem 3
directly. However, we can treat Problem 3 as a special min-area
retiming problem and apply a recently discovered incremental min-
area retiming algorithm iMinArea [14] to solve it. The iMinArea



Subroutine IncreRetime
Inputs
G : the circuit graph. d : the nominal gate delay. 7 : a valid retiming. §,. :
the approximation of the subgradient. 3 : a designer specified parameter.
Outputs
The optimal solution 7" of Problem 3.
1 Compute ¢(r) as the nominal minimum clock
period of 7. ¢ — B (r).
2 Initialize F' to be a regular forest with no edge
with respect to —g..
3 Loop:
4 I «+ vertices of the positive trees in F.
5 If I = (: ' < r. Return.
6 If w,(u,v) = 0 for an edge (u,v) leaving I:
7
8

Update F* with (u, v). Continue the loop.
Construct a retiming 77 by moving 1 FF
from the fanouts of I to their fanins in r.

9 Compute the arrival times ¢ and the sources of
the critical path ¢ for each vertex v in 7.

10 If t(v) > ¢ in 7 for some vertex v:

11 Update F' with (g(v), v). Continue the loop.

12 r’ «— 7. Return.

Fig. 2. The IncreRetime subroutine adapted from the iMinArea algorithm.

algorithm requires only O(|V'|) storage on top of the circuit graph
G and is efficient in practice. Let §.(v) represents the increase of
FF area when 1 FF is moved from the fanouts of v to its fanins. It
is straight-forward that the given valid retiming r is feasible for the
clock period B(r) with respect to the nominal gate delays. Then,
Problem 3 actually asks for a set of vertices [ such that the retiming
r’, which is obtained by moving 1 FF from the fanouts of I to its
fanins, is a feasible retiming for the clock period B¢(r) with the
minimum FF area. Because only 1 FF is allowed to move, it is not
necessary to run the iMinArea algorithm until it finishes. We adapt
the iMinArea algorithm in our IncreRetime subroutine as shown in
Fig. 2 to solve Problem 3. The details of the iMinArea algorithm can
be found in the work [14]. The following lemma states the correctness
of the IncreRetime subroutine.

Lemma 4: The IncreRetime subroutine terminates and when it
terminate, it returns an optimal solution of Problem 3.

Algorithm Incremental Risk Aversion Retiming
Inputs
G : the circuit graph. 7 : an initial valid retiming. v : the risk aversion level.
R : the maximum number of iterations.
Outputs
The retiming 7* with the best CVaRq [, (r™)].
r*o—r.
For k =1to R:
Compute CVaR, ¢, ()] by sampling.
If CVaRq [¢w(r)] < CVaRq[¢o (r™)]: r™ — 7.
Compute g,- by ComputeSubgrad.
Solve Problem 3 for r’ by IncreRetime.
If v/ = r: Stop.
Else:r «— 7',
Fig. 3. The Incremental Risk Aversion Retiming algorithm.
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Based on the above discussions, we design the Incremental Risk
Aversion Retiming algorithm as shown in Fig. 3 to solve the risk
aversion min-period retiming problem. In this algorithm, from a given
initial valid retiming, we iteratively improve the current solution by
first computing a subgradient on line 5 and then moving to the next
solution on line 6 via solving Problem 3. The iteration will stop
when a current retiming cannot be improved as found on line 7, or a
maximum number R of iterations have been performed. The retiming
solution with the best conditional value-at-risk measure of risk will
be picked at the end of the algorithm.

VI. EXPERIMENTS
We obtain the code of the deterministic incremental min-period

retiming algorithm [12] and build a risk-aware deterministic approach
for comparison with our Incremental Risk Aversion Retiming algo-
rithm. In this approach, we first assign each gate a deterministic delay
derived from the gate delay distribution and a parameter « specified

TABLE I
RESULTS IN TERMS OF TIMING YIELD.

Deterministic Approach Ours
name it | vy=0 y=1 y=3
s27 88.3% 88.3% 90.0% 90.0% 90.0%
$208.1 62.9% 89.6% 89.6% 89.6% 90.0%
$298 48.5% 89.2% 89.2% 88.7% 90.0%
3382 9.6% 88.0% 88.0% 88.0% 90.0%
s386 80.6% 90.0% 90.0% 90.0% 90.0%
s344 17.6% 84.8% 87.8% 87.8% 90.0%
$349 17.7% 86.2% 88.6% 88.6% 90.0%
5400 10.9% 84.8% 84.8% 85.8% 90.0%
$420.1 13.1% 89.4% 89.4% 89.4% 90.0%
s444 5.8% 86.3% 87.5% 84.9% 90.0%
s510 86.8% 90.0% 89.5% 89.5% 90.0%
8526 17.6% 82.3% 83.9% 83.9% 90.0%
3641 89.1% 89.1% 89.1% 89.1% 90.0%
s713 89.9% 89.9% 89.9% 89.9% 90.0%
$820 88.7% 89.8% 89.8% 88.7% 90.0%
s832 86.8% 90.0% 90.0% 90.0% 90.0%
$838.1 5.7% 87.9% 89.3% 84.5% 90.0%
8953 66.6% 89.5% 90.0% 90.0% 90.0%
s1196 88.2% 89.8% 89.8% 89.8% 90.0%
s1238 90.0% 90.0% 90.0% 90.0% 90.0%
s1423 22.3% 88.4% 88.4% 88.4% 90.0%
$1488 63.0% 90.0% 90.0% 90.0% 90.0%
$1494 71.2% 90.0% 90.0% 90.0% 90.0%
85378 82.5% 82.5% 82.5% 82.5% 90.0%
$9234.1 90.6% 90.6% 90.0% 90.0% 90.0%
$13207.1 82.8% 88.9% 88.9% 88.9% 90.0%
$15850.1 46.5% 87.2% 87.5% 87.5% 90.0%
835932 74.2% 91.5% 89.5% 84.7% 90.0%
838417 0.2% 83.1% 84.3% 82.2% 90.0%
$38584.1 85.3% 90.0% 90.0% 90.0% 90.0%

by the designer. Then we run Zhou’s algorithm [12] for a min-period
retiming to obtain a solution. For a gate v, the deterministic gate delay
is that B[d.(v)] + 7\/E[(dw(v) — E[do(v)])2], ie. a weighted
summation of the nominal delay and the standard deviation. Note that
this deterministic approach is similar to the “Alternative Algorithm”
proposed in the work [11].

We implement our Incremental Risk Aversion Retiming algorithm
in C++. All the codes are compiled by GCC version 3.4 and run on
a Linux workstation with dual 927MHz Intel Pentium III processors
and 512MB memory.

We derive our experimental benchmarks from the conventional
ISCASS89 sequential circuits. To establish a gate delay model for
process variations, we assume a joint Gaussian distribution of the gate
delay. The parameters of the distribution are determined as follows.
First, we assign each gate a nominal delay proportional to the number
of its fanouts and a standard deviation that is within 20% to 30% of
the nominal value. Then, assuming that each gate has a dimension
of 1 x 1, we perform a wire-length driven placement of the circuits
using the placement tool mPL6 [18]. After placement, the chip area is
divided into a 4 x 4 grid. Two gate delays are assumed to be perfectly
correlated if they are within a same grid block, i.e., the covariance
is 1. Otherwise, the covariance of two gate delays is assigned to be
inversely proportional to the distance of the centers of the grid blocks
that the two gates belong to.

We assume a risk aversion level of o = 0.9. For each bench-
mark, we first perform three deterministic optimizations with the
parameter v = 0, 1, and 3 and obtain three solutions. Then we run
our Incremental Risk Aversion Retiming algorithm with the initial
retiming being the solution obtained from the above deterministic
optimizations with v = 1. Our algorithm is allowed to run for
at most 50 iterations before one solution is obtained. The other
parameters are N = 500 and § = 1.01. The conditional value-
at-risk measure of the clock period for each solution is evaluated
by performing Monte Carlo analysis for 10000 samples to ensure
accuracy. The results are reported in Table I as follows. The statistics
of the circuits are reported in the columns “|V'|” and “| E|”. Under the




TABLE I
RESULTS COMPARISON BETWEEN DETERMINISTIC APPROACH AND OUR ALGORITHM.

Statistics CVaR of Deterministic Approach Ours
name V] [E] mit [ y=0 [ v= v = best CVaR impr. | #R t(s)
s27 11 19 13.29 13.29 13.12 13.12 13.12 13.12 0.00% 1 0.0
5208.1 105 182 26.78 2322 2322 23.22 23.22 23.15 0.28% 2 0.1
8298 120 250 35.03 28.31 28.31 28.50 28.31 28.16 0.55% 50 12
8382 159 312 48.97 32.27 32.27 32.27 32.27 31.85 1.32% 5 0.2
3386 160 354 57.08 53.59 53.59 53.59 53.59 53.59 0.00% 50 1.6
s344 161 280 47.15 33.28 32.69 32.69 32.69 32.24 1.38% 50 1.5
$349 162 284 46.97 33.08 32.62 32.62 32.62 32.40 0.68% 50 1.5
s400 165 326 50.23 34.23 34.23 34.01 34.01 33.24 2.26% 7 0.2
$420.1 219 384 38.69 27.17 27.17 27.17 27.17 27.03 0.53% 3 0.2
s444 182 358 51.87 34.34 34.02 34.73 34.02 33.55 1.38% 10 0.4
s510 212 431 50.54 49.33 49.53 49.53 49.33 49.33 0.00% 50 2.1
8526 194 451 49.61 35.15 34.87 34.87 34.87 33.48 3.99% 50 2.0
3641 380 563 154.35 154.35 154.35 154.35 | 154.35 153.40 0.62% 8 0.6
8713 394 614 167.47 167.47 167.47 16747 | 167.47 167.32 0.09% 5 0.4
$820 290 776 133.84 | 133.08 133.08 133.84 | 133.08 132.94 0.10% 50 3.1
s832 288 788 134.14 130.73 130.73 130.73 130.73 130.73 0.00% 50 3.1
$838.1 447 788 63.28 41.79 41.39 42.45 41.39 41.16 0.56% 50 4.1
8953 396 766 61.12 52.17 51.98 51.98 51.98 51.98 0.00% 50 3.8
s1196 530 1023 66.75 65.95 65.95 65.95 65.95 65.88 0.11% 2 0.3
s1238 509 1055 70.67 70.67 70.67 70.67 70.67 70.66 0.01% 2 0.3
s1423 658 1169 211.37 160.50 160.50 160.50 | 160.50 158.91 0.99% 12 1.5
$1488 654 1406 190.86 | 161.60 | 161.60 | 161.60 | 161.60 161.60 0.00% 50 6.7
$1494 648 1412 196.48 17432 | 17432 | 17432 | 17432 174.32 0.00% 50 6.6
85378 2780 4261 66.64 66.64 66.64 66.64 66.64 64.05 3.89% 50 29.4
§9234.1 5598 4604 114.28 114.28 115.76 115.76 114.28 113.63 0.57% 50 50.6
$13207.1 7952 11082 193.40 123.08 122.62 123.10 | 122.62 118.85 3.08% 50 120.8
$15850.1 9773 13566 243.37 120.56 | 119.73 | 119.51 119.51 109.88 8.06% 50 | 156.0
835932 16066 | 28589 187.44 | 170.62 | 172.38 177.34 | 170.62 171.84 | -0.71% 50 | 265.3
838417 22180 | 31127 173.83 97.46 96.62 97.18 96.62 93.69 3.03% 50 | 4573
$38584.1 19254 | 33060 267.32 | 24573 | 247.31 246.22 | 245.73 242.41 1.35% 50 | 4453
runtimes < 1 second

column “Deterministic Approach”, we report the conditional value-
at-risk measure of the clock period for the original circuit before
retiming in column “init” and report those of the three solutions
obtained by the deterministic optimizations in the columns “y = 07,
“y = 17, and “y = 3”. The column “best” shows the best one
from the previous 4 columns, which is the best solution that one
can get through the deterministic approach. The runtimes of the
deterministic approach are all within 1 second and are thus excluded
from being reported here. The results from our algorithm is reported
under the column “Ours”. The conditional value-at-risk measure of
the clock period is reported in the column “CVaR”. The improvement
in percentage compared to the one in the column “best” is reported
in the column “impr.”’. The number of the iterations performed is
reported in the column “# R” and the runtime in seconds is reported
in the column “t(s)”. Note that for most of the benchmark, computing
the subgradient uses more than 90% of the runtime. It can be seen
from the table that our algorithm improves the solution quality for
almost every benchmark circuit for up to 8% within fair amount of
runtimes.

In addition, we compare the solutions in terms of the timing
yield and report the results in Table II. The target clock periods are
determined such that the solution obtained by our algorithm will have
a timing yield of 90%. This table shows that the timing yield can
be effectively improved by optimizing the conditional value-at-risk
measure.

VII. CONCLUSIONS

In this paper, we formulated the risk aversion min-period retiming
problem to optimize the clock period of a circuit under process vari-
ations. The formulation is based on conventional two-stage stochastic
program with fixed recourse with a risk aversion objective. We proved
that the proposed problem is an integer convex program. We gave
an analytical formula for the subgradient of the objective function
and proposed to compute an approximation of the subgradient by
sampling from a black box. We presented a heuristic incremental

algorithm to solve the proposed problem. and the effectiveness of
our proposed approach is confirmed by the experimental results.
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