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PAPER Special Section on VLSI Design and CAD Algorithms

A Fast Longer Path Algorithm for Routing Grid with Obstacles
Using Biconnectivity Based Length Upper Bound∗∗

Yukihide KOHIRA†a), Member, Suguru SUEHIRO††∗, Nonmember, and Atsushi TAKAHASHI†††, Member

SUMMARY In recent VLSI systems, signal propagation delays are re-
quested to achieve the specifications with very high accuracy. In order to
meet the specifications, the routing of a net often needs to be detoured in or-
der to increase the routing delay. A routing method should utilize a routing
area with obstacles as much as possible in order to realize the specifications
of nets simultaneously. In this paper, a fast longer path algorithm that gen-
erates a path of a net in routing grid so that the length is increased as much
as possible is proposed. In the proposed algorithm, an upper bound for the
length in which the structure of a routing area is taken into account is used.
Experiments show that our algorithm utilizes a routing area with obstacles
efficiently.
key words: routing design of PCB, longer path algorithm, upper bound of
wire length

1. Introduction

In recent VLSI systems, due to the increase of operation fre-
quency, signal propagation delays are requested to achieve
the specifications with very high accuracy. In order to
achieve the severe requirements, signal propagation delay
is taken into account in the routing design of PCB (Printed
Circuit Board). The specifications on routing design of PCB
would be determined by the design of other parts. The signal
propagation delay of a net consists of gate delay and rout-
ing delay, and depends on various parameters. However, in
the routing design of PCB, the controllability of wire length
is often focused on since it enables us to control the rout-
ing delay. If a routing method has the higher controllability
on wire length, the routing delay would be controlled with
higher accuracy. The length control is easy if the large area
is reserved for route of a net. However, the routing area
is usually limited, and shared by multiple nets. Therefore, a
routing method should utilize the routing area with obstacles
as much as possible in order to realize the specifications of
multiple nets simultaneously. In the literatures, the problem
formulations such as equal-delay or equal-length routings
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Fig. 1 Routing area assignment.

for multiple nets were often used to demonstrate the ability
of methods.

For the routing problem for multiple nets, the meth-
ods were proposed recently [3], [4]. In [3], a part of routing
area is assigned to each net according to the direction of
the net. In [4], a Lagrangian relaxation technique is used
for length matching on multi-layers. These algorithms work
well when the routing area does not have obstacles. How-
ever, the method proposed in [3] is not applicable to most
PCB designs since obstacles are not taken into consider-
ation. Although the method proposed in [4] is applicable
when the routing area has obstacles, it is not guaranteed to
obtain a feasible solution.

Assume that net a and b are assigned routing areas as
shown in Fig. 1(a) and Fig. 1(b), and a routing method tries
to utilize the assigned routing area as much as possible. The
sizes of the assigned areas for each net are the same in both
figures, and the wire lengths of net a are the same in both
figures. However, the wire lengths of net b differ. The ex-
istence of obstacles should be taken into account in routing
area assignment.

The size of a routing area is not enough to evaluate
the area. In order to evaluate a routing area with obstacles,
the maximum wire length that can be achieved within the
area should be known. However, it is an NP-hard problem
since its decision version is NP-complete [5]. Therefore,
a fast heuristic algorithm that evaluates a routing area with
obstacles by the achievable wire length is desired.

In this paper, first, an upper bound for the wire length
of a net in a routing grid with obstacles is proposed. The
proposed upper bound uses the concept of the biconnected
component to exclude useless areas for routing efficiently.
Then, a longer path algorithm that generates the route of a
net so that the wire length is increased as much as possible
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is proposed. In the proposed algorithm, the route of a net
is greedily determined by using the proposed upper bound.
In experiments, we show that a routing grid with obstacles
is highly utilized by our proposed algorithm, and that the
proposed upper bound helps our proposed algorithm in gen-
erating a longer route. To the best of our knowledge, there is
no good heuristic algorithm in comparison. Several heuris-
tic algorithms are also introduced and used in comparison.

2. Preliminaries

In this paper, a routing area with single layer is represented
by a routing grid consisting of unit squares, and a route is
represented by thick line consisting of horizontal and verti-
cal line segments as shown in Fig. 2. In the following, a unit
square that corresponds to an obstacle is drawn by black in
figures, and called as off-square. The other grids are drawn
by white or gray and called as on-squares. From the on-
squares, two squares are specified as a start and a goal of a
route of a net. A route connects the start square and the goal
square by line segments. A route passes each on-square at
most once and must not pass any off-squares. A start square
and a goal square are denoted by a single circle and a dou-
ble circle in figures, respectively. The length of a route is
the number of squares of the route including its start and
goal squares.

A planar routing area is represented by G for simplicity.
Note that an arbitrary routing area can be represented by set-
ting obstacles on the boundaries. Each square of a routing
grid is referred by their coordinate. The coordinate of the
leftmost-bottom square is defined as (1, 1). In the following,
graph terminologies are used in explanation by assuming a
grid graph is defined from a routing grid, but a routing grid
representation is used in figure for simplicity and readabil-
ity.

Let Lmax(G, s, t) be the length of a longest route which
connects start square s and goal square t by using on-squares
in G only. If it is not confusing, Lmax(G, s, t) is denoted by
Lmax and the length of a route is denoted by L for simplicity.
An example is shown in Fig. 2. The start and goal squares
are (1, 1) and (1, 6), respectively. The length of the route is
10 (L = 10).

The problem we concern is to find a route of a sin-
gle net with Lmax. Methods for this problem are used as
a subroutine of routing system or used to evaluate the area

Fig. 2 Routing grid G1 and a route (L = 10).

that will be assigned to a net. The problem to find a route
with the minimum length in a grid graph with obstacles can
be solved by maze routing in polynomial time [6]. On the
other hand, it is known that Hamiltonian path problem in a
grid graph with obstacles is NP-complete [5]. Since Hamil-
tonian path problem is a decision version of the problem to
find a route with Lmax, the problem to find a route with Lmax

is NP-hard. Therefore, we investigate heuristic algorithms
for this problem and upper bounds of length of a route.

3. Upper Bounds of Length

In this section, we introduce three upper bounds of length.

3.1 Upper Bound by Bipartition

Since a grid graph is bipartite, the set of squares is divided
into two subsets, white and gray, so that any two squares in a
subset are not adjacent to each other (see Fig. 2). Then, any
route passes white and gray squares alternatively. Therefore,
some on-squares of a subset can not be used in a route if the
on-squares in the other subset are fewer than the on-squares
in the subset. This analysis gives an upper bound of length
of a route [7]. We assume that there is a path from a start
square to a goal square.

Theorem 1 ([7]): Let G be a grid graph, and s and t be
on-squares in G. Let Vw (Vg) be the set of white (gray) on-
squares in G. Let Up(G, s, t) be

Up(G, s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 min{|Vw | − 1, |Vg|} + 1

(if s, t ∈ Vw)

2 min{|Vw |, |Vg| − 1} + 1

(if s, t ∈ Vg)

2 min{|Vw |, |Vg|}
(otherwise).

Up(G, s, t) is an upper bound of length of a route that con-
nects s and t in G. �

Up(G, s, t) is denoted by Up for simplicity. The upper
bound Up is easy to calculate, but not tight in general. Ex-
amples in which Up is larger than Lmax are shown in Fig. 3.

3.2 Upper Bound by Biconnected Components

In this section, an upper bound in which the structure of a

Fig. 3 Routing grid G2 and G3.
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Fig. 4 Biconnected components of G2 and its bipartite graph.
Uc(G2, s, t) = 6.

routing grid is taken into account is introduced. By using the
concept of biconnected component, a tighter upper bound is
obtained efficiently.

A graph is said to be biconnected if it is connected
even if any one vertex is removed from it. Note that a
graph which consists of two vertices connected by an edge
is biconnected. A biconnected component of a graph is a
maximal biconnected subgraph of the graph. A vertex of a
connected graph is said to be a cut vertex if the graph ob-
tained by removing the vertex is unconnected. In general,
the graph has at least one biconnected component. Every
cut vertex belongs to at least two biconnected components,
and the others belong to exactly one biconnected compo-
nent. It is known that the time complexity to enumerate bi-
connected components is linear to the sum of the number
of vertices and edges [8]. For example, the number of bi-
connected components of G2 shown in Fig. 3(a) is two, and
biconnected components are shown in Fig. 4(a).

Here, we briefly show that, for any pair of vertices in
G, the sequence of biconnected components of G that corre-
sponds to the path between them is unique.

Let GB be the bipartite graph obtained from a con-
nected graph G as follows. A vertex of GB corresponds to
either a vertex in G or a biconnected component of G. A
vertex belongs to a biconnected component in G if and only
if an edge connects the corresponding vertices in GB. Note
that G has a path that connects two vertices if and only if
GB has a path that connects the corresponding vertices. For
example, the bipartite graph of G2 is shown in Fig. 4(b).

Suppose that GB has a cycle. Since a vertex in GB that
corresponds to a vertex but not to a cut vertex in G has ex-
actly one incident edge, the cycle contains a vertex vc that
corresponds to a cut vertex in G. Since vc is on a cycle of
GB, the graph obtained from GB by deleting vc is connected.
Also, the graph obtained from G by deleting the vertex cor-
responding to vc is connected, and this contradicts the def-
inition of cut vertex. Therefore, GB has no cycle and GB

is a tree. In a tree, a path connecting any two vertices is
unique. From this observation, the sequence of biconnected
components that corresponds to a route from the start square
to the goal square is unique. A square that does not belong
to a biconnected component in the sequence can not be used
by any route from the start square to the goal square. This
analysis gives an upper bound of length of a route.

Theorem 2: Let G be a grid graph, and s and t be on-
squares in G. Let (C1,C2, . . . ,Cn) be the sequence of bi-
connected components, and (c0, c1, . . . , cn) be the sequence
of cut vertices, such that ci ∈ Ci ∩ Ci+1 (0 < i < n), c0 = s,
and cn = t. Let Uc(G, s, t) be

Uc(G, s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (if G has no path between s and t)

1 (if s = t)
n∑

i=1

Up(Ci, ci−1, ci) − n

(otherwise).

Uc(G, s, t) is an upper bound of length of a route which con-
nects s and t in G. �

For example, Uc(G2, s, t) = 6 which is equal to
Lmax(G2, s, t) while Up(G2, s, t) = 30 (see Fig. 4(a)). On
the other hand, Uc(G3, s, t) = 17 which is not equal to
Lmax(G3, s, t) = 13.

3.3 Proposed Upper Bound

The gap between the upper bound Uc defined in the previous
section and the actual maximum length Lmax becomes small,
but still quite large in some cases. The upper bound can be
improved by adopting a lookahead technique. That is, when
a partial route from the start square or the goal square is
generated, the sum of the upper bound of length of the re-
maining and the length of the generated partial route is an
upper bound of length with the constraint such that the par-
tial route is fixed. If all the possibilities of partial routes
are enumerated, the actual maximum length does not ex-
ceed the maximum of them. That is, the maximum of them
gives an upper bound of length. A tighter upper bound is
obtained if the degree of lookahead is increased. However,
there is a trade-off between the accuracy and the computa-
tional time. As the degree of lookahead is increased, the
number of combinations explodes and the computation time
increases exponentially.

In our proposed method, all the partial routes of length
one from both a start square and a goal square are generated.
Then, all the combinations are evaluated and the maximum
of the obtained values is used as an upper bound of length
by lookahead. Ua(G, s, t) which is defined in the following
is used as a tighter upper bound of length of a route.

Theorem 3: Let G be a grid graph, and s and t be on-
squares in G. Let A(v) be the set of on-squares which ad-
jacent to v in G, and G/{s, t} be the grid graph obtained from
G by removing s and t. Let Ua(G, s, t) be

Ua(G, s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (if G has no path between s and t)

1 (if s = t)

2 + max
s′∈A(s),t′∈A(t)

Uc(G/{s, t}, s′, t′)
(otherwise).

Ua(G, s, t) is an upper bound of length of a route which con-
nects s and t in G. �
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Fig. 5 Biconnected components of G3/{s, t}. Ua(G3, s, t) = 13.

Fig. 6 An example in which Ua has an error.

For example, Ua(G3, s, t) = 13, since upper bound
Uc(G3/{s, t}, s1, t2) = 11 and it is maximum among all com-
binations (see Fig. 5).

Here, we discuss the time complexity in computing Uc

and Ua. Let V be the set of squares in a grid graph G, and
let E be the set of edge in G. Since |E| is O(|V |) in G,
the time complexity of obtaining biconnected components
is O(|V |) [8]. Therefore, the time complexity in computing
Uc is O(|V |). Since the number of neighbors of a square is
at most four, the time complexity in computing Ua is also
O(|V |).

There exist instances in which our proposed upper
bound Ua contains errors. For example, the gap between
Ua and the longest path in the instance shown in Fig. 6 is 4.
Note that the instance shown in Fig. 3(b) is obtained if the
partial routes of length one from both a start square and a
goal square are generated in the instance shown in Fig. 6.

4. Proposed Routing Method

In this section, we propose a fast longer path algorithm that
generates a route of a net so that the length of the route is
increased as much as possible. The proposed algorithm uses
the upper bound Ua as a preferred function. We call our
proposed routing method US routing (U

¯
pper bound based

S
¯
eed routing).

In US routing, the route is determined by moving the
frontier from the start square to the goal square. The frontier
on a square is moved to an adjacent on-square such that Ua

after the movement is maximum.
More precisely, the movement of the frontier in finding

a route from s to t in G is described in the following. Assume
that the frontier is on v. Let G′ be the grid graph obtained
from G by changing squares on the partial route from s to v
defined by the movement of the frontier to off-square. Let
A(v) be the set of on-squares which are adjacent to v in G′.
Let u be a square in A(v) such that Ua(G′, u, t) is maximum
among squares in A(v). Then the frontier on v is moved to u
in US routing.

Ties are broken by selecting a square such that the dis-
tance from the goal square t in G′ is maximum, then broken

Fig. 7 An example of behavior of US routing.

arbitrarily. This tie breaking is used as preferred function in
Furthest routing described in the next section.

An example of behavior of US routing is shown in
Fig. 7. If frontier moves from start (4, 1) to (4, 2), Ua is equal
to 28 (Fig. 7(b)). On the other hand, if frontier moves to
(5, 1), Ua is equal to 6 (Fig. 7(c)). Then, the frontier moves
to (4, 2) (Fig. 7(d)). Next, the frontier moves to (3, 2) be-
cause of the tie breaking by the distance (Fig. 7(e)). The
move of the frontier is repeated, and finally, the route shown
in Fig. 7(f) is obtained.

US routing finds a route from a source square to a goal
square if it exists. If the movement of the frontier forces a
route not to reach the goal square, then Ua corresponding
to the movement is 0. Such movement is never adopted if
a route from a source square to a goal square exists since a
movement whose Ua is positive always exists.

Here, we discuss the time complexity of US routing.
The frontier arrives at the goal square by at most |V | move-
ments. In each movement, the number of computation of
the upper bound Ua is at most four. Therefore, since the
time complexity of Ua is O(|V |), the time complexity of US
routing is O(|V |2).

5. Routing Methods for Comparisons

In this section, several heuristic algorithms are introduced to
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Fig. 8 R-Flip.

use them in comparison. Algorithms consist of two stages.
At the first stage which is called seed stage, a route which
connects the start and goal squares is generated. At the sec-
ond stage which is called expansion stage, a route obtained
by the first stage is modified greedily to increase the length
of the route.

5.1 Seed Stage

In the seed stage, a route which connects the start and goal
squares is generated by using one of three routing methods,
“US,” “Maze,” or “Furthest.” US routing was explained in
the previous section. The other two routing methods are
explained briefly.

In Maze routing [6], the frontier is repeatedly moved to
an adjacent on-square such that the distance from the goal
square is minimum. The distance from the goal square is
the length of a shortest path from the goal square using on-
squares only. In Maze routing, first, each square is assigned
a distance label, and the frontier moves according to the
distance label without updating distance labels. It is well-
known that a route with the minimum length is obtained by
Maze routing and that the time complexity of Maze routing
is O(|V |) [6].

In Furthest routing, the frontier is repeatedly moved to
an adjacent on-square such that the distance from the goal
square is maximum. In contrast with Maze routing, distance
labels are updated after each movement of the frontier since
the distance from the goal square might be changed by a
movement of the frontier. Of course, a route with the maxi-
mum length is not necessarily obtained by Furthest routing.
The time complexity of Furthest routing is O(|V |2), since the
time complexity of updating the distance label is O(|V |) and
the number of movements of the frontier is at most |V |.

5.2 Expansion Stage

In the expansion stage, a route obtained by the seed stage
is modified greedily to increase the length of the route. R-
Flip and C-Flip are introduced as the methods used in the
expansion stage.

In R-Flip, a partial route of length two is detoured by
using two adjacent on-squares (see Fig. 8). That is, a partial
route of length two is replaced by a partial route of length
four. In R-Flip, a partial route in four squares in a 2 times

Fig. 9 C-Flip.

2 rectangle such that a partial route passes two of them and
that the others are on-square is modified. In our implemen-
tation, R-flip is applied greedily by searching an appropriate
rectangle along the route from the start square to the goal
square.

C-Flip is a generalization of R-Flip. A partial route R
in the route is replaced by another partial route R′ that passes
on-squares and that has the same terminals of R. C-Flip is
applied if the length of R is larger than the length of R′ so
that the length of the route increases (see Fig. 9). To find
a candidate of C-Flip, each square is assigned a label that
corresponds to the length of a shortest path from a square v
on the route that passes on-squares. If the label of a square
on the route is larger than the length of a partial route from
v, C-Flip is applied. In our implementation, such pair is
searched by changing the start square v of a partial route
from the start square.

In [9], Flip is proposed as a route modification method.
Flip modifies the route according to a face on the plain
graph. Since the rectangle with width two and length two
is a face, R-Flip is a kind of Flip. On the other hand, C-Flip
might not be a kind of Flip since the cycle defined by C-Flip
might not be a face. C-Flip is introduced as a specialized
method for increase of the length of a route.

6. Experimental Results

We implement the computation of upper bounds and the
routing methods in C++, which compiled gcc4.1.2, and ex-
ecuted on a PC with 2.93 GHz Intel Core 2 CPU and 2 GB
RAM. We apply each method to 5 artificially generated data
(from Data1 to Data5), 5 data generated by referring to in-
dustrial design (from Data6 to Data10), and 4 random data
such that start, goal, and obstacles were placed randomly.

First, we discuss the results of 10 sample data. The
results of 10 sample data are shown in Table 1. Examples of
obtained routes are shown from Fig. 10 to Fig. 15.

Every upper bound is less than the number of on-grids
for every sample data except Data10. From Data1 to Data8,
Uc = Up since the number of biconnected components is
one. For Data9 and Data10, Uc < Up since the dead ends are
excluded in Uc. From Data6 to Data8, Ua < Uc since more
than one biconnected component is generated by lookahead.

The gap between the length of route obtained by Maze
routing or Furthest routing and the proposed upper bound
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Table 1 Results of sample data.

Upper bound Maze routing Furthest routing US routing
area #on Up [7] Uc Ua +R-F. +C-F. +R-F. +C-F. +R-F. +C-F.

Data1 10x9 83 82 82 82 10 78 80 78 80 80 80 — —
Data2 11x13 121 119 119 119 23 119 119 105 115 115 119 — —
Data3 11x13 110 109 109 109 13 77 107 105 107 107 107 — —
Data4 11x13 106 105 105 105 13 37 103 99 103 103 103 — —
Data5 11x13 98 97 97 97 13 37 95 91 95 95 95 — —
Data6 11x13 116 115 115 85 13 85 33 33 — — 85 — —
Data7 11x13 117 115 115 113 13 85 113 33 — 113 113 — —
Data8 11x13 118 117 117 115 13 89 113 33 115 113 115 — —
Data9 20x20 297 291 267 267 9 — 231 251 — 261 251 — —

([s]) 0.01 0.01 0.01
Data10 70x100 6654 6654 6650 6650 154 6584 6594 6490 6566 6566 6626 6628 6628

([s]) 1.21 1.21 1.21 4.76 4.80 4.80
#on the number of on-squares
+R-F. the length of the route obtained by R-Flip after seed stage
+C-F. the length of the route obtained by C-Flip after seed stage

— means that the length is not increased by the expansion method.
bold figure means that the length of the route is equal to the upper bound.

* Computation time which is less than 0.01[s] is omitted.

Fig. 10 Routes for Data7.

Fig. 11 Routes for Data8.

Ua is large, since Maze routing and Furthest routing are not
appropriate for the maximum length problem. Although the
length of the route is improved at the expansion stage, the
gap is still large in most data. The best combination of meth-
ods of seed stage and expansion stage depends on data. In
average, Furthest routing is better than Maze routing as the
method of seed stage and C-Flip is better than that R-Flip as
the method of expansion stage. Examples of routes obtained
by Maze routing or Furthest routing are shown in Fig. 10 and
Fig. 11.

While, US routing obtains a longer route such that the
route is not improved in the expansion stage in most cases
(see from Fig. 12 to Fig. 15). Moreover, US routing is equal
to or close to the proposed upper bound Ua. This fact im-

plies that the proposed upper bound Ua and US routing are
promising.

US routing is heuristic. The length of the route ob-
tained by US routing depends on the accuracy of the pro-
posed upper bound. Since the proposed upper bound con-
tains errors for several instances, the length of the route ob-
tained by US routing is less than that by other routing meth-
ods in a few case (see Fig. 15). The computation time is
long since the number of computations of biconnected com-
ponents is large. These issues remain as future works.

Last, we discuss the results of 4 random data. Start grid
and goal grid are placed randomly, each grid is randomly set
as an obstacle by a certain ratio (0.1, 0.2, 0.3, or 0.4) in each
data. The results of 4 random data are shown in Table 2
and examples of routes obtained by US routing are shown
Fig. 16.

Note that the number of on-squares is decreased if the
obstacle ratio is increased. Therefore, an upper bound and
the length of a longer route are decreased by increasing
the obstacle ratio. In 4 data, although Ua = Uc, Ua gives
a tighter upper bound than Up if the obstacle ratio is in-
creased. If the obstacle ratio is increased, the computation
time of each routing method is smaller since the number of
on-squares are decreased. US routing obtains a longer route
than the other methods in which Maze routing or Furthest
routing is applied in the seed stage. However, in higher ob-
stacle ratio, a longer route is obtained by applying R-Flip or
C-Flip after applying US routing. This issue remains at as a
future work.

7. Conclusion

In this paper, we propose an upper bound for the wire length
of a net in a routing grid with obstacles based on the bicon-
nected component and a longer path algorithm US routing
which greedily determines the route by using the proposed
upper bound. In experiment, the lengths of routes obtained
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Fig. 12 Routes by US routing.

Fig. 13 Longest routes by US routing (optimal).

Fig. 14 Route for Data10 by US routing (L = 6626).

Table 2 Results of random data such as start, goal, and obstacles are placed randomly in 50 times 50
rectangles.

obstacle Upper bound Maze routing Furthest routing US routing
ratio #on Up [7] Uc Ua +R-F. +C-F. +R-F. +C-F. +R-F. +C-F.

0.1 2234 2200 2188 2188 16 1862 2096 2046 2100 2102 2136 2138 2138
0.11 0.11 0.11 0.54 0.54 0.54

0.2 2010 1969 1853 1853 13 209 1725 1559 1719 1727 1761 1769 1769
0.08 0.08 0.08 0.43 0.44 0.44

0.3 1754 1751 1305 1305 99 265 1149 1001 1087 1115 1121 1129 1147
0.05 0.05 0.05 0.38 0.38 0.38

0.4 1505 1473 511 511 53 139 377 255 295 329 381 405 437
0.01 0.01 0.01 0.18 0.18 0.19

upper figure upper bound or length
lower figure computation time

#on the number of on-squares
+R-F. the length of the route obtained by R-Flip after seed stage
+C-F. the length of the route obtained by C-Flip after seed stage

* Computation time which is less than 0.01[s] is omitted.

Fig. 15 Routes for Data9.

Fig. 16 Routes of US routing in random data.
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by US routing are longer than those by compared methods
in most data, and the upper bound is same or close to the
wire length obtained by US routing. These results mean the
proposed upper bound and US routing are promising.

In some cases, gaps between the proposed upper bound
and the length of the route obtained by US routing are still
large. The computation time of US routing is large since it
computes our proposed upper bound iteratively. Improve-
ment of proposed upper bound and improvements of US
routing in terms of length and the computation time will be
in our future works.

Our idea is applicable to practical PCB design. For
example, assume that, after global routing is determined, the
detailed routing of a net is determined to satisfy the wire
length constraint one by one. In this case, an approximated
detailed route is obtained by our method in which a routing
area and grid is defined according to the design rules and
the the global routing by estimating the required area. An
adjustment of wire length that takes gridless and/or curve
routing into account might be done in post processing. The
detailed procedures are in our future works.
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