From RTL to Silicon;
The Case for Automated Debug

Andreas Veneris'2, Brian Keng!, Sean Safarpour?

Abstract—Computer-aided design tools are continuously im-
proving their scalability and efficiency to mitigate the high
cost associated with designing and fabricating modern VLSI
systems. A key step in the design process is the root-cause
analysis of detected errors. Debugging may take months to close,
introduce high cost and uncertainty ultimately jeopardizing the
chip release date. This study makes the case for debug automation
in each part of the design flow (RTL to silicon) to bridge the
gap. Contemporary research, challenges and future directions
motivate for the urgent need in automation to relieve the pain
from this highly manual task.

I. INTRODUCTION

The enormous demand for larger and more complex VLSI
systems dramatically increases the cost of their verification,
test and debug. Verification aims to determine if there is an
error in the implementation of a design that causes a mismatch
with its specifications. If there is an error, debugging follows
and aims to determine the root-cause of the detected errors
found during verification. It has been reported, these two tasks
combined can contribute up to 70% of the total chip design
time costing millions of dollars in non-recurring engineering
costs [1].

Although bugs can manifest themselves in every part of the
design stage, debugging functional errors has recently become
one of the largest pain points consuming more than half of
the total verification time [2]. To compound this problem,
errors frequently escape pre-silicon verification and appear in
silicon prototypes during test, exasperating the difficulty of
the debugging task. It then comes as no surprise that 60% of
ASICs fail not because of timing or power issues, but because
of functional errors [3]. And this is not expected to get better;
it is projected, the burden of verification/debug is expected to
grow 675% by 2015 [4] from current levels.

For one reason, this dramatic increase in the complexity
of functional debugging relates to the complexity of modern
designs and their accompanying verification environments.
Modern designs are typically composed of an interwoven
ecosystem of in-house, legacy and acquired IP design blocks.
Each block is stitched together to create a complex sys-
tem whose behavior is increasingly becoming more opaque
and thus more difficult to debug. Meanwhile, the modern
verification environment has also become a diverse collec-
tion of different technologies built to efficiently verify these

I University of Toronto, ECE Department, Toronto, ON M5S 3G4 ({briank,
veneris } @eecg.toronto.edu)

2University of Toronto, CS Department, Toronto, ON M5S 3G4

3Vennsa Technologies, Inc., Toronto, ON M5V 3B1 (sean@vennsa.com)

complex systems. Testbenches, assertions, and verification IP
are all standard building blocks in the contemporary flow.
The interaction of these components with the design further
complicate the debugging process by adding another layer
of understanding. Complex interactions demand experts who
are familiar with all these components to perform debugging
efficiently.

However, even with expert engineers, debugging remains
an incredible feat for any one person to undertake. Once
a failure is detected, the actual error may no longer just
be confined to the design. Errors are now just as likely to
occur in one of the heterogeneous verification components
such as the testbench or the assertions. Moreover, the design
and the verification environment are typically written by
different teams of engineers with different sets of expertise.
This only compounds the debugging pain by adding additional
communication and complexity overhead, demonstrating a
desperate need for automation to manage this complexity. In
addition, when the bug is discovered in the silicon, entirely
new challenges present themselves in this daunting debugging
task.

Current state of the art industrial tools primarily aid the
engineer in manually navigating this complexity. Tools such
as graphical waveform viewers and “what-if” analysis engines
are commonplace in an industrial environment. Although they
provide good value, their manual nature limits their ability to
efficiently scale to larger and more complex systems. Without
significant advances in automated industrial scale solutions,
debugging will continue to severely add overhead and cost as
the size and complexity of the systems increase.

In this paper, we make the case for automated debugging
tools in different steps of the design cycle: RTL verification,
design emulation and silicon test. We review recent research
advances in automated RTL- and silicon-debug methodologies,
we discuss the challenges behind these problems and point
to future research directions. Throughout this presentation,
we emphasize the need for scalable debugging solutions as a
means to reduce costs and to handle the inherent complexity
behind the modern chip development cycle.

Il. DEBUGGING THE RTL

Functional debugging begins when a failure occurs during
RTL verification. Whether this failure is caught by a simulation
testbench or by a formal property checker, the debugging pro-
cess typically requires three pieces of information to determine
its source. The first piece is the buggy design. Next, an error
trace (i.e., a counter-example) that contains an initial state with



(a) Original Circuit

Fig. 1.

a primary input stimulus is required. Finally, a set of correct or
expected values at an observation point(s) such as a primary
output(s) must be provided. Using this information, debugging
identifies the root-cause of the error, also known as the suspect
location in the RTL, so that a correction can be applied to fix
it. There are cases when debugging has to be performed in
the absence of an error trace, for example, when the design
never reaches a given expected state [5]. These types of errors
present additional challenges and are not covered here.

Whether using a manual or an automatic approach, the
debugging problem becomes more complex as the design,
error trace length and the number of errors grow [6]:

solution space = (design size * trace length)#"°™ (1)

The growing complexity of modern system-on-chip designs
increase all three factors in the above equation. Evidently,
this severely adds burden to the manual analysis and places
an increased emphasis for scalable automated solutions to
manage these complexity components. This section provides
an overview of recent advances in automated RTL debugging
that tackle these aspects of problem complexity.

A. Simulation and BDD-based Techniques

Debugging techniques relying on simulation [7]-[10] and
BDDs [7], [11] were among the earliest. These solutions
perform well under certain conditions but the size of modern
designs poses a challenge in their ability to scale.

The simulation-based methods localize errors by first sim-
ulating the design and then tracing back from the erroneous
output based on different criteria. Although this process is
memory efficient, its run-time and resolution degrades with
sequential designs and multiple errors limiting its applicability.
BDD-based methods [11] demonstrate an algebraic solution
to debugging single and multiple errors. Although effective
for single errors, BDDs are limited by memory issues as the
design scales.

B. Satisfiability-based Techniques

Recent advances in Boolean satisfiability (SAT) provide
significant benefit in automated debugging techniques. In [12],
debugging is first encoded as a SAT instance. Other formula-
tions that followed, built upon this initial framework using

(b) SAT-based Debugging

Example 1: SAT-based Debugging

various related satisfiability technologies [13]-[16]. These
techniques have shown to outperform previously proposed
simulation and BDD-based techniques by orders of magnitude
in certain cases. Moreover, they have shown to be robust and
maintain their good resolution when scaling to larger designs
and to multiple errors.

The basic formulation proposed in [12] creates a SAT
instance where each satisfying assignment corresponds to a
potential set of suspects. The formulation is constructed in
several steps. First, the design is enhanced with error models
for individual gates or groups of gates corresponding to
lines of RTL. Each error model has a corresponding suspect
variable, e;, such that if the ¢; = 1, then its fan-out is
disconnected from its fan-in and it becomes free. This can be
achieved through a hardware construction using multiplexors,
or directly in conjunctive normal form (CNF).

Next, the combinational part of the design is translated to
CNF and unrolled using time-frame expansion for the length
of the error trace. This models the sequential behavior of the
design. The initial state, primary inputs and primary outputs
are then constrained with the values from the error trace and
expected values respectively. The number of errors (V) to
search is set to a fixed value by adding a constraint on the
suspect variables. When a satisfying assignment is returned,
exactly N suspect variables will be activated corresponding
to a set of locations that could potentially fix the observed
failure. The following example illustrates this technique.

Example 1 A simple sequential circuit with four gates and
two state elements is shown in Figure 1(a). This circuit has
primary inputs z, 1 and primary output yq. It also contains
three groupings of gates (A, B, C) that represent locations in
the RTL. A SAT-based debugging formulation for Figure 1(a)
is shown in Figure 1(b) unrolled for three time-frames. The
circuit is enhanced with error models represented by . Notice
error models are only added to the portions corresponding to
RTL locations. A failure occurs in the third time-frame where
the primary output should be 1 instead of the implemented 0.
When setting N = 1, we find the only satisfying assignments
are eg = 1 or e¢ = 1. This corresponds to suspects for
groupings B and C.



1 1 0 1
v v v v

Fig. 2.
C. Managing Complexity

By leveraging the tremendous amount of research in for-
mal verification, recent advances [6], [17], [18] have been
able to further contain much of the parameters behind the
inherent complexity (Equation 1) in design debugging. The
most promising techniques manage the design size and the
error trace length. The following subsection describe two
approaches that aim to tackle these complexity metrics.

One technique is based upon abstraction and refinement.
Research in [17] adapts this concept in an effort to reduce the
complexity by reducing the design size. It works by removing
components in the design to create a simpler abstract one.
The abstracted design is then solved for all suspects. Based on
suspects returned, an iterative refinement step occurs in which
some of the removed components are reintroduced back into
the design. This process continues until either the bug is found
or a stopping condition is reached.

The iterative and incremental nature of this algorithm en-
sures that only relevant portions of the circuit need be modeled
reducing a major portion of the debugging complexity. It also
provides a generic solution that is not tied to any explicit
debugging formulation. Experimental results show orders of
magnitude reductions in run-time and memory demonstrating
the efficacy of this proposed technique. The next example
illustrates the main idea.

Example 2 The abstraction and refinement algorithm is used
on the same debugging problem from Example 1 as shown
in Figure 2. Here we see the debugging problem after one
refinement iteration where grouping C is found as a suspect
and has been reintroduced while groupings A and B have been
abstracted. For each component that has been abstracted, its
outputs have been constrained to their simulated values. No-
tice that the unused transitive fan-in of these components can
also be removed, greatly simplifying the debugging problem.
For N = 1, both B and C are returned as suspects, the
same result as Example 1, without the need to model every
component in the circuit.

Another technique tackles complexity by reducing the num-
ber of cycles in the error trace to be analyzed. Bounded Model
Debugging [6] works by analyzing subsections, or windows,
of the error trace. In this debugging-independent formulation,
the algorithm iteratively models a growing suffix window of
the error trace. This approach uses the fact that errors are likely

Example 2: Abstraction and Refinement

to be closer to their failure point to focus the analysis on the
most likely portions of the trace. In the worst case, the basic
formulation requires that the whole trace to be analyzed. A
later extension, introduces SAT-based interpolants to partition
the error trace into non-overlapping windows. Each window
of the error trace is analyzed separately to reduce memory and
run-time at the cost of a minor loss in suspect resolution.

Long error traces with thousand of clock cycles are a
reality in practical industrial problems. The ability of Bounded
Model Debugging to iteratively analyze long traces greatly
enhances the practical applicability of automated debugging.
Experimental results show the benefit of this approach for
industrial designs and real-life error traces as it is able solve
these instances where previous methods either memory-out or
time-out.

I1l. DEBUGGING EMULATION AND TEST

Although pre-silicon verification aims to detect all func-
tional errors, the size and complexity of modern designs rarely
results in a bug-free silicon prototype. This problem is becom-
ing more prevalent as time-to-market constraints reduce pre-
silicon verification time and modern system-on-chip designs
increase in size and complexity. As such, functional bugs
may escape pre-silicon verification only to be found during
emulation or during in-system silicon test. Similarly, design
starts that target Field Programmable Gate Arrays (FPGAS)
are also experiencing errors during validation [19].

The difference in the challenges for emulation and silicon
debug when compared to pre-silicon verification are manifold.
First, observability of signals during emulation and test, is
severely limited as compared to RTL debug. In RTL debug,
any signal at any time may be observed. In contrast, when
the design is prototyped in silicon, only a limited amount of
signals can be observed within a limited clock cycle window.
This greatly increases the time and cost of debugging. Next,
the size of traces that occur can be orders of magnitude larger
than traces found during RTL verification. This limits the
amount of manual analysis possible and restricts the types of
automated computational techniques that can be used. Finally,
bugs detected during silicon test can be either deterministic or
non-deterministic. A deterministic bug is reproducible with the
same test-vector. Non-deterministic bugs may not reproducible
with the same test-vector due to events such as interrupts or
refresh of dynamic memories [20].



A. Design for Silicon Debug Techniques

The two main Design-for-Debug (DfD) techniques to in-
crease observability during test are scan chains and trace
buffers. Scan chains are inserted during Design-for-Test and
they are later reused in silicon debug [21]. They work by
connecting all scanned registers in a large shift register. During
test-mode, the values in the registers may be shifted out to
be observed. However, unless two state elements are used
for each register, which dramatically increases the area, the
environment must be reset after each scan dump. This leads to
greatly improved observability of the chip but the need to reset
the test environment after a scan dump results in a significant
loss of debug efficiency.

Trace buffers [22], [23] increase observability by recording
internal signals using an on-chip memory. They contain control
logic (e.g., embedded assertions [24]) that trigger the online
monitoring of circuit signals. Once the trigger condition is
activated, the logic values of selected signals are recorded onto
the on-chip memory. The data can then be output via a low-
bandwidth interface such as boundary scan. Typical sizes of
trace buffers range from 8k to 256k limiting their ability to
scan all signals for an extended period of time.

B. Techniques for Debugging Silicon Prototypes

Techniques to improve silicon debug efficiency have pri-
marily aimed at improving the silicon debug work flow. A
typical debug session involves running a test vector on the
chip, observing selected signals for a limited window of time,
and analyzing the data to determine the root-cause of the fail-
ure. Due to limited observability, even with DfD techniques,
multiple iterations of this flow are typically necessary.

The BackSpace framework presented in [25] aims to provide
the ability to trace back thousands of cycles from the crash
state to determine the original error excitation state. It works
by augmenting the design with hardware to record small
signatures of key states. When a crash occurs, it uses formal
techniques combined with the signatures to trace back to a
set of possible states from which it could have come from.
Although limited in the amount of cycles that it can trace
back, BackSpace additionally adds programmable break point
circuitry. This allows calculated predecessor states to be set as
break points allowing for significantly increased efficiency in
computing back traces.

Another technique [26] provides a solution to automating
the analysis portion of the flow. It uses the captured scan
dump combined with trace buffered data to determine the
erroneous module as well as its excitation time. Additionally, it
provides suggestions as to which signals and times to capture
during the next debug session. Through judicious use of SAT-
based techniques it is able to improve the silicon debug work
flow by reducing the iterations and manual root-cause analysis
required.

Although these solutions present promising results in pro-
viding value for silicon debug, admittedly much more research
is required to make them practical. The ability to scale to
practical sized industrial designs is the primary challenge for

silicon debug automation. This only demonstrates the need
for automation as these debugging problems grow beyond the
capabilities of human analysis alone.

C. Debugging In-System FPGA Designs

As current state-of-the-art FPGAs boast hundreds of thou-
sands of look-up tables (LUTS), thousands of hard-IP blocks,
and multi-mega bits of memory, they are experiencing similar
growing pains to ASICs. In particular, they are experiencing
the same verification gap as ASICs in that the ability to design
larger FPGAs outpaces the ability to verify them [19].

The problem of debug becomes troublesome when a bug
is found during in-system validation of the FPGA. This could
be caused either by extremely long test vectors that are not
practically simulatable during RTL verification, or because the
chip does not match its specification. The debug work flow
is similar to silicon prototypes as one needs re-run the test
environment, capture select signals and analyze the resulting
data. A significant difference is the ability to reconfigure the
chip, adding user defined observation points to many more
signals. Despite this reconfigurability, debug remains a pain
as reprogramming the chip requires an new synthesis run,
dramatically limiting efficiency. This points to a need for
solutions to debugging FPGAs. Without this innovation, the
full benefit of the increased capacity and capabilities of FPGAs
will be severely limited very soon.

IV. DEBUGGING VERIFICATION ENVIRONMENTS

Traditionally, automated debugging research has focused
solely on automating debug within a design due to the high
cost of root-cause analysis for design errors. However as
verification environments grow more complex, they are also
highly likely to contain costly errors.

Errors in the verification environment represent a significant
departure in objectives from debugging traditional RTL. First,
they are complicated entities comprised of various assertions,
testbenches and verification IP. Each component can be at
a different level of abstraction (e.g. procedural, behavioural,
synthesizable) using a different language (e.g. SystemC, Sys-
temVerilog, Matlab, Verilog, VHDL) all stitched together in a
complex heterogeneous entity. This adds immense complexity
to any type of root-cause analysis, manual or automated.
Second, many of the components are non-synthesizable. This
eliminates the applicability of most traditional design debug-
ging techniques that require a synthesizable model. Finally,
as the likelihood of verification environment errors becomes
larger, determining if the error is in the design or in the
environment becomes an issue. This leads to not only a more
costly debugging process but also an increased uncertainty in
the quality and robustness of the verified design. These reasons
point to a need for innovative solutions to tackle these new
challenges.

A. Automating Debugging of Temporal Assertions

The work in [27] presents an automated methodology for
debugging errors occurring within SystemVerilog assertions.
It takes a different approach compared to traditional design



debugging techniques. Instead of viewing the process as a
localization task, it views it as a correction problem. The
rationale is that localization is effective for design debugging
because there are many simple components in the design. Once
an error is localized, correction is typically straight forward.
However for temporal assertions, the reverse is true. Most
assertions are relatively small combinations of expressions
so localization is typically not the most difficult aspect of
debugging. Rather, finding the appropriate correction makes
the bulk of the work.

To this end, [27] presents a methodology to debug assertions
by correcting them. Using the failing assertion and counter-
example, a mutation model produces a set of closely related
properties to the failing assertion that have been verified
against the design. These closely related properties aid de-
bugging by acting as a basis for possible corrections to the
failing assertion. Mutations also provide significant insight into
the design behavior if the generated property does not correct
the error. Experiments confirm that the technique always finds
closely related alternative properties.

B. Debugging Testbench Environments

The rapid adoption of new testbench technologies has led
to a dramatic increase in verification efficiency but has lead
to increased complexity in the environments as well. Because
new technologies are utilized over a short period of time, this
results in a patchwork of new and legacy testbench compo-
nents. Due to this evolution, there is no standard methodology
or standardized interactions between the numerous different
types of components and technologies. For example, a typ-
ical environment might involve a System\erilog testbench,
Matlab simulations, and shell scripts to act as intermediaries
between the two. If the bug is assumed to be in any of these
components, then any analysis tool would require knowledge
of each component. This represents significant challenges to
automation.

Beyond compatibility and support for the various different
types of technologies, automated analysis techniques for the
high level testbench languages are limited. Many popular lan-
guages, such as Matlab and System\erilog, are not practically
synthesizable due to the inclusion of programming language
constructs such as wide data types and dynamic memory
allocation. This severely limits the types of analysis, resulting
in a narrow category of solutions that can deal with these
problems. With the increased likelihood of errors occurring
in testbenches, this problem remains a significant roadblock
to reap the full benefits of recent advances in functional
verification.

V. CONCLUSION

The manual and resource-intensive nature of the debugging
process is a major pain in the industry today that manifests
itself in every design and test aspect. This study outlines the
challenges, recent advances and future directions in debug
automation from RTL to silicon. After 20 years of intense
research, this paper makes a case that debug automation today

is feasible, and necessary, to relieve the high cost associated
with the manual effort.

REFERENCES

[1] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip Verification:
Methodology and Techniques. Kluwer Academic Publisher, 2000.

[2] H. Foster, “Assertion-based verification: Industry myths to realities
(invited tutorial),” in Computer Aided Verification, 2008, pp. 5-10.

[3] J. Jaeger, “Virtually every ASIC ends up an FPGA,” EE Times, Decem-
ber 2007.

[4] D. McGrath, “De Geus touts new products, says ICs will rebound,” EE
Times, March 2009.

[5] R. K. Ranjan, C. Coelho, and S. Skalberg, “Beyond verification: lever-
aging formal for debugging,” in Design Automation Conf., 2009, pp.
648-651.

[6] B. Keng, S. Safarpour, and A. Veneris, “Bounded Model Debugging,”
IEEE Trans. on CAD, vol. 29, no. 11, pp. 1790 -1803, 2010.

[7] S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[8] M. Tomita, T. Yamamoto, F. Sumikawa, and K. Hirano, “Rectification
of multiple logic design errors in multiple output circuits,” in Design
Automation Conf., 1994, pp. 212-217.

[9] V. Boppana and M. Fujita, “Modeling the unknown! toward model-
independent fault and error diagnosis,” in Int’l Test Conf., 1998, pp.
1094-1101.

[10] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via test
vector simulation,” IEEE Trans. on CAD, vol. 18, no. 12, pp. 1803-1816,
1999.

[11] P.-Y. Chung and I. Hajj, “Diagnosis and correction of multiple logic
design errors in digital circuits,” IEEE Trans. on VLSI Systems, vol. 5,
no. 2, pp. 233 =237, June 1997.

[12] A.Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, 2005.

[13] K. hui Chang, I. Markov, and V. Bertacco, “Automating post-silicon
debugging and repair,” in Int’l Conf. on CAD, 2007, pp. 91 -98.

[14] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp. 1138-1149, 2008.

[15] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF encodings
for sequential circuits with applications to verification, debug and test,”
IEEE Trans. on Comp., vol. 99, 2010.

[16] Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris, “Automated
Design Debugging With Maximum Satisfiability,” IEEE Trans. on CAD,
vol. 29, no. 11, pp. 1804 -1817, 2010.

[17] S. Safarpour and A. Veneris, “Automated design debugging with ab-
straction and refinement,” IEEE Trans. on CAD, vol. 28, no. 10, pp.
1597-1608, 2009.

[18] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler, “Using unsatisfiable
cores to debug multiple design errors,” in Great Lakes Symp. VLSI, 2008.

[19] D. Orecchio, “FPGAs advance, but verification challenges increase,” EE
Times, October 2010.

[20] S. Sarangi, B. Greskamp, and J. Torrellas, “CADRE: Cycle-Accurate
Deterministic Replay for Hardware Debugging,” in International Con-
ference on Dependable Systems and Networks, 2006, pp. 301 -312.

[21] B. Vermeulen, T. Waayers, and S. Goel, “Core-based scan architecture
for silicon debug,” in Int’l Test Conf., 2002, pp. 638 — 647.

[22] A. Abramovici and Y.C.Hsu, “A new approach to silicon debug,” in
IEEE International Silicon Debug and Diagnosis Workshop, Nov. 2005.

[23] E. Anis and N. Nicolici, “Low Cost Debug Architecture using Lossy
Compression for Silicon Debug,” in Design, Automation and Test in
Europe, 2007, pp. 1 6.

[24] M. Boulé and Z. Zilic, Generating Hardware Assertion Checkers: For
Hardware Verification, Emulation, Post-Fabrication Debugging and On-
Line Monitoring. Springer Publishing Company, Incorporated, 2008.

[25] F. M. De Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “Backspace:
Formal analysis for post-silicon debug,” in Formal Methods in CAD,
2008, pp. 1-10.

[26] Y.-S. Yang, N. Nicolici, and A. Veneris, “Automated data analysis
solutions to silicon debug,” in Design, Automation and Test in Europe,
2009, pp. 982 -987.

[27] B. Keng, S. Safarpour, and A. Veneris, “Automated Debugging of
SystemVerilog Assertions (to be presented),” in Design, Automation and
Test in Europe, 2011.



