
SETMAP: A SOFT ERROR TOLERANT MAPPING ALGORITHM FOR FPGA DESIGNS 

WITH LOW POWER 

BY 

CHI-CHEN PENG 

THESIS 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Electrical and Computer Engineering 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2010 

Urbana, Illinois 

Adviser: 

 Assistant Professor Deming Chen 



 ii 

ABSTRACT 

Field programmable gate arrays (FPGAs) are widely used in VLSI applications due to 

their flexibility to implement logical functions, fast total turn-around time, and low non-recurring 

engineering cost. The most popular FPGAs in the market are SRAM-based FPGAs. However, as 

process technologies advance to nanometer-scale regimes, the issue of reliability of devices 

becomes critical. Soft errors are increasingly becoming a reliability concern because of the 

shrinking process dimensions. In this thesis, we study the technology mapping problem for 

FPGA circuits to reduce the occurrence of soft errors under the chip performance constraint and 

power reduction. Compared to two power-optimization mapping algorithms, SVmap and Emap, 

respectively, we reduce the single event upset (SEU) rate by 30.5% with a 3.7% power overhead 

penalty and 50.1% with a 4.7% power overhead penalty using six-input LUTs. When multi-event 

upset (MEU) occurs, our work reduces the soft error rate by 33% and 31.5% for double bit flips 

and triple bit flips, respectively, compared to SVmap, and by 52.9% and 50.3% for double bit 

flips and triple bit flips, respectively, compared to Emap. 
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CHAPTER 1 

INTRODUCTION 

Soft errors have received much attention in the research community in recent years.  A 

soft error occurs when a cosmic particle, such as a neutron, strikes a portion of the circuit 

causing the state of a node to change from 10 or 01. Soft errors are becoming a serious 

problem in circuit design due to shrinking process dimensions. The smaller dimensions create a 

situation where the capacitance at each node in the circuit is lower, consequently requiring a 

smaller amount of charge to cause a glitch. This glitch can propagate through a logic network 

provided: (1) the glitch occurs on a sensitized path, i.e., there is no logical masking; (2) the glitch 

propagates un-attenuated or even amplified, i.e., there is no electrical masking; and (3) the glitch 

arrives at the data input of a storage element during the latching window, i.e., there is no 

latching-window masking.  

Soft error can occur in the memory cell or logic circuit. Traditionally, soft errors in 

memories have a greater impact than in logic circuits because memories have smaller cell size 

and a bit flip resulting in SEUs becomes permanent before reprogramming takes place. Now, soft 

errors in logic have become a major concern as well. Previous works attempting to reduce soft 

errors thus have focused on these two areas: enhancing memory cells and modifying logic 

circuits. For example, IBM and NASA [1] presented several SRAM architectures to resist SEUs. 

Figure 1 is an example to show how an enhancing memory cell works [2]. When a memory cell 

holds a value, either P1 and N2 or P2 and N1 are in the “on” state. Therefore, there are always 

two SEU sensitive nodes in the cell. The decoupling resistor slows the regenerative response of 

the cell, so the cell can tolerate a voltage transient pulse due to particle hit.  
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In terms of logic, one of the famous structures is triple modular redundancy (TMR) [1], 

[3], but the area penalty  (200%) is large for this approach. Moreover, TMR architecture needs a 

majority voting circuit (MAJ) to output the correct data; thus, the depth of a circuit will increase. 

Figure 2 shows a TMR example. Figure 2(a) is the original circuit and Figure 2(b) is the TMR of 

Figure 2(a). In Figure 2(b), combinational logic 1 is copied to combinational logic 2 and 3, and 

one MAJ is connected to the output of these three combinational logic components. When one 

SEU occurs in one of the three combinational logic components, the MAJ still can output the 

correct data. Mohanram et al. [4] try to minimize area and reduce error rate at the same time. 

They follow a TMR method but only replicate the most susceptible gates for soft error protection. 

However, its area overhead is still very high (more than 100%). 

In [5], circuit re-synthesis for improving soft-error reliability is presented. It assesses the 

impact of individual gates on the circuit’s soft-error rate based on logic masking and don’t cares. 

clk 
Vdd 

Vss Vss 

Vdd 
clk 

D /D 

P2 P1 

N2 N1 

Figure 1: Example of enhancing SRAM for avoiding SEU. 

decoupling resistor 
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Then, it increases reliability through addition of single gates. In [6], three different schemes for 

detecting and correcting soft errors in configuration bits of the LUTs (look-up tables) of FPGAs 

were proposed. The smallest area overhead among the three is about 48%. Reddy et al. [7] 

proposed a FPGA architecture to detect 100% and correct 96% of SEUs with about 40% fewer 

transistors than the TMR-based hardened memory cell architecture. Lee et al. [8] present a re-

synthesis work to reduce the soft-error rate for FPGAs. Their work targets dual-output LUT 

architecture, which is supported in Xilinx’s Virtex-5 FPGA [9] and Altera’s Stratix II FPGA [10]. 

Yet, the applicability of this work may be limited. None of the above research worked on power 

minimization. 

in 

(b) 

Figure 2: Triple modular redundancy including majority voter schematic. 
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Power minimization is an important task especially for FPGAs because FPGA chips are 

intrinsically power-inefficient due to the significant amount of additional logic added for 

providing reconfigurability. One effective way to perform power minimization is at the logic 

synthesis level, more specifically, with technology mapping, which is a critical synthesis step for 

FPGAs. There is previous work such as [11], [12], PowerMap [13], PowerMinMap [14], Emap 

[15], and SVmap/DVmap [16] on low-power FPGA technology mapping. Techniques including 

bin packing, dynamic programming, greedy algorithm, binate covering, network flow algorithm, 

and cut-enumeration algorithm have been applied to hide the nodes of high-switching activity 

into LUTs so the overall dynamic power can be reduced. However, none of the above works 

considered fault tolerant and reliability issues.    

In this thesis, we present a new soft-error tolerant mapping algorithm, SETmap, for 

FPGA designs with low power. We adopt a cut-enumeration-based method that consists of cut 

generation and cut selection. Our essential goal is to reduce the soft error rate. To achieve that, 

we design a novel approach to effectively masking out soft errors during the mapping process. 

Meanwhile, to make the mapper power-aware, we consider switch activity in the cost function. 

Experimental results show that our algorithm produces significant error rate reduction over 

previous low-power mapping algorithms, SVmap [16] and Emap [15], across a series of MCNC 

and ICSAS’89 benchmarks with ignorable power overhead. To the best of our knowledge, this is 

the first technology mapping algorithm that targets both soft-error reduction and low power for 

FPGAs. 

The rest of the thesis is organized as follows. In Chapter 2, we provide some basic 

definitions and formulate the fault-tolerant mapping problem on SRAM-based FPGAs. Chapter 3 

reviews the cut-enumeration procedure and power model. Chapter 4 presents a detailed 
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description of our algorithm. Chapter 5 provides the experimental results, and Chapter 6 

concludes this thesis. 
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CHAPTER 2 

 

DEFINITION AND PROBLEM FORMULATION 

2.1 Definition 

A DAG (directed acyclic graph) can represent a Boolean network. In a DAG, each node 

represents a logic gate, and a directed edge (i, j) exists if the output of gate i is an input of gate j. 

A PI node has no incoming edges, and a PO node has no outgoing edges. We use input(v) to 

denote the set of nodes that are fanins of gate v. Given a Boolean network N, we use Ov to denote 

a logic cone rooted on node v in N. The logic cone Ov is a sub-network of N consisting of v and 

some of its predecessors, such that for any node wOv, there is a path from w to v that lies 

entirely in Ov [17]. The maximum cone of v, consisting of all the predecessors of v, is called a 

fanin cone of v, denoted as Fv [17]. A cut C is a partitioning of a cone Ov, such that the logic 

between v and the cutline forms a smaller cone of v. The cut-set of the cut C consists of the 

signals on the cutline, which can be represented as input(C). A cut is K-feasible if the cardinality 

of the cut-set is ≤ K. We also call the cardinality of the cut-set the cutsize of the cut. The level of 

a node v is the length of the longest path from any PI node to v. The level of a PI node is zero. 

The depth of a network is the largest node level in the network. A Boolean network is l-bounded 

if |input(v)| ≤ l for each node v. 

2.2 Problem Formulation 

The mapping problem for soft-error tolerance on SRAM-based FPGAs is to cover a given 

l-bounded Boolean network with K-feasible cones so that soft-error tolerance after mapping is 

maximized while the optimal mapping depth is guaranteed under the unit delay model. We also 

strive to minimize the area and power overhead during such a mapping process. Our initial 

networks are all 2-bounded and K is 5 and 6 in this thesis. Therefore, our final mapping solution 
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is a DAG in which each node is a 5-LUT or 6-LUT and the edge (LUTu, LUTv) exists if LUTu is 

in input(LUTv). 
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Subcut C2 

Figure 3 : Example of cut generation, cost function, 

and global duplication adjustment. 
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CHAPTER 3 

CUT-ENUMERATION AND POWER MODEL 

3.1 Review of Cut-Enumeration 

Cut-enumeration is an 

effective method for finding all 

the possible ways of the K-

feasible cones rooted on a node 

[5], [6], [18]. We use a simple 

example to illustrate the cut-

enumeration process. We use 

{A,B,C,…} to represent a cut with 

cut-set A,B,C…, where {A,B,C,…}  are either internal signals or PIs. In Figure 3, all the cuts 

rooted on node R can be generated by combining the cuts rooted on its fanin nodes E and F. For 

this purpose, we can call the cuts on the fanin nodes subcuts. Combining C1 with C2 forms a new 

cut CR1 = {A,B,C,D} rooted on R. The cut-enumeration process combines each subcut (or the 

fanin node E or F itself, e.g., cut CR2) on one of the fanin nodes with each counterpart from the 

other fanin node to form new cuts for the root node. If the input of the new cut exceeds K, the cut 

is discarded. During this enumeration process, the arrival time and truth table for each cut can be 

calculated.  The arrival time of PI nodes is 0. The arrival time propagates through the cuts from 

PIs to POs, where each cut (implementable by a K-LUT) on the paths represents one unit delay. 

To get the minimum arrival time for a node v, we have [17], [18]: 

( )

([ ) 1]v i
C on v

i input C

Arr MIN MAX Arr
  



       (1) 
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where C represents every cut generated for v through cut enumeration. Here, the arrival time of C 

is MAX(Arri)  + 1, where Arri is the minimum arrival time on input signal i of C. All the cuts that 

can provide the minimum arrival time Arrv form a set MAv. Thus, the minimum arrival time for 

each node in the network is propagated from the PIs through cuts and iteratively calculated until 

all the POs are reached by a topological order. The longest minimum arrival time of the POs is 

the minimum arrival time of the circuit, i.e., the optimal mapping depth of the circuit. 

Similarly, the mapping cost can be propagated along the process of cut enumeration. The 

cost for a cut C can be calculated as follows [17], [18]: 

( )

[ / ( )]
iC C

i input C

A A f i U



        (2) 

where UC is the cost contributed by cut C itself. Ai is the estimated cost (e.g., mapping area in 

[17]) of a fanin cone rooted on signal i, and f(i) is the fanout number of signal i. Therefore, the 

cost on i, i.e., the propagated cost for Fi, is shared and distributed into other fanout nodes of i. 

Once the outputs reconverge, the total cost of the shared fanin cones can be summed. This idea 

tries to estimate the mapping cost more accurately, considering the effects of gate fanout. 

Otherwise, the cost of Fi may be counted multiple times while processing the different fanouts of 

node i [17], [18]. However, we show in Chapter 4 that this estimation is no longer applicable to 

soft-error cost. 

3.2 Power Model 

We model the dynamic power for an LUT as follows: 

2

0
0.5 ( )

k

neti inLU T dd
i

P f V C C        (3) 

where αi is the switching activity on input i of the LUT, Cin is the input capacitance on an LUT (a 

constant), and αo is the switching activity at the LUT output. We define Cnet as the estimated 
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output capacitance of wires and buffers contained in the net driven by the LUT; Cnet is 

changeable LUT by LUT. Since we do not have wire capacitance information during mapping, 

we simply use
k

i
i

  as the switching cost in our cost function and try to minimize this quantity. 

We do not specifically model the static power, but we try to reduce the total number of LUTs in 

our mapping solution. With a smaller area, the static power would be reduced as well. To obtain 

an accurate power evaluation, the gate-level FPGA power estimator fpgaEva_LP2 [19] will be 

used in this thesis to obtain post-layout power analysis. In fpgaEva_LP2, the capacitances of 

devices, interconnects, and programmable switches are extracted after routing to calculate 

dynamic power during signal transition. The static power is estimated based on macro-modeling 

using SPICE simulation. The power estimator fpgaEVA-LP2 achieved high fidelity compared to 

SPICE simulation, and the absolute error is merely 8% on average [19].  
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CHAPTER 4 

ALGORITHM DESCRIPTION 

On the basis of the cut-enumeration framework, we first present our solutions in terms of 

soft error cost propagation (Section 4.1), cost function for a cut (Section 4.2), power cost and 

global power cost adjustment (Section 4.3), and cut selection (Section 4.4). Then, we present the 

overall algorithm in Section 4.5. 

4.1 Soft Error Cost Propagation under the Timing Constraints 

Cut enumeration can efficiently find all possible K-feasible cuts rooted on each node. 

While enumerating cuts, we calculate and store the truth table of each cut. Then we use the 

iterative procedure mentioned in Chapter 3 to estimate the soft error cost for each cut and each 

node in the network. A cut has a higher soft error cost if it has a bigger probability to propagate a 

soft error (bit flip) occurring at one of its inputs. The cost is smaller if a cut has a bigger chance 

to mask such a soft error to propagate from its inputs. Once the soft error cost for the cut itself 

can be estimated, the soft error for a fanin cone and the propagated cost for a cut C can be 

estimated using a similar idea shown in Equation (2). 

However, soft error cost should not be divided by the fanout number. The error can 

propagate through all the fanouts of a node, and it is equivalent that the cost is duplicated by the 

amount equal to the fanout number. Therefore, the propagated soft error cost for a cut becomes  

( )

( )
C i C

i input C

S C ostS


        (4) 

where 
C

Cost  is the soft error cost contributed by the cut C itself. The estimated soft error cost of 

the fanin cone rooted on signal i is 
iS . We propagate the soft error cost with the propagation 

process of the minimum arrival time to guarantee the optimal mapping depth. After we calculate 
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the soft error cost for every possible cut rooted on the node v, the lowest propagated soft error 

cost Sv in the fanin cone Fv is below: 

 
( )

C M Av

v cM INS S




 

 (5) 

The term Sv is the smallest propagated soft error cost up to node v under the constraint of an 

optimal mapping depth. We use Equations (4) and (5) to calculate the soft error costs of the cuts 

and nodes iteratively and go through all the nodes from PIs to POs. Note that Equation (4) will 

be enhanced to include power cost and global duplication cost in Section 4.3. Next, we present 

our cost estimation method of soft error for a cut itself. 

4.2 Calculation of Cost Function for a Cut Itself 

The purpose of our cost function is to find a cut which has better logic masking effect for 

a soft error. Figure 4 and Figure 5(a) can explain the main idea. Figure 4 is a mapping solution 

and Figure 5(a) is the truth table of the cut that implements LUT R in the Karnaugh map format. 

Nodes {A, B, C, D} are the fanin LUTs of node R. Assume nodes A, B, C, and D output logic “1”; 

according to  Figure 5(a), the node R outputs “1.” When a soft error occurs at node A (node A 

outputs “0”), node R still outputs “1” according to the truth table and is not affected by the soft 

error. As a result, the soft error is masked. Note that this masking effect is the intrinsic property 

CD 

AB 

00 01 11 10  D 

EC 

0 1 

00 0 1 1 1  00 0 1 
01 1 1 1 1  01 1 1 

11 1 1 1 1  11 1 1 
10 1 1 1 1  10 1 1 

(a)                                    (b) 

Figure 5 : Truth tables of cuts CR1 (a) and 

CR2 (b). 

SEU 

Figure 4 :  Mapping result. 
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of the logic itself and is directly related to how LUT R is mapped. Driven by this observation, 

our mapping result tries to find as many cuts as possible that have this property so we can filter 

out more soft errors through technology mapping. 

Our cost function for a cut consists of two components. Both are related to the input 

combinations or input vectors in the truth table of an LUT. For example, in Figure 5, for the truth 

table in (a), there are 16 possible input combinations (vectors). To compute the cost for a cut, we 

compute two probability values first. One is the occurrence probability of the mth input vector in 

the truth table of the cut, named as Pm, and the other is the probability of a bit flip for the LUT 

when the mth input vector occurs, named as Pflip-m. Figure 3 illustrates how these two 

components work together and how our cost function can select a better cut in terms of soft error 

reduction. In Figure 3, two cuts CR1 and CR2 are rooted on the node R. Two truth tables in Figure  

5 represent the functionalities of CR1 and CR2 respectively. Assume the probability of being logic 

“1” (Pone) for the signals {A, B, C, D} are all 0.5:  

(A) (B) (C) (D) 0.5one one one zeroP P P P         (6) 

Then, Pone of signals {E, F} are 0.75 since nodes E and F are OR gates. In the truth table CR1, 

there are 16 possible input vectors. If we assume that the inputs are not correlated, the probability 

for each vector to occur is a simple product of the probabilities of the inputs being logic “1” (Pone) 

or “0” (Pzero). For example, the probability for vector (1110) to occur in  Figure 5(a) would be: 

(A) (B) (C) (D) 0.0625one one one zeroP P P P        (7) 

Before we explain how Pflip-m is computed, we define a concept called neighboring 

vectors. In the truth table, if two outputs are neighbors, then the vectors to generate these two 

outputs are neighboring vectors. In the truth table for cut CR1, output 0 is a neighbor of four other 

outputs highlighted in bold color and italic font type. Then, the input vector for output 0 is a 
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neighboring vector for the other four vectors that generate the four outputs respectively. To 

compute Pflip-m, we need to examine the truth table to find out the neighboring outputs with 

different logic values. Then, we can retrieve the corresponding neighboring vectors for these 

outputs. Among these input vectors, each vector has a probability to generate an incorrect logic 

value if one of the inputs in the vector had a bit flip (soft error propagated) because a bit flip in 

that input would make this vector change into one of the neighboring vectors, which would 

produce a different output value. We call these types of vectors error-propagation vectors. In 

Figure 5(a), the error-propagation vectors are (0000), (0001), (0010), (0100), and (1000). In 

Figure 5(b), such vectors are (000), (001), (010), and (100). An error-propagation vector has at 

most cut_size number of neighboring vectors that generate different output values. Therefore, the 

probability to propagate a bit flip for a cut due to the mth input vector is: 

Pflip-m = Nm / cut_size        (8) 

where Nm is the number of neighboring vectors, which generate a different output value from the 

mth input vector. 

Continuing with the example, to get the soft error cost of CR1 in Figure 5(a), we only need 

to deal with the five error-propagation vectors since only they have a chance to output wrong 

data. Each vector may have a different probability to output the wrong data. In Figure 5(a), if 

{ABCD} is supposed to be (0000) and a soft error occurs at one of these input signals, the output 

of node R certainly produces the wrong data, which is “1.” As a result, the probability to 

propagate a bit is Pflip-(oooo) = 4/4 = 1. But for the other error-propagation vectors (0001), (0010), 

(0100), and (1000), there is only one neighboring vector (0000) with a different output value. 

Then Pflip-m for these four vectors are all 1/4 = 0.25. The rest of the vectors in the truth table 
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never flip outputs. On the basis of the above concepts, our soft error cost function is computed as 

follows: 

( ( ),  if =1 | ( ),  if =0)one zerom
x m

P P x x P x x


 
     (9) 

_

-

1

2

*

cut size

m flip m
C

m

Cost P P


         (10) 

The term Pm is the probability of vector m, and CostC is the soft error cost contributed by the cut 

C (Equation (4)). The rationale behind Equation (10) to compute CostC is that we enumerate 

every input vector in cut C to evaluate its probability to propagate a soft error. The total 

probability for soft-error propagation is a summation of the probability for each input vector. 

This cost thus has a physical meaning. A smaller cost indicates that when one of the input signals 

is flipped, cut C has a larger chance to mask it out. Therefore, the smaller the value of CostC is, 

the better the cut C is for soft-error reduction. In Figure 5(a), given the input order of {ABCD}, 

the cost is 

1 (0000) -(0000) (0001) -(0001)

(0010) -(0010) (0100) -(0100) (1000) -(1000)

(0.5 0.5 0.5 0.5) (4 / 4 1 / 4 1 / 4 1 / 4 1 / 4)

0.125

RC flip flip

flip flip flip

C ost P P P P

P P P P P P

   

     

        

     (11)

 

And, in  Figure 5(b), given the input order of {ECD}, the cost is 

2 (000) -(000) (001) -(001) (010) -(010) (100) -(100)

(0.25 0.5 0.5) (3 / 3) (0.25 0.5 0.5) (1 / 3)

(0.25 0.5 0.5) (1 / 3) (0.75 0.5 0.5) (1 / 3)

0.167

RC flip flip flip flipC ost P P P P P P P P       

       

       



 (12) 

Therefore, Cut CR1 is the better choice in this example. 

To compute the probability Pone or Pzero, existing analytical algorithms can be adopted 

[20], [21]. However, we found that these heuristics are not accurate when the circuits contain 
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reconvergent paths, especially when the path of reconvergence is long. For example, when we 

use the method proposed in [20], the average estimation error compared to the result of Monte 

Carlo simulation is 6.5%. Therefore, to accurately evaluate our mapping results, Monte Carlo 

simulation is used to obtain Pone and Pzero in our work. We use 10,000 random input vectors at 

PIs and count how many times each signal is evaluated as logic “1” during the simulation. Then, 

the probability Pone for a signal is this number divided by 10,000, and Pzero = 1  Pone for a signal. 

For the same reason, we can compute the switch activity by Monte Carlo simulation and obtain 

more accurate estimation results. 

4.3 Power Cost and Global Power Cost Adjustment 

We accumulate all the switching activity values on the input nodes of a cut and use this 

sum (Costpower) to penalize cuts that incur larger switching power. The smaller this sum is, the 

bigger the chance that the cut can be picked. This naturally selects cuts that hide highly 

switching nodes in LUTs to reduce power. Simply adding the power cost in our cost function, 

however, is not accurate because of node duplication. In this thesis, we carried out duplication 

cost adjustment, considering the specific characteristics of power cost. We use Figure 3 to 

illustrate our solution. When cut CR1 is formed by combining subcut C1 and C2, node F needs to 

be duplicated in the mapping solution due to an extra fanout going out of CR1. The duplicated 

node F has its own cost and should be added to the cost of cut CR1. However, we cannot directly 

sum these two costs because the total cost can be over-estimated by doing so. The propagated 

soft error cost for a cut is refined as follows:  

1 2

( )

( )
f fpoweriC C

i input C

S Cost Cost P PS


   
    (13)

 

     
   if fanout(subcut) > 1

0                    otherwise

subcutf
Cost

P










     (14) 
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where f1 and f2 are the two fanin nodes of the root node, and C is formed by the two subcuts 

rooted on f1 and f2, respectively. The power cost of a subcut itself is Costsubcut, and  is a positive 

constant. We set =0.01 through empirical study because this value balances the contributions of 

power cost and soft error cost in the cost function.) Once SC is adjusted, it starts to influence the 

cost of the following fanout cones. Thus, this cost adjustment has a global impact for the cost 

propagation process and makes the power cost estimation more closely related to the actual 

implementation. Such a duplication model would have an effect of reducing logic duplication 

during mapping, thus reducing the total number of LUTs. 

4.4 Cut Selection 

Cut selection needs to select the best cuts to cover the entire circuits to complete the 

mapping. To map a critical node v, only the cut that provides MAv (refer to Section 3.1) is picked 

to implement the LUT to guarantee the optimal mapping depth. For the nodes that are on the 

non-critical paths, we can use a cut that has smaller soft error cost SC as long as the cut can still 

fulfil the timing requirement on the node to guarantee the optimal mapping depth.  

4.5 Overall Algorithm 

Overall, our algorithm can be summarized in Figure 6. At the beginning, we use cut-

enumeration to compute all possible cuts of every node and the functionality of every cut 

(Section 4.1). After cut-enumeration, an optimal mapping depth is obtained. Then we estimate 

Pone for every node in the program. The Compute_Soft_Error_Cost function calculates the soft 

error cost for every cut following Equation (13) and Equation (14) (Section 4.2.) Meanwhile, the 

Compute_Power_Cost function and global power cost adjustment (Section 4.3) can be carried 

out for every cut. After the costs of all possible cuts are computed, we propagate the lowest  



 18 

Figure 6: SETmap algorithm. 

algorithm SETmap 

input: network, K (LUT input size)   

output: mapping solution S. 

/* cut enumeration. f(K; u) is a K-feasible cut rooted at u. */ 

for each node u in topological order do 

if u is a primary input then 

f(K; u) = {u}; 

else 

v1; v2  fanins of u;  

f(K; u) = {K-feasible combination of C1, C2 where C1 f(K; v1); C2  f(K; v2)}; 

  end 

end 

D = optimum mapping depth; 

 

/* cost calculation and propagation */ 

Read Pone for every node; 

for each node u in topological order do 

for each cut rooted on u do 

CostC = Compute_Soft_Error_Cost(cut); 

Costpower = Compute_Power_Cost(cut); 

        Glocal_power_cost_adjustment; 

end 

propagate_cost; 

end 

 

/* cut selection */ 

Push all PO nodes into a queue L; 

while L is not empty do 

Pop u from L; 

best_cost = ∞; 

for each timing_feasible cut C on u do 

propagate_costC := SC; 

if (best_cost > propagate_costC) then 

best_cost := propagate_costC; 

LUTu := C; 

end-if  

end-for 

for each v  input(LUTu) do 

if v has not been pushed into L then 

Push v into L; 

end 

S := S ∪ {LUTu}; 

end 

output S; 
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costs. On the base of this framework, we can pick the best cut for a node driven by the timing 

constraint to generate the final mapping solution (Section 4.4). 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

SETmap is implemented in C and merged with the SIS [22] system. We show the 

detailed comparison results between SETmap, SVmap [16], and Emap [15]  in terms of the 

power consumption and the soft error rate using both MCNC and ICSAS’89 benchmarks.  

Monte Carlo simulation is used to evaluate the soft error occurrence and propagation; and 

fpgaEVA-LP2 [19] has been applied to obtain accurate post-layout power measurement. Twenty 

thousand random input vectors have been generated first. The Monte Carlo simulation randomly 

flips one bit in the circuit and then evaluates these 20,000 input vectors to obtain the output data. 

For each benchmark, we carried out 500 separate runs with one random bit flip within each run. 

Each simulation is driven by 20,000 different input vectors to get more stable results. The output 

vectors at the POs are compared with correct output data (the golden model), and the total 

number of propagated errors for the benchmark is calculated.  
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Table 1. SEU reduction and power comparison result (k = 6) 

 SETmap SVmap [16] Emap [15] SEU Rate Reduction Power Comparison 

 SEU rate Power (w) SEU rate Power (w) SEU rate Power (w) vs SVmap vs Emap vs SVmap vs Emap 

alu2 0.90% 0.048 1.35% 0.049 1.48% 0.050 -33.8% -39.5% -2.0% -4.0% 

alu4 0.60% 0.235 1.11% 0.239 1.52% 0.245 -45.7% -60.4% -1.7% -4.0% 

apex2 0.69% 0.346 1.17% 0.327 1.00% 0.319 -41.1% -31.3% 5.8% 8.6% 

apex4 1.32% 0.230 5.83% 0.214 7.36% 0.195 -77.3% -82.0% 7.2% 17.7% 

apex6 2.10% 0.331 3.03% 0.331 5.29% 0.319 -30.9% -60.4% -0.2% 3.6% 

dalu 0.78% 0.079 0.60% 0.081 0.85% 0.077 29.0% -9.0% -2.8% 2.6% 

ex1010 0.45% 0.662 3.43% 0.608 2.95% 0.605 -86.8% -84.7% 8.8% 9.4% 

ex5p 0.55% 0.194 3.46% 0.175 3.50% 0.156 -84.1% -84.3% 11.3% 24.9% 

frg2 5.49% 0.447 5.31% 0.437 7.93% 0.445 3.5% -30.8% 2.2% 0.5% 

i10 3.97% 1.289 7.19% 1.297 8.13% 1.272 -44.8% -51.2% -0.6% 1.3% 

misex3 0.96% 0.252 1.01% 0.246 1.85% 0.238 -5.4% -48.3% 2.4% 5.9% 

pdc 0.42% 0.572 0.40% 0.500 2.01% 0.535 5.4% -79.0% 14.4% 6.9% 

rot 3.72% 0.367 3.83% 0.369 3.56% 0.365 -2.9% 4.6% -0.6% 0.4% 

s3330_ 

com 
4.42% 0.772 7.24% 0.756 8.69% 0.773 -39.0% -49.1% 2.1% -0.1% 

s3384_ 

com 
10.56% 0.990 11.46% 0.995 14.34% 1.004 -7.9% -26.3% -0.5% -1.4% 

seq 0.72% 0.309 1.05% 0.289 1.98% 0.284 -31.6% -63.6% 7.2% 9.0% 

spla 0.63% 0.506 1.42% 0.480 2.10% 0.508 -55.1% -69.7% 5.4% -0.5% 

vda 1.43% 0.117 2.68% 0.101 3.67% 0.102 -46.8% -61.1% 16.6% 14.8% 

C3540 1.49% 0.090 1.44% 0.093 1.94% 0.092 3.4% -23.2% -3.7% -2.7% 

C7552 2.79% 0.586 3.38% 0.573 5.84% 0.583 -17.6% -52.3% 2.2% 0.5% 

AVE. 2.20% 0.421 3.32% 0.408 4.30% 0.408 -30.5% -50.1% 3.7% 4.7% 

To compute the soft error rate, we divide the total number of propagated errors in the 

simulation by ten million (500 runs * 20,000 input vectors) for each benchmark. Table 1 shows 

the final results where K is 6. The SEU rate column shows the error rate, which indicates the 

percentage where a soft error propagates all the way to the PO. The power column is the power 

consumption reported by fpgaEVA-LP2. We compare to two previously published low-power 

technology mappers, SVmap [16] and Emap [15]. Both guarantee optimal mapping depth. 

Comparing to SVmap (the “vs SVmap” column) and Emap (the “vs Emap” column), SETmap 

shows 30.5% and 50.1% improvement, respectively, for soft-error reduction with 3.7% and 4.7% 

penalty on average. The error rate reduction is calculated as (SEU(SETmap) - SEU(map2)) / 

SEU(map2). Power overhead is calculated as (Power(SETmap) - Power(map2)) / Power(map2). 
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Table 2. Two and three bit flips comparison result (k = 6) 

 Error rate for 2 flip-bits SEU Rate Reduction Error rate for 3 flip-bits SEU Rate Reduction 

 setmap svmap setmap vs SVmap vs Emap svmap emap emap vs SVmap vs Emap 

alu2 2.11% 2.56% 3.11% -17.5% -32.2% 3.23% 3.57% 3.98% -9.6% -19.0% 

alu4 1.06% 2.01% 3.12% -47.1% -65.9% 1.75% 2.91% 4.64% -40.0% -62.4% 

apex2 1.19% 1.60% 3.06% -25.7% -61.0% 1.68% 2.30% 4.02% -26.7% -58.1% 

apex4 2.92% 11.37% 14.13% -74.3% -79.3% 3.88% 16.76% 21.63% -76.8% -82.1% 

apex6 4.30% 5.23% 11.19% -17.9% -61.6% 7.07% 9.14% 16.00% -22.6% -55.8% 

dalu 1.46% 1.13% 1.56% 29.0% -6.3% 2.19% 1.63% 2.53% 34.2% -13.4% 

ex1010 0.78% 6.33% 6.49% -87.7% -88.0% 1.31% 8.66% 10.92% -84.9% -88.0% 

ex5p 1.73% 4.81% 7.57% -64.0% -77.1% 2.12% 9.56% 9.69% -77.8% -78.1% 

frg2 10.67% 11.14% 14.78% -4.2% -27.8% 16.01% 18.81% 22.23% -14.9% -28.0% 

i10 8.02% 11.75% 14.85% -31.7% -46.0% 11.52% 18.51% 20.02% -37.8% -42.5% 

misex3 1.18% 1.81% 3.51% -34.5% -66.3% 2.65% 4.72% 5.77% -43.9% -54.1% 

pdc 1.13% 1.76% 3.53% -36.0% -68.1% 1.93% 3.55% 5.32% -45.8% -63.8% 

rot 7.38% 6.83% 8.36% 8.0% -11.7% 9.83% 11.42% 13.55% -14.0% -27.5% 

s3330_ com 8.40% 11.31% 16.12% -25.7% -47.8% 12.41% 17.58% 21.16% -29.4% -41.4% 

s3384_ com 18.27% 22.64% 25.31% -19.3% -27.8% 26.76% 32.57% 35.86% -17.8% -25.4% 

seq 1.30% 2.74% 4.12% -52.4% -68.4% 3.16% 4.96% 6.96% -36.3% -54.7% 

spla 1.13% 3.28% 4.16% -65.6% -72.9% 2.48% 4.08% 5.64% -39.1% -56.0% 

vda 3.15% 7.57% 8.99% -58.4% -64.9% 3.88% 10.35% 13.09% -62.5% -70.4% 

C3540 3.56% 3.33% 4.04% 6.8% -11.9% 5.49% 3.44% 5.85% 59.7% -6.1% 

C7552 5.91% 8.03% 12.49% -26.5% -52.7% 8.81% 11.31% 17.05% -22.2% -48.3% 

AVE. 4.28% 6.36% 8.52% -32.2% -51.9% 6.41% 9.79% 12.30% -30.4% -48.7% 

We also carried out experiments in Table 2 where each chip will experience two bit flips 

and three bit flips. Overall, for the two-bit-flip case, SETmap is 32.2% and 51.9% better for soft-

error reduction compared to SVmap and Emap, respectively. For the three-bit-flip case, SETmap 

is 30.4% and 48.7% better for soft-error reduction compared to SVmap and Emap, respectively. 

More comparisons between soft error rate and the number of bit flips will be discussed in the end 

of this chapter. 
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Table 3. SEU reduction and power comparison result (k = 5) 

  SETmap SVmap [16] Emap [15] SEU Rate Reduction Power Comparison 

  SEU rate Power (w) SEU rate Power (w) SEU rate Power (w) vs SVmap vs Emap vs SVmap vs Emap 

alu2 1.21% 0.039 1.85% 0.038 1.77% 0.038 -34.4% -31.5% 3.2% 1.8% 

alu4 1.12% 0.221 1.72% 0.220 1.77% 0.220 -35.1% -36.9% 0.8% 0.5% 

apex2 1.15% 0.301 1.71% 0.256 1.73% 0.245 -32.8% -33.6% 17.5% 22.9% 

apex4 2.68% 0.200 6.80% 0.181 7.17% 0.167 -60.6% -62.6% 10.5% 19.6% 

apex6 2.96% 0.242 3.66% 0.239 4.75% 0.242 -19.0% -37.7% 1.2% -0.1% 

dalu 1.14% 0.079 0.90% 0.084 1.19% 0.078 27.2% -4.1% -6.1% 1.2% 

ex1010 0.95% 0.586 2.52% 0.521 2.64% 0.553 -62.3% -64.0% 12.5% 5.9% 

ex5p 1.87% 0.153 4.46% 0.149 4.74% 0.141 -58.0% -60.5% 2.8% 8.6% 

frg2 4.40% 0.336 6.58% 0.330 8.17% 0.330 -33.2% -46.2% 1.9% 1.8% 

i10 5.16% 0.948 6.07% 0.944 8.71% 0.929 -15.1% -40.8% 0.4% 2.0% 

misex3 1.52% 0.221 3.07% 0.210 3.81% 0.206 -50.7% -60.3% 4.9% 7.3% 

pdc 1.19% 0.494 1.34% 0.482 2.04% 0.475 -11.1% -41.8% 2.4% 3.9% 

rot 4.07% 0.256 4.65% 0.272 4.62% 0.270 -12.4% -12.0% -6.0% -5.1% 

s3330_ 

com 
4.59% 0.579 7.54% 0.575 9.37% 0.565 -39.2% -51.0% 0.7% 2.5% 

s3384_ 

com 
11.63% 0.727 13.27% 0.730 13.77% 0.732 -12.3% -15.5% -0.4% -0.7% 

seq 1.68% 0.271 3.02% 0.245 3.49% 0.247 -44.2% -51.8% 10.8% 9.6% 

spla 2.50% 0.429 3.81% 0.397 3.91% 0.428 -34.3% -36.1% 8.0% 0.2% 

vda 4.27% 0.076 4.44% 0.073 5.26% 0.078 -3.9% -18.9% 3.5% -2.6% 

C3540 1.95% 0.070 2.02% 0.072 2.48% 0.069 -3.6% -21.4% -2.1% 1.3% 

C7552 3.60% 0.435 4.85% 0.428 7.43% 0.436 -25.7% -51.5% 1.8% -0.2% 

AVE. 2.98% 0.333 4.21% 0.322 4.94% 0.323 -28.04% -38.90% 3.41% 4.02% 

In addition, we carried out experiments when K is 5. The final comparison results are 

shown in Table 3 and Table 4. The error rates of SETmap when K = 6 are better than those when 

K = 5 since a large cut size will produce more cuts rooted on a node than a smaller cut size, so 

there is a better chance to find a low-cost cut. Table 5 shows the detailed information about the 

reason why the error rate of the K = 6 case is better than the K = 5 case. 
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Table 4. Two and three bit flips comparison result (k = 5) 

 

Table 5. Soft error cost of cuts rooted on each node in ALU4 

  Error rate for 2 flip-bits SEU Rate Reduction Error rate for 3 flip-bits SEU Rate Reduction 

  setmap svmap setmap vs SVmap vs Emap svmap emap emap vs SVmap vs Emap 

alu2 2.77% 2.90% 3.58% -4.5% -22.8% 4.01% 4.85% 5.11% -17.3% -21.5% 

alu4 1.91% 3.28% 3.48% -41.9% -45.2% 3.19% 4.21% 6.00% -24.3% -46.9% 

apex2 2.64% 3.20% 3.45% -17.3% -23.4% 2.98% 4.67% 4.79% -36.3% -37.9% 

apex4 5.81% 12.89% 14.57% -54.9% -60.1% 7.15% 19.19% 21.26% -62.7% -66.3% 

apex6 5.70% 6.44% 10.63% -11.6% -46.4% 7.86% 9.81% 15.55% -19.9% -49.4% 

dalu 1.91% 1.83% 2.57% 4.8% -25.6% 3.51% 2.83% 3.39% 23.8% 3.4% 

ex1010 1.83% 5.08% 6.12% -64.0% -70.1% 2.87% 7.33% 8.94% -60.8% -67.9% 

ex5p 4.26% 7.24% 10.91% -41.2% -60.9% 5.62% 12.90% 15.62% -56.5% -64.1% 

frg2 11.16% 12.18% 14.48% -8.4% -22.9% 14.60% 17.46% 19.30% -16.4% -24.4% 

i10 10.96% 11.38% 16.89% -3.7% -35.1% 15.89% 17.53% 20.61% -9.4% -22.9% 

misex3 3.40% 5.53% 6.52% -38.6% -47.9% 5.61% 8.26% 11.08% -32.0% -49.3% 

pdc 2.67% 3.23% 4.08% -17.4% -34.5% 3.00% 5.01% 6.52% -40.1% -54.0% 

rot 8.38% 7.54% 10.57% 11.3% -20.7% 11.28% 13.34% 13.85% -15.4% -18.5% 

s3330_ com 8.71% 12.39% 16.39% -29.7% -46.8% 14.07% 19.69% 22.67% -28.5% -37.9% 

s3384_ com 20.32% 25.24% 26.73% -19.5% -24.0% 27.42% 35.71% 38.76% -23.2% -29.3% 

seq 3.08% 4.72% 6.31% -34.8% -51.2% 6.24% 8.45% 9.90% -26.1% -36.9% 

spla 3.24% 4.68% 7.35% -30.8% -55.9% 7.12% 9.17% 10.88% -22.4% -34.6% 

vda 6.21% 6.95% 10.01% -10.6% -37.9% 10.89% 11.55% 15.74% -5.7% -30.8% 

C3540 4.11% 3.69% 5.20% 11.5% -20.9% 5.91% 5.95% 8.18% -0.7% -27.8% 

C7552 6.33% 9.93% 14.41% -36.3% -56.1% 10.24% 12.31% 19.54% -16.8% -47.6% 

AVE. 5.77% 7.52% 9.71% -21.9% -40.4% 8.47% 11.51% 13.89% -24.5% -38.2% 

 K=5 K=6 

Cut size number 

of cut 

sum of soft 

error cost 

average of soft 

error cost 

number 

of cut 

sum of soft 

error cost 

average of soft 

error cost 

2 205 90.9995 0.4439 187 83.0093 0.4439 

3 434 109.6718 0.2527 381 98.4504 0.2584 

4 850 107.185 0.1261 560 68.6 0.1225 

5 1243 297.6985 0.2395 583 74.4491 0.1277 

6 - - - 1021 194.8068 0.1908 

average 683 151.3887 0.2656 546.4 103.8631 0.2287 
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The “number of cut” column shows the number of cuts for cut sizes ranging from 2 to K, 

where K is either 5 or 6. The “sum of soft error cost” column shows the total soft error cost for 

each cut size. To get Table 5, we first find out the cut with the lowest cost rooted on each node in 

the ALU4 benchmark. The cut size of the lowest cost cut rooted on each node is different from 2 

to either 5 or 6. Since our cost function includes soft error cost and power cost, we extract the 

soft error cost from the lowest cost of the cut rooted on each node. The results of ALU4 in Table 

1, Table 3, and Table 5 show that the average of soft error cost and error rate when K = 6 are 

13.9% and 25.6% better than those when K = 5. This result shows that both the soft error cost 

and the soft error rate are related to K. 

Figure 7 shows further error rate comparison results between SETmap, SVmap, and 

Emap. The slopes of increasing error rate in SETmap are smaller than those in SVmap and Emap. 

The error rates increase by 3.94% and 4.24% from one bit flip to three bit flips in SVmap when 

K = 5 and 6, respectively. The error rates increase by 5.42% and 5.89% from one bit flip to three 

bit flip in Emap when K = 5 and 6, respectively. However, in our algorithm, the error rates only 

increase by 1.96% and 2.1% from one bit flip to three bit flips for these studies. 
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Figure 7: Error rate comparison results between SETmap, SVmap, and Emap. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this thesis, we presented a mapping algorithm to reduce soft errors for FPGAs. Our 

solution offered excellent soft-error reduction while guaranteeing optimal mapping depth under 

the unit delay model. In addition, we consider power optimization to reduce the power overhead. 

Experimental results showed that, compared to SVmap and Emap, respectively, our algorithm 

SETmap produced 30.5% and 50.1% soft error rate reduction with 3.7% and 4.7% power penalty 

for the SEU case. For multiple bit upsets, SETmap is 33% and 52.9% better for the two-bit-flip 

case, and 31.5% and 50.3% better for the three-bit-flip case. Also, from one bit flip to three bit 

flips, the error rate in our algorithm just increased by 2.1%, while it was 4.24% in SVmap and 

5.89% in Emap. The result shows that our algorithm is also very effective dealing with multiple 

bit flips. Future work would include studying the electrical and latching-window masking effects 

of the FPGA routing interconnects. Layout-driven technology mapping will also be studied to 

further improve circuit reliability against soft errors. 
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