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Abstract— Passivity-preserving model order reduction (MOR)
of descriptor systems (DSs) is highly desired in the simulation of
VLSI interconnects and on-chip passives. One popular method
is PRIMA, a Krylov-subspace projection approach which pre-
serves the passivity of positive semidefinite (PSD) structured$s.
However, system passivity is not guaranteed by PRIMA when the
system is indefinite. Furthermore, the possible polynomial parts
of singular systems are normally not captured. For indefinite
DSs, positive-real balanced truncation (PRBT) can generate ga
sive reduced-order models (ROMs), whose main bottleneck lies
in solving the dual expensive generalized algebraic Riccati equa-
tions (GARES). This paper presents a novel moment-matching
MOR for indefinite DSs, which preserves both the system passivity
and, if present, also the improper polynomial part. This method
only requires solving one GARE, therefore it is cheaper than ex-
isting PRBT schemes. On the other hand, the proposed algorithm
is capable of preserving the passivity of indefinite DSs, which is
not guaranteed by traditional moment-matching MORs. Exam-
ples are finally presented showing that our method is superior to
PRIMA in terms of accuracy.

I. INTRODUCTION

${wangqing, nwong@eee.hku.hk

matrix-vector products, and to the use of frequency dep@nde
fullwave or substrate Green Functions. Besides, a huge mume
ical error may be produced when the original model is a singu-
lar descriptor system (DS) and contains a polynomial part. |
this paper we will refer to the models with non-PSD structure
asindefinitesystems.

To preserve the passivity of indefinite systems, the Gramian
based positive-real balanced truncation (PRBT [4]) canbe e
ployed. In [4], the DS model is decomposed by the Weierstrass
canonical form, which is prohibitively expensive and pbhsi
unstable. After that, PRBT is performed on a standard state-
space equation. Since the origifLC or EM-extracted mod-
els are of DS form, a more reliable approach is to perform
PRBT on the original possibly singular DSs involving spaktr
projectors [5—-8]. The main bottleneck of PRBT lies in sofyin
the double (generalized) algebraic Riccati equations (ABRE
GARES) at the cost of(n?). Although state-of-the-art ARE
and GARE solvers [9, 10] can remarkably reduce the complex-
ity, PRBT is still much more expensive than Krylov-subspace
projections. For some standard symmetric state-spacelsode
only one ARE is needed in the PRBT procedure [11], however
such method is not applicable to asymmetric models or sin-
gular systems. Therefore, it is desirable to develop a areap

Model order reduction (MOR) has become a standard tecMOR for indefinite DSs, to preserve system passivity and the
nique in the computer-aided simulation of VLSI intercormecPossible polynomial part. The polynomial part is normally a
structures and on-chip passive components. The basic fdea¥@nzero constant term; in some cases (e.g., interconnéttts w
MOR is to replace the original huge-size model by a muchtrong crosstalk effects [12]), an improper part may alsstex
smaller one, subject to little loss in the time- or frequency In this paper, we present a novel algorithm for the MOR of
domain port response. When the port response represents ifigefinite DSs, with preservation of both system passiwityf a
admittance/impedance parameters of a passive modelnsystée possible polynomial part. This work is motivated by te r
passivity is required to be preserved to ensure globallylsta centwork in [13,14], which constructs two projection megs
system-level simulation. in MOR with one ensuring numerical accuracy and the other

Moment matching schemes based on Krylov subspace [1-4¥]eserving stability. In our work, the right projection miatis
are the most popular MOR approaches in interconnect maci@enstructed by implicit moment matching, and the left one is
modeling, due to their high numerical efficiency. In thesélerived from the positive real condition. The proposed MOR
MORs, system passivity is ensured by congruence trangas some advantages listed below:
form [3] which preserves the positive semidefinite (PSD)cstr
tures of the modified nodal analysis (MNA) equations. How- ® Passivity preservation for indefinite systems.
ever, passivity cannot be preserved by any congruence-trans
formation based scheme when the original model is not PSDe Polynomial-part preservation for singular systems.
structured, which usually occurs for EM extracted modelg d
for instance to nonsymmetric formulations, to nonsymraetri
testing schemes, to discretization errors, to approxirfese

e Lower complexity compared with PRBT, since only one
GARE is solved.

*This work was supported by DARPA, FCRP-IFC and the Mathwéitis
lowship, by Hong Kong General Research Fund Project 718588¢ by the
National Nature Science Foundation of China under grantd9804032.

e Higher numerical accuracy compared with popular
moment-matching schemes such as PRIMA [2].



This paper is structured as follows. Section Il reviews DS 2. H(s) = H(3) for s € C;
passivity and points out the limitations of existing paigiv .
preserving MORs. Section Iil presents the proposed MOR for3: 1 (s) + H"(s) = 0 for all Re(s) > 0.
indefinite nonsingular DSs and gives the algorithmic flone-Se  Theorem 1 [19]: For an admittance/impedance LTI DS, the
tion IV proves that the proposed algorithm preserves SySteﬁbsitive real condition is equivalent to: ), = MT > 0,
passivity for indefinite models. In Section V, the implengent My, = 0for k > 1; 2) H,(s) is positive real,
tion details for singular cases that have possibly imprppets e present a sufficient (but not necessary) condition for DS
are presented. The algorithm is then verified by the numeri,sitive realness, which will be used in Section IV to vetifg
cal examples in Section VI. This work is finally concluded i”passivity preservation of our proposed algorithm.

Section VII. Theorem 2 [19]: if there existW, L, X € R™" and
X = XT > 0 solving the linear matrix inequalities (LMIs)

Il. BACKGROUND OF PASSIVITY-PRESERVINGMOR ATXE + ETXA—=—LLT.
A. System Passivity of LTI DSs ETXB-ct =—-Lw, 4
A DS [denoted by~ ys(E, A, B, C, D)] is described by the D+ D" >w'w

state-space equation . .
then the DSy (FE, A, B, C, D) is positive real.

EdL(t) = Az(t) + Bu(t), y(t) = Cz(t) + Du(t). (1) . _
dt B. Passivity-Preserving MOR for PSD Models

HereE, A € R™" B, CT € R"™™™, z € R"denotes In passivity-preserving MOR, we look for two projection
the state vectory(t), y(t) € R™ are the input and output matricesU andV (with U, V' € R"*9), to generate a size-
vectors, respectively. The matrix pen¢if, A) is assumed to ¢ (¢ < n) reduced-order model (ROM)
be regular, i.e., d&tFE — A) # 0 for somes € C, whereas
E is not necessarily invertible, i.e., raff) < n. To make our E, da(t) = A, 2(t) + Byu(t), yr(t) = Crz(t) + Dul(t)
results applicable to general cases, the DS is not assumed to  d¢ ’ )
be PSD structured as re_quired in existing passivity—p@s;@r_ with B, = UTEV, A, = UTAV, B, — UTB andC, = OV,
congruence transformation based methqu [2]. The mdeﬁméuch thatH, (s) = C,(sE, — A,)~'B, + D is positive real
DSs may be generated from EM extractions of on-chip parg;

i L ) ind approximates# (s).
sitics [15, 16], or from the linearization or \olterra-sesiex- An Fe)zrf)ficient metksz)d to generaté and V is implicit mo-
pression of nonlinear circuits and devices [17,18].

There exist nonsingular matric@s 7. ¢ R"*" that reduce ment matching by Krylov-subspace methods such as (block)
(E, A) to the Weierstrass canonical foTrm Arnoldi [2] process. An ordei-block Krylov subspace
’ K; (F, R) is defined as

I, 0
0 N

J 0
E=T { }Tr A=T [ 0 Iy ]Tr @) K (F,R) = colspan{R, FR,--- ,F""'R}.  (6)
whereN is nilpotent and index: (i.e., N*~! # 0 andN* = Define R = (s)F — A)"'B and F = (soE — A)7'E,
0). The eigenvalues of are the finite eigenvalues aff — A, PRIMA [2] constructs the projection matrices by
and also the finite poles of the DS. The pend — A is said
to be stable if all eigenvalues dfhave negative real parts. (2) V=K (FR), U=V (7)

implies that then x m transfer matrix can be expressed as ) ) _ ) )
If inductors are contained, the DS is not symmetric but still

H(s)=C(sE— A 'B+D PSD structured. In this case, the block Arnoldi process [2]
1 p—1 preserves the passivity by constructing a PSD structed ROM,

=cT! [ (slg = J) 0 ] T, 'B+D+ Z Mjs" which captures moments (around,) of the original model.

k=0 If no vectors are deleted during the projection matrix carcst

Hep(s) P(s) tion, the ROM size ig = ml (with m being the port number).

(3) Despite the high efficiency, Krylov-subspace projections
with M, = CT* { 0 N T 'B. Hgy(s) is thestrictly have some well-known limitations summarized below:
properpart, andP(s) denotes th@olynomialpart which might 1. Passivity is not preserved when the original model does
be improper (when\/; # 0 for ¢ > 1). DenotingMy = D — not have a PSD structure. Normally, only the MNA equa-
My, theproperpart is readily given a#l,,(s) = Hy,(s) + M. tions for RLC networks have this special structure. The
The properness df, (s) implies that we can realize it by a non- models from EM field solvers [15,16] and the linear mod-
singular DSE,, (&, Ao, Bo, Co, Mo) with & being invertible. els in nonlinear circuit analysis [17,18] are not PSD struc-

If H(s) represents the admittance or impedance parameters, tured, and therefore their passivity can not be preserved
the corresponding LTI is passive if and onlyHf(s) is positive by the above moment matching schemes.

real [19], i.e., ) . . )
2. Since the null space @ is normally filtered out in Krylov

1. H(s) has no polesin Rg) > 0; subspace constructions [4], the resulting ROM is normally



nonsingular which misses the; (: = 0,1,---) termin
the original model. Therefore, the polynomial tefiis)

cannot be preserved by existing Krylov-subspace projec-

tions.

C. Positive-Real Balanced Truncation for Indefinite System

One way to preserve the positive realness of an indefinite

system involves using PRBT by solving a pair of Lur'e equa-
tions [4] or algebraic Riccati equations (ARES) [9]. For i@cst
positive real DS-form nonsingular syste, the generalized
AREs (GARES) are defined as

AQLET + QAT + £Q.LTCQ.ET +BBT =0  (8a)
ATQ.E+ETQ,A+ETQ.BBTQ.E+CTC=0 (8b)

where Mo + M§ > 0, & = &, B = By (Mg +/VloT)i%'

C = (My+MI) 7Co, A = Ay — BC. The symmet-
ric positive semidefinite (SPSD) matricés. and @, called
the positive-real controllability and observability Grams, re-
spectively, are the unique stabilizing solution to the GARE

Since@., Q, > 0, there exist factord.. and L, such that
Q.= L.LT andQ, = L,LL. We compute the singular value
decomposition (SVD) of. &, L..:

T X T

LI&L. =] Uy Uz}{ 22}[‘/1 Va9
where¥; = diagos,...,04), B2 =diagog41,...,0,) and
o1 > .. > 04 > 0g41 > ... > oy are the Hankel singular
values. Finally, the projection matrices are constructed a

U=LUS %, V=LV (10)

In the above PRBTE = &, is assumed to be nonsingu-

lar. The recent literatures [5, 6] show that PRBT can be per-

formed directly on a singular DS via solving a pair of progstt
GAREs which involve spectral projectors [c.f. (22)]. In Sec
tion V, we will show that with spectral projectors the proper
part H,(s) can always be realized by a nonsingular DS, and
then one GARE is enough to guarantee system passivity.
The most significant advantage of PRBT is its passivity-
preservation nature regardless of system structures. owe
two GARESs need to be solved in the PRBT flow. Although th

%o

e Step 1: Construct the right projection matrikX. This
matrix can be constructed by various existing methods to
guarantee numerical accuracy. Here we use the block Arn-
odi algorithm as in PRIMA [2], which leads 6 € R™*4,

q ~ ml if vector deflation is omitted}” can also be ob-
tained by multi-point Krylov subspace if wide-band accu-
racy is required.

e Step 2: Solve@, > 0 from the GARE (8b). Here, New-
ton’s method can be used [6, 10], and in each iteration
a generalized Lyapunov function can be solved by LR-
GADI [20] at the complexity ofO(n?). Alternatively,
¥, can be first converted to a standard state-space model
by absorbingé, into Ay and By, followed by comput-
ing the corresponding positive-real observability Gramia
Qs*, and finally gettingQ, = & 7 Q3°&; . The stan-
dard ARE can be solved efficiently by QADI [9] without
Newton iterations, but huge numerical errors may be in-
troduced in matrix inversion i, is ill-conditioned. An-
other problem is that matrix sparsity is normally destroyed
by the matrix inversion.

e Step 3: Analogous to [14], we construct the left projection
matrix U by

Ul = (vTel Q& V) 'vTelQ,. (11)
SinceV € R™*4, this step only cost®)(q?), which is
very cheap. Here we have assumed tHat! Q,&V is
invertible (similar to the situation in [13]), which is nor-
mally true in practice. Note that an additional condition
@, > 0 is required if we attempt to guarantee the the-
oretical invertability. Becausg, is nonsingular, and all
column vectors o are linearly independent, when the
Gramian is positive definitetf, > 0), theq x ¢ matrix
VTEXQ,EV > 0and the matrix inversion is well posed.

e Step 4: Construct the ROME,,. (&or, Aor, Bor, Cor,
Mo,) by &, UTEV, Aoy UT AV, By =
UTBy, Cor = CoV and Mg, = M,. Becauses,, =
(VIELQ,&V)WVTELQ,EV = I, the obtained ROM
is a standard state-space model.

Remark: As U is constructed by (11), we have
IspadqU} C colspaq@,}, which is similar to the case in

cost could be reduced t(n?) for sparse systems by Newton’s PRBT [c.f. (9) & (10)]. Becaus& is in the range of the ob-

iteration [6,10] and although a generalized Lyapunov eqoat

servability Gramiar@),, the proposed MOR has superior accu-

solver has been recently developed based on LR-GADI [20]’|’5cy over PRIMA which simply set§ = V. This property

is still desirable to develop a cheaper routine for passi@RV
of indefinite systems.

Ill. PROPOSEDMOR SCHEME

Similar to [13], we begin with the nonsingular DS
¥, (&0, Ao, Bo, Co, My), which does not necessarily have a
PSD structure and therefore passivity is not guaranteed

will be verified by the numerical examples in Section VI.

IV. PASSIVITY PRESERVATION

In this section, we show that the proposed MOR scheme gen-

erates passive ROMs. Since the obtained ROM is a standard
tate-space model, Theorem 2 implies that this ROM is passiv
Pthere existW,., L., X, € R?*%andX, = X! > 0 solving

existing Krylov-subspace projection methods. This sectio
O ) - .the LMIs
presents the passivity-preserving MOR flow, whose pagsivit AT X, + X, Ay, = —L, LT
preservation property and implementation for singulatesys o= T . T
will be covered in Sections IV & V. XoBor — Cop = =L W, (12)

The proposed MOR consists of four steps as follows.

Mo+ MET >wWIw,.



Lemma 1: When the ROM is constructed as in Section lll,

there exists a symmetrig,,. > 0 that solves the ARE

A;{Qor + QOTAT + QOTBTBZQOT + C»,TCT =0 (13)

Here A, = UT AV, B, = UTBandC, = CV, withU defined
in (11).
Proof: We define the quadratic matrix function

U (X)=ATX + XA, + XB.BTX +CTC,  (14)

with X = XT. Lemma 1 holds if we can find akr > 0 such
that
T (X)=0. (15)

In fact, a feasible solution to (15) & = VTETQ,EV > 0,

where V' is the right projection matrix used in the propose
MOR scheme, and), > 0 is the readily obtained stabilizing

solution to (8b). To see this, we rewrife(X) as

U (X) =VIATUVTETQ.EV + VT ETQ.EVUT AV
+VTeTQ.evurBBTUVTETQ,V +VTccTV.
(16)
According to (11) and = &, we have

UVITETQ.EV = Q,EV(VIETQ,EV) VT ETQ .V
= Q,EV
17)
which reduces (16) to

() = VT (ATQuE + E7QuA + ETQuBBETQuE +CCT) V.
(18)
Since @, solves (8b), we havel (X¥) = 0 and Q. =

VTETQ,EV > 0 solves the ARE (13).

0

V. PASSIVE MOR FOR SINGULAR MODELS

This section applies the proposed MOR to singular DSs, to
preserve both passivity and the possible polynomial past. F
a passive singular DS, its transfer matrix can be written as
H(s) = Hp(s) + sMy with My > 0 and H,(s) positive real.
The improper parsM; may appear, for example, when strong
crosstalk effects exist [12]. Although the block Arnoldiopr
cess preserves the PSD structures for MNA equatibfdc.f.
the definition under (3)] and/; are normally lost, and there-
fore the polynomial parP(s) cannot be accurately captured.
For indefinite singular models from EM solvers, neither pas-
sivity can be preserved, ndt(s) can be captured by existing
Krylov-subspace moment matchings.

Forasingular DS, ifE, A) is regular, there exist the left and

dright spectral projectors defined as

I, 0

0 0

PZTZ{ 0 0

:| j-vl—l Pr — T71 |: Iq 0

} T. (22)

which can be formed by canonical projector technique [7, 8]
without computing the expensive and possibly unstable eie
strass canonical form. For MNA equation8, and P, can
be obtained by their closed forms if the circuit topology is
given [5, 6]. If we do not know the circuit topology or the
DS is generated by EM solvers, thus often indefinite, spectra
projectors can be constructed at the cosDof) to O(n?) by
exploiting the matrix sparsity [21]. Witl#, and P,., two pro-
jected GARESs can be solved to balance and truncate the orig-
inal singular DS [5, 6], with passivity and the polynomiakipa
preserved.

Here we present a novel and more efficient method: we use
spectral projectors to extract the improper part and recocts
the proper part by a nonsingular DS; after that the propdr-pa
model is reduced by the proposed MOR via solving only one

Lemma 2: If the ROM is constructed as in Section II, thereGARE. The framework is summarized below.

existW,, L., X, € R™™%andX, = X! > 0 solving the
LMIs in (12).

Proof: We setM,+ M = W W,, thenW,. can be solved

asW, = (Mo + MOT)%. We further set
XTBOT - Cg; = _L’I‘WT‘ (19)

which gives

[SE

LT = - (X’I‘BOT - Cg;) (MO + Mg)_

(20)
=-X,.B,+CF.

e Step 1:Projector-based system decomposition. Witk
0, we extract the proper subsystem by

Eo = EPT - OzA(I - P,«); .Ao = A, (23)
Co=CP,., By =B, My=G(0).
Here G(s)=C(I — P,)(sE—A)"'B+D. Mean-
while, M; can be extracted by
]\4‘1 _ G(Sl) B G(SQ) (24)

81— $2

Then the LMI problem reduces to looking for an SPSD matrix

X, such that
APX, + X, A, + X, B.B'X, +Cc'Cc, =0. (21)

Lemma 1 implies that a feasible solution to (21)X5 =
Qor = VTETQOEV > 0.

O

According to Lemmas 1 & 2, as well as Theorem 2, the pas-

sivity of the obtained ROM is guaranteed.

with s1,s5 € R* randomly selected. It is straightfor-
ward to prove that, (&, Ao, By, Co, M) is a realiza-
tion of the proper and positive real functiéf),(s). Mean-
while (23) ensures thd, is nonsingular.

e Step 2 Reduce the proper subsystem
2, (&, Ao, By, Co, Mp).  Use the MOR scheme pro-
posed in Section lll to reduce the proper subsystem,
obtaining a ROM&y,., Ao, Bor, Cor, Mg. In this step,
the improper part is unchanged.



e Step 3: Singular ROM reconstruction. Construct a ROM

. . TABLE |
for the original singular system COMPARISON OF DIFFERENTMORS FOR THE INDEFINITE PROPEFDS.
Eor Aoy Model Size| Number of Port| PRIMA (sec) | PRBT (sec)| Proposed (sec)
E, = 0 I, |,A. = I, , 1505 5 1.76 507.8 243.1
L 0 0 I,
Boy (a) Frequency response, port(1,1)
B, = 0 ,Cr = [ Cor —1Im O ] , Dy = M. g"‘j C I _._on‘lg‘m] |
M1 s proposed
) (25) i —ommma |
One can prove that the resulting transfer matrix is &= T |
— -1 = e 1
Hy (s) - C”(SET - A’") By + Mo + sM. 2 4 90 20 30 40 50 i
. ) = Zoom in
From the results in Section IV, we know thaf,.(s) = E 4 1
C.(sE,—A,)"'B,+ M, is positive real. Sincé/; = M{ > Z a3t 8
0, according to Theorem 1, the final ROM is passive. The  zr :
proposed scheme has some advantages over the existing alg 't .
rithms: R v o 10 10’ 10° 10
Angular frequency (rad/s)

e Only one GARE is required compared with the the DS-
form PRBT, which requires solving two GAREs and is » (b) MOR error, port(1.1)
directly performed on singular DSs [5, 6]. ' ,

.,
"

e We only need to approximate the strictly proper part “r e
H,,(s). BecauseH,,(s) monolithically decays in the
high-frequency band, we only need to match its moments £
in the low-frequency band, and therefore significantly = -+ e T e proposed
fewer expansion points are needed compared with exist |~ o
ing moment-matching schemes. T S T e

Angular ﬁ'equency (rad/s)

e The polynomial part is preserved without any numerical
error, therefore the obtained ROM is very accurate in tr{‘_ﬁ 1. Accuracy comparison of various MOR schemes for the indefinite
high-frequency band. Because the low-frequency-ba ictly properHs, (s). (@) The frequency response of port (1,1); (b) the
response can be easily captured by moment matching, thenerical errors of the ROMs obtained by different algorithive can see

proposed a|g0rithm has very good g|0ba| accuracy. that PRBT is not accurate in the low-frequency band, and PRIiEV
inaccurate in the high-frequency band, but the proposed M&RIt is

indistinguishable with the original one in the whole fregag band.

VI. NUMERICAL EXAMPLES

This section verifies the proposed MOR using an order-1505
coupledRLC interconnect example. This MNA model has a We compare the accuracy of different MORs, by plotting
singular E matrix, D = 0, and the port number i5. Due to the frequency response of the strictly proper part (f&,(s)
the strong crosstalk effects, this DS model has an improgrer pwhich approaches ass — oc). As shown in Fig. 1, PRBT
which cannot be captured by conventional moment matching3as higher accuracy over PRIMA in the high-frequency band,
Note that although this model is PSD structured, the exithct but lower accuracy in the low-frequency band. Compared with
proper subsystem is indefinite. All algorithms are impletedn PRIMA, the proposed MOR has higher global accuracy. If ex-
in Matlab and executed in a 2.66 GHz desktop with 2 GB apansion points in the high-frequency band are used, the-accu
RAM . racy of the projection-based MORs can be further improved.

Since thisRLC model is a singular DS, in the first step we To verify the passivity of the proper part (i.e,(s) =
use the right spectral projector to extract the proper and inf,,(s)+.M) of the obtained ROMs, we compute the general-
proper parts. This step (projector construction plus syste- ized eigenvalues of the passivity test matrix pencils aetbpt
composition) cost®.015 seconds, which is negligible in the generalized Hamiltonian method (GHM [22,23]). As shown in
MOR process. The extracted proper subsystem mem@sin- Fig. 2, GHM finds many purely imaginary results for the ROM
gular indefiniteDS, which is reduced to an order-50 ROM byof PRIMA, which implies that PRIMA cannot preserve passiv-
PRIMA [2], a DS-form PRBT [5, 6] and the MOR scheme pro-ty for this indefinite DS. On the other hand, the ROM from
posed in this paper. The CPU times are listed in Table I. Faur proposed algorithm is passive, since no purely imaginar
fairness, we use the DC point as the single expansion pointgeneralized eigenvalues are obtained by GHM.
both PRIMA and in our MOR scheme. PRIMA is the fastest, Finally, we compare our method and PRIMA directly on
which is expected due to its sparse matrix-vector operstiorthe original singulaRLC model (ROM size:50). Again, we
Compared with PRBT, the proposed algorithm is more than compare their accuracy in approximating the original tfans
faster since only one GARE is solved and it does not requée timatrix. As plotted in Fig. 3, the proposed MOR can accu-
matrix factorization in (9). rately capture the polynomial part and the approximated re-



(a) GHM test result, PRIMA (b) GHM test result, proposed
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