
MIT Open Access Articles

A Moment-Matching Scheme for the Passivity-
Preserving Model Order Reduction of Indefinite 

Descriptor Systems with Possible Polynomial Parts

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zhang, Zheng, Qing Wang, Ngai Wong, and Luca Daniel. “A Moment-Matching Scheme 
for the Passivity-Preserving Model Order Reduction of Indefinite Descriptor Systems with 
Possible Polynomial Parts.” 16th Asia and South Pacific Design Automation Conference (ASP-
DAC 2011) (January 2011).

As Published: http://dx.doi.org/10.1109/ASPDAC.2011.5722240

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/108452

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/108452
http://creativecommons.org/licenses/by-nc-sa/4.0/


A Moment-Matching Scheme for the Passivity-Preserving Model Order Reduction
of Indefinite Descriptor Systems with Possible Polynomial Parts∗

‡Zheng Zhang,§Qing Wang,§Ngai Wong, and‡Luca Daniel
‡Department of Electrical Engineering & Computer Science, MIT, Cambridge, MA 02139, USA
§Department of Electrical & Electronic Engineering, The University of Hong Kong, Hong Kong

Emails:‡{z zhang, luca}@mit.deu, §{wangqing, nwong}@eee.hku.hk

Abstract— Passivity-preserving model order reduction (MOR)
of descriptor systems (DSs) is highly desired in the simulation of
VLSI interconnects and on-chip passives. One popular method
is PRIMA, a Krylov-subspace projection approach which pre-
serves the passivity of positive semidefinite (PSD) structured DSs.
However, system passivity is not guaranteed by PRIMA when the
system is indefinite. Furthermore, the possible polynomial parts
of singular systems are normally not captured. For indefinite
DSs, positive-real balanced truncation (PRBT) can generate pas-
sive reduced-order models (ROMs), whose main bottleneck lies
in solving the dual expensive generalized algebraic Riccati equa-
tions (GAREs). This paper presents a novel moment-matching
MOR for indefinite DSs, which preserves both the system passivity
and, if present, also the improper polynomial part. This method
only requires solving one GARE, therefore it is cheaper than ex-
isting PRBT schemes. On the other hand, the proposed algorithm
is capable of preserving the passivity of indefinite DSs, which is
not guaranteed by traditional moment-matching MORs. Exam-
ples are finally presented showing that our method is superior to
PRIMA in terms of accuracy.

I. I NTRODUCTION

Model order reduction (MOR) has become a standard tech-
nique in the computer-aided simulation of VLSI interconnect
structures and on-chip passive components. The basic idea of
MOR is to replace the original huge-size model by a much
smaller one, subject to little loss in the time- or frequency-
domain port response. When the port response represents the
admittance/impedance parameters of a passive model, system
passivity is required to be preserved to ensure globally stable
system-level simulation.

Moment matching schemes based on Krylov subspace [1–3]
are the most popular MOR approaches in interconnect macro-
modeling, due to their high numerical efficiency. In these
MORs, system passivity is ensured by congruence trans-
form [3] which preserves the positive semidefinite (PSD) struc-
tures of the modified nodal analysis (MNA) equations. How-
ever, passivity cannot be preserved by any congruence trans-
formation based scheme when the original model is not PSD
structured, which usually occurs for EM extracted models, due
for instance to nonsymmetric formulations, to nonsymmetric
testing schemes, to discretization errors, to approximatefast
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matrix-vector products, and to the use of frequency dependent
fullwave or substrate Green Functions. Besides, a huge numer-
ical error may be produced when the original model is a singu-
lar descriptor system (DS) and contains a polynomial part. In
this paper we will refer to the models with non-PSD structures
asindefinitesystems.

To preserve the passivity of indefinite systems, the Gramian-
based positive-real balanced truncation (PRBT [4]) can be em-
ployed. In [4], the DS model is decomposed by the Weierstrass
canonical form, which is prohibitively expensive and possibly
unstable. After that, PRBT is performed on a standard state-
space equation. Since the originalRLCor EM-extracted mod-
els are of DS form, a more reliable approach is to perform
PRBT on the original possibly singular DSs involving spectral
projectors [5–8]. The main bottleneck of PRBT lies in solving
the double (generalized) algebraic Riccati equations (AREs or
GAREs) at the cost ofO(n3). Although state-of-the-art ARE
and GARE solvers [9,10] can remarkably reduce the complex-
ity, PRBT is still much more expensive than Krylov-subspace
projections. For some standard symmetric state-space models,
only one ARE is needed in the PRBT procedure [11], however
such method is not applicable to asymmetric models or sin-
gular systems. Therefore, it is desirable to develop a cheaper
MOR for indefinite DSs, to preserve system passivity and the
possible polynomial part. The polynomial part is normally a
nonzero constant term; in some cases (e.g., interconnects with
strong crosstalk effects [12]), an improper part may also exist.

In this paper, we present a novel algorithm for the MOR of
indefinite DSs, with preservation of both system passivity and
the possible polynomial part. This work is motivated by the re-
cent work in [13,14], which constructs two projection matrices
in MOR with one ensuring numerical accuracy and the other
preserving stability. In our work, the right projection matrix is
constructed by implicit moment matching, and the left one is
derived from the positive real condition. The proposed MOR
has some advantages listed below:

• Passivity preservation for indefinite systems.

• Polynomial-part preservation for singular systems.

• Lower complexity compared with PRBT, since only one
GARE is solved.

• Higher numerical accuracy compared with popular
moment-matching schemes such as PRIMA [2].



This paper is structured as follows. Section II reviews DS
passivity and points out the limitations of existing passivity-
preserving MORs. Section III presents the proposed MOR for
indefinite nonsingular DSs and gives the algorithmic flow. Sec-
tion IV proves that the proposed algorithm preserves system
passivity for indefinite models. In Section V, the implementa-
tion details for singular cases that have possibly improperparts
are presented. The algorithm is then verified by the numeri-
cal examples in Section VI. This work is finally concluded in
Section VII.

II. BACKGROUND OFPASSIVITY-PRESERVINGMOR

A. System Passivity of LTI DSs

A DS [denoted byΣds(E,A,B,C,D)] is described by the
state-space equation

E
dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t). (1)

HereE, A ∈ R
n×n, B, CT ∈ R

n×m, x ∈ R
n denotes

the state vector;u(t), y(t) ∈ R
m are the input and output

vectors, respectively. The matrix pencil(E,A) is assumed to
be regular, i.e., det(sE − A) 6= 0 for somes ∈ C, whereas
E is not necessarily invertible, i.e., rank(E) ≤ n. To make our
results applicable to general cases, the DS is not assumed to
be PSD structured as required in existing passivity-preserving
congruence transformation based methods [2]. The indefinite
DSs may be generated from EM extractions of on-chip para-
sitics [15, 16], or from the linearization or Volterra-series ex-
pression of nonlinear circuits and devices [17,18].

There exist nonsingular matricesTl, Tr ∈ R
n×n that reduce

(E,A) to the Weierstrass canonical form

E = Tl

[
Iq 0
0 N

]

Tr A = Tl

[
J 0
0 In−q

]

Tr (2)

whereN is nilpotent and index-µ (i.e.,Nµ−1 6= 0 andNµ =
0). The eigenvalues ofJ are the finite eigenvalues ofλE − A,
and also the finite poles of the DS. The pencilλE − A is said
to be stable if all eigenvalues ofJ have negative real parts. (2)
implies that them×m transfer matrix can be expressed as

H(s) = C(sE −A)−1
B +D

= CT
−1
r

[
(sIq − J)−1

0

]

T
−1
l B

︸ ︷︷ ︸

Hsp(s)

+D +

µ−1∑

k=0

Mks
k

︸ ︷︷ ︸

P (s)

(3)

with Mk = CT−1
r

[
0

−Nk

]

T−1
l B. Hsp(s) is thestrictly

properpart, andP (s) denotes thepolynomialpart which might
be improper (whenMi 6= 0 for i ≥ 1). DenotingM0 = D −
M0, theproperpart is readily given asHp(s) = Hsp(s)+M0.
The properness ofHp(s) implies that we can realize it by a non-
singular DSΣp(E0,A0,B0, C0,M0) with E0 being invertible.

If H(s) represents the admittance or impedance parameters,
the corresponding LTI is passive if and only ifH(s) is positive
real [19], i.e.,

1. H(s) has no poles in Re(s) > 0;

2. H(s) = H(s) for s ∈ C;

3. H(s) +H∗(s) ≥ 0 for all Re(s) > 0.

Theorem 1 [19]: For an admittance/impedance LTI DS, the
positive real condition is equivalent to: 1)M1 = MT

1 ≥ 0,
Mk = 0 for k > 1; 2) Hp(s) is positive real.

We present a sufficient (but not necessary) condition for DS
positive realness, which will be used in Section IV to verifythe
passivity preservation of our proposed algorithm.

Theorem 2 [19]: if there existW, L, X ∈ R
n×n and

X = XT ≥ 0 solving the linear matrix inequalities (LMIs)











ATXE + ETXA = −LLT ,

ETXB − CT = −LW,

D +DT ≥ WTW

(4)

then the DSΣds(E,A,B,C,D) is positive real.

B. Passivity-Preserving MOR for PSD Models

In passivity-preserving MOR, we look for two projection
matricesU andV (with U, V ∈ R

n×q), to generate a size-
q (q ≪ n) reduced-order model (ROM)

Er

dz(t)

dt
= Arz(t) +Bru(t), yr(t) = Crz(t) +Du(t)

(5)
with Er = UTEV , Ar = UTAV , Br = UTB andCr = CV ,
such thatHr(s) = Cr(sEr − Ar)

−1Br + D is positive real
and approximatesH(s).

An efficient method to generateU andV is implicit mo-
ment matching by Krylov-subspace methods such as (block)
Arnoldi [2] process. An order-l block Krylov subspace
Kl (F,R) is defined as

Kl (F,R) = colspan
{

R,FR, · · · , F l−1R
}

. (6)

Define R = (s0E − A)−1B and F = (s0E − A)−1E,
PRIMA [2] constructs the projection matrices by

V = Kl (F,R) , U = V. (7)

If inductors are contained, the DS is not symmetric but still
PSD structured. In this case, the block Arnoldi process [2]
preserves the passivity by constructing a PSD structed ROM,
which capturesl moments (arounds0) of the original model.
If no vectors are deleted during the projection matrix construc-
tion, the ROM size isq = ml (with m being the port number).

Despite the high efficiency, Krylov-subspace projections
have some well-known limitations summarized below:

1. Passivity is not preserved when the original model does
not have a PSD structure. Normally, only the MNA equa-
tions for RLC networks have this special structure. The
models from EM field solvers [15,16] and the linear mod-
els in nonlinear circuit analysis [17,18] are not PSD struc-
tured, and therefore their passivity can not be preserved
by the above moment matching schemes.

2. Since the null space ofE is normally filtered out in Krylov
subspace constructions [4], the resulting ROM is normally



nonsingular which misses theMi (i = 0, 1, · · · ) term in
the original model. Therefore, the polynomial termP (s)
cannot be preserved by existing Krylov-subspace projec-
tions.

C. Positive-Real Balanced Truncation for Indefinite Systems

One way to preserve the positive realness of an indefinite
system involves using PRBT by solving a pair of Lur’e equa-
tions [4] or algebraic Riccati equations (AREs) [9]. For a strict
positive real DS-form nonsingular systemΣp, the generalized
AREs (GAREs) are defined as

AQcE
T + EQcA

T + EQcC
T CQcE

T + BBT = 0 (8a)

ATQoE + ETQoA+ ETQoBB
TQoE + CT C = 0 (8b)

whereM0 + MT
0 > 0, E = E0, B = B0

(

M0 +MT
0

)

−
1

2 ,

C =
(

M0 +MT
0

)

−
1

2 C0, A = A0 − BC. The symmet-
ric positive semidefinite (SPSD) matricesQc andQo, called
the positive-real controllability and observability Gramians, re-
spectively, are the unique stabilizing solution to the GAREs.

SinceQc, Qo ≥ 0, there exist factorsLc andLo such that
Qc = LcL

T
c andQo = LoL

T
o . We compute the singular value

decomposition (SVD) ofLT
o E0Lc:

LT
o E0Lc =

[

U1 U2

]

[

Σ1

Σ2

]

[

V1 V2

]T
, (9)

where Σ1 = diag(σ1, ..., σq), Σ2 =diag(σq+1, ..., σn) and
σ1 ≥ ... ≥ σq ≥ σq+1 ≥ ... ≥ σn are the Hankel singular
values. Finally, the projection matrices are constructed as

U = LoU1Σ
−

1

2

1 , V = LcV1Σ
−

1

2

1 . (10)

In the above PRBT,E = E0 is assumed to be nonsingu-
lar. The recent literatures [5, 6] show that PRBT can be per-
formed directly on a singular DS via solving a pair of projected
GAREs which involve spectral projectors [c.f. (22)]. In Sec-
tion V, we will show that with spectral projectors the proper
partHp(s) can always be realized by a nonsingular DS, and
then one GARE is enough to guarantee system passivity.

The most significant advantage of PRBT is its passivity-
preservation nature regardless of system structures. However,
two GAREs need to be solved in the PRBT flow. Although the
cost could be reduced toO(n2) for sparse systems by Newton’s
iteration [6,10] and although a generalized Lyapunov equation
solver has been recently developed based on LR-GADI [20], it
is still desirable to develop a cheaper routine for passive MOR
of indefinite systems.

III. PROPOSEDMOR SCHEME

Similar to [13], we begin with the nonsingular DS
Σp(E0,A0,B0, C0,M0), which does not necessarily have a
PSD structure and therefore passivity is not guaranteed by
existing Krylov-subspace projection methods. This section
presents the passivity-preserving MOR flow, whose passivity-
preservation property and implementation for singular systems
will be covered in Sections IV & V.

The proposed MOR consists of four steps as follows.

• Step 1: Construct the right projection matrixV . This
matrix can be constructed by various existing methods to
guarantee numerical accuracy. Here we use the block Arn-
odi algorithm as in PRIMA [2], which leads toV ∈ R

n×q,
q ≈ ml if vector deflation is omitted.V can also be ob-
tained by multi-point Krylov subspace if wide-band accu-
racy is required.

• Step 2: SolveQo ≥ 0 from the GARE (8b). Here, New-
ton’s method can be used [6, 10], and in each iteration
a generalized Lyapunov function can be solved by LR-
GADI [20] at the complexity ofO(n2). Alternatively,
Σp can be first converted to a standard state-space model
by absorbingE0 into A0 andB0, followed by comput-
ing the corresponding positive-real observability Gramian
Qss

o , and finally gettingQo = E−T
0 Qss

o E−1

0 . The stan-
dard ARE can be solved efficiently by QADI [9] without
Newton iterations, but huge numerical errors may be in-
troduced in matrix inversion ifE0 is ill-conditioned. An-
other problem is that matrix sparsity is normally destroyed
by the matrix inversion.

• Step 3:Analogous to [14], we construct the left projection
matrixU by

UT = (V TET
0 QoE0V )−1V T ET

0 Qo. (11)

SinceV ∈ R
n×q, this step only costsO(q3), which is

very cheap. Here we have assumed thatV TET
0 QoE0V is

invertible (similar to the situation in [13]), which is nor-
mally true in practice. Note that an additional condition
Qo > 0 is required if we attempt to guarantee the the-
oretical invertability. BecauseE0 is nonsingular, and all
column vectors ofV are linearly independent, when the
Gramian is positive definite (Qo > 0), theq × q matrix
V TET

0 QoE0V > 0 and the matrix inversion is well posed.

• Step 4: Construct the ROMΣpr (E0r, A0r, B0r, C0r,
M0r) by E0r = UTE0V, A0r = UTA0V, B0r =
UTB0, C0r = C0V andM0r = M0. BecauseE0r =
(V TET

0 QoE0V )−1V TET
0 QoE0V = I, the obtained ROM

is a standard state-space model.

Remark: As U is constructed by (11), we have
colspan{U} ⊂ colspan{Qo}, which is similar to the case in
PRBT [c.f. (9) & (10)]. BecauseU is in the range of the ob-
servability GramianQo, the proposed MOR has superior accu-
racy over PRIMA which simply setsU = V . This property
will be verified by the numerical examples in Section VI.

IV. PASSIVITY PRESERVATION

In this section, we show that the proposed MOR scheme gen-
erates passive ROMs. Since the obtained ROM is a standard
state-space model, Theorem 2 implies that this ROM is passive
if there existWr, Lr, Xr ∈ R

q×q andXr = XT
r ≥ 0 solving

the LMIs










AT
0rXr +XrA0r = −LrL

T
r ,

XrB0r − CT
0r = −LrWr,

M0 +MT
0 ≥ WT

r Wr.

(12)



Lemma 1: When the ROM is constructed as in Section III,
there exists a symmetricQor ≥ 0 that solves the ARE

AT
r Qor +QorAr +QorBrB

T
r Qor + CT

r Cr = 0 (13)

HereAr = UTAV , Br = UTB andCr = CV , withU defined
in (11).

Proof: We define the quadratic matrix function

Ψ(X ) = AT
r X + XAr + XBrB

T
r X + CT

r Cr (14)

with X = X T . Lemma 1 holds if we can find anX ≥ 0 such
that

Ψ(X ) = 0. (15)

In fact, a feasible solution to (15) is̄X = V T ETQoEV ≥ 0,
whereV is the right projection matrix used in the proposed
MOR scheme, andQo ≥ 0 is the readily obtained stabilizing
solution to (8b). To see this, we rewriteΨ

(

X̄
)

as

Ψ
(

X̄
)

= V TATUV TETQoEV + V TETQoEV UTAV

+V T ETQoEV UTBBTUV TETQoEV + V T CCTV.
(16)

According to (11) andE = E0, we have

UV TETQoEV = QoEV (V T ETQoEV )−1V T ETQoEV

= QoEV
(17)

which reduces (16) to

Ψ
(
X̄
)
= V

T
(

A
T
QoE + E

T
QoA+ E

T
QoBB

T
QoE + CC

T
)

V.

(18)
Since Qo solves (8b), we haveΨ

(

X̄
)

= 0 and Qor =
V TETQoEV ≥ 0 solves the ARE (13).

�

Lemma 2: If the ROM is constructed as in Section III, there
existWr, Lr, Xr ∈ R

q×q andXr = XT
r ≥ 0 solving the

LMIs in (12).
Proof: We setM0+MT

0 = WT
r Wr, thenWr can be solved

asWr =
(

M0 +MT
0

)
1

2 . We further set

XrB0r − CT
0r = −LrWr (19)

which gives

Lr = −
(

XrB0r − CT
0r

) (

M0 +MT
0

)−
1

2

= −XrBr + CT
r .

(20)

Then the LMI problem reduces to looking for an SPSD matrix
Xr such that

AT
r Xr +XrAr +XrBrB

T
r Xr + CT

r Cr = 0. (21)

Lemma 1 implies that a feasible solution to (21) isXr =
Qor = V TETQoEV ≥ 0.

�

According to Lemmas 1 & 2, as well as Theorem 2, the pas-
sivity of the obtained ROM is guaranteed.

V. PASSIVE MOR FOR SINGULAR MODELS

This section applies the proposed MOR to singular DSs, to
preserve both passivity and the possible polynomial part. For
a passive singular DS, its transfer matrix can be written as
H(s) = Hp(s) + sM1 with M1 ≥ 0 andHp(s) positive real.
The improper partsM1 may appear, for example, when strong
crosstalk effects exist [12]. Although the block Arnoldi pro-
cess preserves the PSD structures for MNA equations,M0 [c.f.
the definition under (3)] andsM1 are normally lost, and there-
fore the polynomial partP (s) cannot be accurately captured.
For indefinite singular models from EM solvers, neither pas-
sivity can be preserved, norP (s) can be captured by existing
Krylov-subspace moment matchings.

For a singular DS, if(E,A) is regular, there exist the left and
right spectral projectors defined as

Pl = Tl

[

Iq 0
0 0

]

T−1

l , Pr = T−1
r

[

Iq 0
0 0

]

Tr (22)

which can be formed by canonical projector technique [7, 8]
without computing the expensive and possibly unstable Weier-
strass canonical form. For MNA equations,Pl andPr can
be obtained by their closed forms if the circuit topology is
given [5, 6]. If we do not know the circuit topology or the
DS is generated by EM solvers, thus often indefinite, spectral
projectors can be constructed at the cost ofO(n) to O(n2) by
exploiting the matrix sparsity [21]. WithPl andPr, two pro-
jected GAREs can be solved to balance and truncate the orig-
inal singular DS [5, 6], with passivity and the polynomial part
preserved.

Here we present a novel and more efficient method: we use
spectral projectors to extract the improper part and reconstruct
the proper part by a nonsingular DS; after that the proper-part
model is reduced by the proposed MOR via solving only one
GARE. The framework is summarized below.

• Step 1:Projector-based system decomposition. Withα >

0, we extract the proper subsystem by

E0 = EPr − αA(I − Pr); A0 = A,

C0 = CPr, B0 = B, M0 = G(0).
(23)

Here G(s) = C(I − Pr)(sE −A)−1B +D. Mean-
while,M1 can be extracted by

M1 =
G(s1)−G(s2)

s1 − s2
(24)

with s1, s2 ∈ R
+ randomly selected. It is straightfor-

ward to prove thatΣp(E0,A0,B0, C0,M0) is a realiza-
tion of the proper and positive real functionHp(s). Mean-
while (23) ensures thatE0 is nonsingular.

• Step 2: Reduce the proper subsystem
Σp(E0,A0,B0, C0,M0). Use the MOR scheme pro-
posed in Section III to reduce the proper subsystem,
obtaining a ROME0r,A0r,B0r, C0r,M0. In this step,
the improper part is unchanged.



• Step 3: Singular ROM reconstruction. Construct a ROM
for the original singular system

Er =





E0r
0 Im
0 0



 , Ar =





A0r

Im
Im



 ,

Br =





B0r

0
M1



 , Cr =
[

C0r −Im 0
]

, Dr = M0.

(25)
One can prove that the resulting transfer matrix is
Hr(s) = Cr(sEr −Ar)

−1Br +M0 + sM1.

From the results in Section IV, we know thatHpr(s) =
Cr(sEr−Ar)

−1Br+M0 is positive real. SinceM1 = MT
1 ≥

0, according to Theorem 1, the final ROM is passive. The
proposed scheme has some advantages over the existing algo-
rithms:

• Only one GARE is required compared with the the DS-
form PRBT, which requires solving two GAREs and is
directly performed on singular DSs [5,6].

• We only need to approximate the strictly proper part
Hsp(s). BecauseHsp(s) monolithically decays in the
high-frequency band, we only need to match its moments
in the low-frequency band, and therefore significantly
fewer expansion points are needed compared with exist-
ing moment-matching schemes.

• The polynomial part is preserved without any numerical
error, therefore the obtained ROM is very accurate in the
high-frequency band. Because the low-frequency-band
response can be easily captured by moment matching, the
proposed algorithm has very good global accuracy.

VI. N UMERICAL EXAMPLES

This section verifies the proposed MOR using an order-1505
coupledRLC interconnect example. This MNA model has a
singularE matrix, D = 0, and the port number is5. Due to
the strong crosstalk effects, this DS model has an improper part
which cannot be captured by conventional moment matchings.
Note that although this model is PSD structured, the extracted
proper subsystem is indefinite. All algorithms are implemented
in Matlab and executed in a 2.66 GHz desktop with 2 GB of
RAM .

Since thisRLC model is a singular DS, in the first step we
use the right spectral projector to extract the proper and im-
proper parts. This step (projector construction plus system de-
composition) costs0.015 seconds, which is negligible in the
MOR process. The extracted proper subsystem is anonsin-
gular indefiniteDS, which is reduced to an order-50 ROM by
PRIMA [2], a DS-form PRBT [5,6] and the MOR scheme pro-
posed in this paper. The CPU times are listed in Table I. For
fairness, we use the DC point as the single expansion point in
both PRIMA and in our MOR scheme. PRIMA is the fastest,
which is expected due to its sparse matrix-vector operations.
Compared with PRBT, the proposed algorithm is more than2×
faster since only one GARE is solved and it does not require the
matrix factorization in (9).

TABLE I
COMPARISON OF DIFFERENTMORS FOR THE INDEFINITE PROPERDS.

Model Size Number of Port PRIMA (sec) PRBT (sec) Proposed (sec)
1505 5 1.76 507.8 243.1
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Fig. 1. Accuracy comparison of various MOR schemes for the indefinite
strictly properHsp(s). (a) The frequency response of port (1,1); (b) the
numerical errors of the ROMs obtained by different algorithms. We can see
that PRBT is not accurate in the low-frequency band, and PRIMA is
inaccurate in the high-frequency band, but the proposed MORresult is
indistinguishable with the original one in the whole frequency band.

We compare the accuracy of different MORs, by plotting
the frequency response of the strictly proper part (i.e.,Hsp(s)
which approaches0 ass → ∞). As shown in Fig. 1, PRBT
has higher accuracy over PRIMA in the high-frequency band,
but lower accuracy in the low-frequency band. Compared with
PRIMA, the proposed MOR has higher global accuracy. If ex-
pansion points in the high-frequency band are used, the accu-
racy of the projection-based MORs can be further improved.

To verify the passivity of the proper part (i.e.,Hp(s) =
Hsp(s)+M0) of the obtained ROMs, we compute the general-
ized eigenvalues of the passivity test matrix pencils adopted in
generalized Hamiltonian method (GHM [22,23]). As shown in
Fig. 2, GHM finds many purely imaginary results for the ROM
of PRIMA, which implies that PRIMA cannot preserve passiv-
ity for this indefinite DS. On the other hand, the ROM from
our proposed algorithm is passive, since no purely imaginary
generalized eigenvalues are obtained by GHM.

Finally, we compare our method and PRIMA directly on
the original singularRLC model (ROM size:50). Again, we
compare their accuracy in approximating the original transfer
matrix. As plotted in Fig. 3, the proposed MOR can accu-
rately capture the polynomial part and the approximated re-
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Fig. 2. (a) Passivity test results for the ROM by PRIMA (nonpassive); (b) test
results for the ROM from the proposed MOR (passive).
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Fig. 3. MOR results for the original singularRLCmodel that contains a
polynomial part. The response from the proposed approach is basically
overlapping with the original one in the entire frequency band.

sult matches the original one with little error, whereas PRIMA
produces a strictly proper system which is very inaccurate in
the high-frequency band. Note that PRIMA not only misses
the improper part, but it also misses the constant termM0 in
the polynomial part. For the proposed MOR, since the proper
part is reduced with passivity preservation and the improper
part is kept unchanged, the resulting ROM for the whole sys-
tem is also passive. Similar to the proposed algorithm, in DS-
form PRBT, we can also add the improper part to the approxi-
mated proper transfer matrix. Therefore, with spectral projec-
tors PRBT can also preserve the polynomial part.

VII. C ONCLUSION

In this paper we have presented a new algorithm for the
MOR of indefinite DSs. Our approach can preserve system
passivity regardless of the system structure. With spectral pro-
jectors, the proposed flow can preserve the possible polyno-
mial part of a singular DS model. Since only one GARE is
solved, the proposed MOR is more efficient than PRBT. Com-
pared with PRIMA, our method provides superior numerical
accuracy.
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