
98-3

Scratchpad Memory Aware Task Scheduling with Minimum Number of

Preemptions on a Single Processor

QingWan HuiWu Jingling Xue

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW 2052, Australia

e-mail: {qingwan.huiw.jingling@cse.unsw.edu.au }

Abstract- We propose a unified approach to the problem of

scheduling a set of tasks with individual release times, deadlines

and precedence constraints, and allocating the data of each task

to the SPM (Scratchpad Memory) on a single processor system.

Our approach consists of a task scheduling algorithm and an SPM

allocation algorithm. The former constructs a feasible schedule

incrementally, aiming to minimize the number of preemptions in

the feasible schedule. The latter allocates a portion of the SPM to

each task in an efficient way by employing a novel data structure,

namely, the preemption graph. We have evaluated our approach

and a previous approach by using six task sets. The results show

that our approach achieves up to 20.31 % on WCRT (Worst-Case

Response Time) reduction over the previous approach.

I. INTRODUCTION

In a typical embedded system, there are multiple concurrent
tasks. Tasks may be subject to release times, deadlines, and
precedence constraints. The release time and the deadline of a
task specify its earliest start time and the latest completion time
in a feasible schedule. The precedence constraints specify the
data and control dependencies between tasks. In hard real-time
embedded systems, it is essential to find a feasible schedule for
all the tasks at the design stage.

The problems of scheduling a set of tasks with various con­
straints have been extensively studied [8,15,16]. Most schedul­
ing problems are NP-complete. On a single processor. if tasks
are preemptible, the EDF (earliest deadline first) strategy is
guaranteed to find a feasible schedule for a set of tasks with
individual release times, deadlines and precedence constraints
whenever one exists [8] . However, if tasks are not preemptible,
the problem of finding a schedule with minimum lateness for
a set of independent tasks with individual release times and
deadlines on a single processor is NP-complete [8] .

Scratchpad memory is the on-chip SRAM managed by the
compiler. It is an attractive alternative to cache in embedded
systems due to its three major advantages. Firstly, it consumes
less energy than cache. Secondly, it is easier to compute the
WCET (Worst-Case Execution time) of a task because the ac­
cess time of each variable or instruction is known at compile
time. Thirdly, the compiler can usually hide data hazards in
modem RISC processors without any hardware support as the
latency of each data access to SPM is known at compile time.
However, SPM also introduces additional challenges. One ma-

jor challenge is that the task scheduling problem and the SPM
allocation problem are mutually dependent. On one hand, the
WCET of a task is dependent on the size of the SPM allo­
cated to it. On the other hand, the size of the SPM allocated
to each task is dependent on whether this task is preempted in
the schedule or not. If a task Ti is preempted by another task
Tj, then Ti and Tj cannot use the same section of SPM to store
data assuming there is no dynamic SPM reallocation.

In this paper, we study the problem of scheduling a set of
tasks with individual release times, deadlines and precedence
constraints on a single processor of an embedded system where
SPM is used to replace data cache, and the problem of allocat­
ing the SPM to each task. We assume that the target embedded
system is a hard real-time system where the deadline of each
task must be met. We make the following major contributions.

1. We propose a novel unified approach to the task schedul­
ing problem and and the SPM allocation problem. The
unified approach consists of a task scheduling algorithm
and an SPM allocation algorithm. The task scheduling al­
gorithm aims at minimizing the number of preemptions
in a feasible schedule for the task set. The SPM alloca­
tion algorithm employs a novel data structure, namely, the
preemption graph, to efficiently allocate SPM to tasks.

2. We have evaluated our approach and the one proposed
by Suhendra et al. [19] by using six task sets with
tasks selected from three benchmark suites: Powerstone
[13], MaJ.ardalen WCET Benchmarks [7] , SNU real-time
benchmarks [14], and an open-source UAV (Unmanned
Aerial Vehicle) control application from PapaBench [5].

For all the task sets, our approach achieves a maximum
improvement of 20.31 % on the WCRT reduction.

The rest of this paper is organized as follows. Section 11 de­
scribes the system model and key definitions. Section III shows
how to determine the maximum SPM size for each task. Sec­
tion I V describes our unified approach to task scheduling and
SPM allocation. Section VI describes related work. Section V
presents our experimental results, followed by the conclusion
section in Section VII.

11. SYSTEM MODEL AND DEFINITIONS

The target hard real-time embedded system uses a single pro­
cessor where an SPM is used to replace data cache. The size

978-1-4673-3030-5/13/$31.00 ©2013 IEEE 741

of the SPM is m bytes. The SPM occupies a contiguous sec­
tion of the processor's memory space. The start address of the
SPM is O. The SPM is only used to store the local (stack) data
of tasks. The problem of allocating the global data, heap data
and code of a task set to SPM will be studied in future work.
There is a set V = {Tb T2,···, Tn} of n tasks to be executed
on the processor. Each task is preemptible by any other tasks.
However, our unified algorithm for task scheduling and SPM
allocation preempts a task only if it is necessary. Tasks have
individual release times, deadlines and precedence constraints.
The precedence constraints are represented by a DAG (directed
acyclic graph) G = (V, E), where V = {Tb T2,···, Tn} is
the set of tasks, E = {(Ti, Tj) : Tj can be executed only after
Ti finishes } is a set of precedence constraints between tasks.
Each task Ti has the following attributes:

1. Pre-assigned release time R(Ti)'

2. Pre-assigned deadline D(Ti)'

3. The maximum size Si (Si :::; m) of the SPM space needed
by Ti, and

4. The worst-case execution time wcet(Ti, x) when an SPM
with size of x bytes is allocated to Ti.

Given a schedule for a set of tasks with individual release
times, deadlines and precedence constraints, a task Ti is ready
at time t if all its predecessors have been completed by t and
t is greater than or equal to the release time of Ti. The ready
time of Ti is the earliest time at which Ti is ready.

EDF is a classical scheduling strategy. There are two
versions, preemptive EDF (pEDF) and non-preemptive EDF
(npEDF). The npEDF schedules a task only when the current
running task is completed. The pEDF performs scheduling
whenever a new task is ready. Both pEDF and npEDF schedule
a ready task with the smallest deadline.

Definition 1 Given a schedule a and a task Ti, the live range
of Ti, denoted as L(Ti), is a time interval [S(Ti), F(Ti)],
where S(Ti) and F(Ti) are the start time and the finish time,
respectively, ofn in a.

Given two tasks, they can share a section of SPM iff their live
ranges do not overlap.

Definition 2 Given a schedule a for a set of tasks, the inteifer­
ence graph of a is an undirected graph G(a) = (V, E), where
V = {T1, T2,"', Tn} is the set of tasks, and E = {(n, Tj) :
Ti, Tj E V and L(Ti) n L(Tj) -=I- 0 }.

Definition 3 Given a schedule, a task Ti is said to preempt a
task Tj if! one of the following conditions holds: 1) Ti preempts
Tj directly. 2) Ti is scheduled immediately after the completion
of another task Ts, and Ts preempts Tj in the schedule.

Notice that our definition of preemption is a generalization of
the traditional one.

Definition 4 Given a schedule a for a set of tasks, the pre­
emption graph of a is a directed graph G = (V, E), where
V = {Tl' T2,"', Tn} is the set of tasks, and E = {(n, Tj) :
Ti, Tj E V and Tj preempts Ti in a}.

98-3

It is easy to see that the preemption graph of any schedule
constructed by using an EDF scheduler is a forest. The pre­
emption graph is a key data structure of our unified algorithm
for task scheduling and SPM allocation. We can easily prove
that for each path in a preemption graph, the live ranges of any
two tasks on the path overlap.

Definition 5 Given a set of tasks with precedence constraints,
individual release times and deadlines, the edge-consistent
deadline of a task Ti, denoted D' (Ti), is recursively defined as
follows. D'(Ti) = min{D(Ti), min{D'(Tj) - wcet(Tj, Sj):
Tj is an immediate successor ofTi in the precedence graph}}.

Ill. DETERMINING THE SPM SIZES OF INDIVIDUAL TASKS

Our unified algorithm for task scheduling and SPM alloca­
tion needs to know the maximum SPM size Si of each task Ti.
The impact of SPM on the WCET of each task may vary. For
some tasks, SPM may drastically reduce their WCETs. For
some other tasks, SPM may not be very effective. Therefore, it
is very important to determine the maximum SPM size of each
task in a fair manner.

The approaches proposed in [20, 21] assume that the maxi­
mum SPM size of each task is known without proposing any
approach to determining the maximum SPM size of each task
in a fair manner. The approaches proposed in [18, 19] use a
heuristic based on ILP (Integer Linear PrograDllling). Since
the tasks in [18, 19] do not have individual deadlines, their ILP
based heuristics are not applicable to our task model.

Next, we propose a new approach for determining the maxi­
mum size of the SPM for each task based on our previous work
on allocating variables of a single task to SPM [23]. For each
variable Vi, we define a benefit vector benefit(Vi) as follows.

(1)

where I is the vector of the lengths, in non-increasing order, of
the k longest paths of the task immediately before allocating Vi
to the SPM, 1'(Vi) is the vector of the lengths, in non-increasing
order, of the k longest paths of the task immediately after allo­
cating Vi to the SPM, and size(Vi) is the size of Vi. Intuitively,
the benefit vector of a variable Vi is the normalized contribution
of Vi to the k longest path lengths of the task. To compare any
two benefit vectors, we use lexicographical ordering.

In our definition of benefit vector, k is a parameter. On one
hand, the larger the value of k, the more accurate a benefit vec­
tor. On the other hand, the larger the value of k is, the higher
time complexity for computing a benefit vector.

In order to determine the maximum SPM size for each task
in a fair manner, we introduce a threshold benefit vector amin
for all the tasks. For each task, we select a variable as an SPM
resident only if its benefit vector is greater than amino The
threshold benefit vector is a parameter of our approach. Given
a specific task set, its value needs to be tuned for the best per­
formance of a given task set.

We determine the maximum SPM size Si of each task Ti as
follows: Keep selecting a variable of Ti on the longest path
with the maximum benefit vector being greater than amin, and

742

allocating it to the SPM of the task until no variable can be se­
lected. For more details on selecting a most beneficial variable
and allocating it to SPM, we refer to [23] .

I V. UNIFIED TASK SCHEDULING AND SPM ALLOCATION

Given a set S of tasks with individual release times, dead­
lines, and precedence constraints, our objective is to find a fea­
sible schedule for S on a single processor with an SPM with
a size of m bytes to store local data of the tasks. A feasible
schedule is the one satisfying all the constraints.

Our unified approach to task scheduling and SPM allocation
consists of two major parts: the task scheduling algorithm and
the SPM allocation algorithm. The task scheduling algorithm
aims at minimizing the number of preemptions when finding a
feasible schedule for the task set. By default, it uses the npEDF
scheduling. It uses the pEDF scheduling only if a task misses
its deadline under the npEDF scheduling. Initially, no task is
preempted. Therefore, the whole SPM is allocated to each task
Ti. When a task currently scheduled meets its deadline, the
task scheduling algorithm calls the SPM allocation algorithm
to allocate SPM to the task and each of the predecessors of
the task in the preemption graph. During the execution of our
unified approach, if a task is preempted. the SPM size of each
predecessor of the task may decrease.

Our unified approach uses the following variables:

• D(Ti): the deadline ofTi.

• wcet(Ti): the current worst-case execution time of task
Ti,

• accu_time(Ti): the accumulated execution time of task
Ti,

• preempted(Ti): a Boolean variable, denoting if task Ti
has been preempted before,

• miss(Ti): a Boolean variable, denoting if task Ti has
missed its deadline before, and

• start: storing successive scheduling points. A scheduling
point is a time point at which a task is scheduled.

Our unified approach works as follows:

1. Compute the edge-consistent deadlines for all the tasks,
and initialize the relevant data structures.

2. If a task Ti meets its deadline under the npEDF, do the
following:

(a) If Ti is not in the preemption graph, add Ti to the
preemption graph.

(b) If Ti has not been preempted before, do the follow­
ing:

1. Find the task Tj that is most recently preempted
and has not finished.

ii. If Tj exists, add the directed edge (Tj, Ti) to
the preemption graph. and call our incremental
SPM allocator to allocate SPM to Ti and each
of its predecessors in the preemption graph.

98-3

3. If a task Ti misses its deadline by the npEDF scheduling.
Let Tj be the task scheduled at the release time of Ti. The
following two cases are distinguished:

(a) The deadline of Tj is not larger than Ti. In this case,
no feasible schedule exists.

(b) The deadline of Tj is larger than that of Ti. In this
case, do the following:

1. Preempt Tj at the ready time of Ti.

ii. Find the set C of all the tasks scheduled after Tj
in the current schedule.

iii. Remove all the edges incident to the tasks in
C in the current schedule from the preemption
graph.

iv. Undo the current schedule for C, and continue
to schedule all the unscheduled tasks, including
the tasks in C.

4. Repeat steps 2 and 3 until all the tasks have been sched­
uled or a task cannot meet its deadline.

The details of our unified algorithm for task scheduling and
SPM allocation are shown in Algorithms 1 and 2.

Algorithm 1: Our unified approach to task scheduling and
SPM allocation

Input: A set S of tasks with individual release times,
deadlines and precedence constraints, an SPM with
a size of m bytes, the maximum SPM size Si
needed by each task Ti, and a processor P

Output: A feasible schedule and an SPM allocation
scheme for S

1 Compute the edge-consistent deadline for each task;
2 foreach task Ti E S do
3l preempted(Ti) = false;
4 Compute wcet(Ti, Si);
5 wcet(Ti) = wcet(Ti, Si);
6 accu_time(Ti) = 0;
7 D(Ti) = D'(Ti);

8 Create an empty preemption Graph G;
9 start = the earliest release time of all the tasks in S;

10 Scheduler _Allocator(S, start);

The SPM allocation algorithm works incrementally based
on the current partial SPM allocation scheme. It is called by
the task scheduling algorithm whenever a new task Ti is suc­
cessfully scheduled. When being called, it starts with Ti and
works toward the source (root) task along the path from Ti
to the root in the preemption graph. For each task Tj visited
in the preemption graph, our SPM allocation algorithm tries
to allocate Sj bytes to it. If Sj bytes is not available, it al­
locates the remaining free SPM space to Tj considering the
interference constraints. Once a task Tk cannot be allocated
Sk bytes, all its predecessors in the preemption graph will not
be allocated any SPM space. For each task Ti, we introduce
four variables, starLaddr(Ti), end_addr(Ti), spm_size(Ti),
and wcet(Ti), where starLaddr(Ti) and end_addr(Ti) are
the start address and the end address of Ti, respectively, in the

743

Algorithm 2: 8cheduler �llocator(8, start)

Input: A set 8 of tasks, the earliest release time start of
all the tasks

Output: Task schedule and SPM allocation results
1 while 8 =f. 0 do
2 Find a task Ti in 8 that is ready at time start and has

the earliest deadline among all the ready tasks;
3 if start + wcet(Ti) - accu_time(Ti) :::; D(Ti) then
4 Schedule Ti at time start;
5 start = start + wcet(Ti) - accu_time(Ti);
6 accu_time(Ti) = wcet(Ti);
7 8 = 8 - {Td;
8 if Ti is not in G then
9 L Add Ti to G;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

else

35 return;

ifpreempted(Ti) = false then
Let Tj be the most recently preempted task
that has not finished by time start;
if Tj exists then
l Add (Tj, T i) to G;

II Re-allocate SPM to � and
all its predecessors

Incr _8P M �llocator(Ti);

if the ready time OfTi = start 11 miss(Ti) = true
then
L return No feasible schedule;

else
start = the release time of Ti;
Let Tj be the task executing at time start in
the current schedule;
if D(Tj) :::; D(Ti) then
L return No feasible schedule;

else
miss(Ti) = true;
preempted(Tj) = true;
C = {Tj} U {Tk : Tk is scheduled after Tj
in the current schedule};
Preempt Tj at time start;
Undo the partial schedule for all the tasks
scheduled after time start;
foreach task Tk E C do
l Recalculate accu_time(Tk);

Remove Tk and all its incident edges
fromG;
8 = 8U {Td;

8cheduler _Allocator (8, start);
break;

SPM, spm_size(Ti) is the size of the SPM allocated to Ti, and
wcet(Ti) is the WCET of Ti. For a leaf task, its start address is
O. For a non-leaf task that can be allocated to SPM, its start ad­
dress is one plus the maximum end address of all its children.
Our SPM allocation algorithm is shown in Algorithm 3.

98-3

Algorithm 3: I ncr _8 P M �llocator(Ti)

Input: A preemption graph G, an allocation scheme for all
the tasks in the preemption graph, and a new task
Ti

Output: A new SPM allocation scheme for all the tasks in
G

1 start-addr(Ti) = 0;
2 end_addr(Ti) = min{m - 1, Si - 1};
3 Tj = the parent of Ti in G;
4 while Tj =f. null do
5 temp = max{ end_addr(Ts) : Ts is a child of Tj in

G};
6

7

8

9

10

11

12

13

14

15

16

17

if temp 2 m - 1 then
l II No SPM space for Tj

start-addr(Tj) = m;
end_addr(Tj) = m;
spm_size(TJ) = 0;
wcet(TJ) = wcet(Tj, 0);

else
start-addr(Tj) = temp + 1;
end_addr(Tj) = min{ m - 1, temp + Si};
spm_size(Tj) =

end_addr(Tj) - start-addr(Tj) + 1;
if spm_size(Tj) < Si then l II Not enough SPM space for Tj

Compute wcet(Tj, spm_size(Tj));
wcet(Tj) = wcet(Tj, spm_size(Tj));

18 Tj = the parent task of Tj in G;

Next, we use an example to explain how our unified ap­
proach to task scheduling and SPM allocation works. We also
use it to compare our SPM allocation algorithm with the graph
coloring based SPM allocation technique proposed in [19] .

There are a set of 10 independent tasks to be executed on a
single processor where an SPM of 2K bytes is used to store
local data of the tasks. The task attributes are shown in Fig­
ure la, where the SPM size is the size of the SPM space needed
by each task, and the WCET of each task is its WCET when its
SPM size requirement is satisfied. For example, if Tl is allo­
cated 648 bytes of SPM space, its WCET is 4.5.

A feasible schedule found by our task scheduling algorithm
is shown in Figure lb, and the preemption graph of this sched­
ule is constructed as in Figure lc. Based on the preemption
graph, the SPM allocation scheme computed by our SPM allo­
cation algorithm is shown in Figure le. As we can see, all the
tasks are allocated to the SPM.

Notice that by our SPM allocation algorithm, a task may not
be fully allocated to the SPM. In this example, if we change
the SPM size requirement of Tl to 1K bytes, our algorithm
will allocate only 648 bytes of SPM space to Tl.

Consider the final schedule shown in Figure lb. For simplic­
ity, we ignore the start times and finish times of all the tasks,
and only consider their execution order. Next, we will show
how the graph coloring based SPM allocation technique pro­
posed by in [19] works. The interference graph of all the tasks
in the final schedule is shown in Figure Id. After applying the

744

Task Tl T2 T3 T4 T5 T6 T7 Ts Tg TlO
Release time 0 1 1 1 6 12 12 16.S 18.5 18.S

Deadline 17 12 S 8 9 14 IS 22 20 23
WCET 4.S 3.S 1.5 2.S I.S 1 2 3.S 1 2

SPM Size 648 600 800 300 700 400 800 1000 1048 1200

(a) Task attributes

ITl l T2 I T3 1 T4 I n I T2 1 Tl IT6 1 T7 I Tl I Ts ITg l Ts l TlO I
0 1 3 4.5 7 8.5 10 12 13 15 16.5 18.5 19.5 21 23

(b) Task schedule

Tl Tl
T4

1\

TB T7 TB
T2 T7 I I T6 TlO TlO

0 T2 0
T3 Ts T6

T4 Tg T3 Ts Tg

(c) Preemption graph (d) Interference graph

TlO I
Tg Ts

T3 I T2 I Tl
T4 I

T5 I
n I

T7 I
0 300400 700800 10481200 1400 2048

(e) SPM allocation results based on the preemption graph

I Color 1: T1, Ts, TlO I Color 2: T2, T6, T7, Tg I Color 3: T3, T4, T5 I
0 1200 2248 3048

(f) SPM allocation results based on graph coloring

Fig. 1.: An example comparing preemption graph based and graph coloring based SPM allocation

coloring algorithm, we have three colors. T1, T8 and TlO are

assigned color 1, T2, T6, T7 and T9 are assigned color 2, and

T3, T4 and T5 are assigned color 3. The SPM is partitioned

into three disjoint sections for color 1, color 2 and color 3, re­

spectively, and all the tasks with the same color share a section

of the SPM, as shown in Figure If. As we can see, in order

to place all the tasks in the SPM, the size of the SPM must be

at least 3048 bytes, in contrast to the SPM size of 2K bytes

needed by our SPM allocation algorithm. As a result, their ap­

proach cannot find a feasible schedule given an SPM size of

2Kbytes.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

for the first five task sets.

TABLE I

: Task sets

Groups Applications

Setl
minver, jfdctint, fdct, statemate, ludcmp,

compress, nsichneu, qurt, fir, select

Set2
lms, adpcm, crc, engine, pocsag,

matmult,jpeg, fftlk, edn, v42

Set3 all the tasks from Set! and Set2

Set4
adpcm, jfdctint, ludcmp, edn, fftlk,

fdct, lms, minver, jpeg, matmult

SetS
statemate, nsichneu, qurt, select, fir,

crc, engine, pocsag, v42, compress

Set6 PapaBench

98-3

In order to evaluate our unified approach, we created six task

sets as shown in Table I. We selected 20 applications from

three benchmark suites: Powerstone [13] , Mlilardalen WCET

Benchmarks [7] and SNU real-time benchmarks [14]. The

statistics of all the applications are given in Table 11. Each ap­

plication is a task. Each task set consists of a subset of tasks

from the 20 applications. There are no precedence constraints

The 6th task set comes from a real-life open-source DAV

control application, the PapaBench [5]. It consists of 28 tasks

and operates in two modes: fly by wire and autopilot, which

means that the aircraft can be controlled both manually and au­

tomatically. Each mode consists of several tasks to control the

745

TABLEll

: Tasks information

Benchmark Data size (bytes) I WCET with SPM (cycles)

1udcmp 21680 12449

qurt 92 17856

minver 2604 14264

engine 478 4859160

pocsag 1216 1268830

jpeg 77561 74621273

statemate 227 21326

nsichneu 1588 202212

fftlk 16484 5223830

Ims 1268 1762300

jfdctint 340 58678

adpcm 2212 256275

fir 592 150293

crc 1079 47786

compress 1837 14758

matmu1t 4840 167420

fdct 220 6275

select 124 6644

edn 1884 164364

v42 40973 40869080

aircraft and communicate with ground station. For our eval­

uation purposes, we separated the tasks from the original im­

plementation, and maintained the control dependencies among

these tasks. The statistics of all the tasks in the 6th task set can

be found in [19].

We implemented both our unified approach and the CR ap­

proach proposed in [19] . When determining the maximum

SPM size for each task, we set k to 2, and the threshold benefit

vector C¥min to (0.1,0). Since the CR approach does not han­

dle individual deadlines, we revised it such that the interference

between two tasks cannot be eliminated if delaying one task

causes its deadline to be missed. In addition, we set the prior­

ity of each task to its deadline, and a smaller deadline implies

a higher priority.

We manually assigned each task in all the six task sets a re­

lease time and a deadline for every SPM configuration in such

a way that many preemptions are needed in order to find a fea­

sible schedule.

We modified Chronos 4.0 [12] to calculate the WCET of

each application with different SPM sizes. The infeasible path

detection is enabled in Chronos. The target architecture is an

out-of-order, pipelined processor, with an instruction cache and

perfect branch prediction. If the instruction cache is hit, an in­

struction fetch takes 1 cycle. Otherwise, it takes 100 cycles.

The target processor uses scratchpad memory to replace data

cache. The latencies of scratchpad memory and off-chip mem­

ory accesses are 1 cycle and 100 cycles as in [19], respectively.

The execution time of each instruction is 1 cycle.

B. Results and Analysis

We evaluated both our approach and the CR approach under

three different SPM size configurations: 10%, 20% and 30%

98-3

of the total data size. We use two performance metrics, namely

WCRT and feasible schedule, to compare both approaches.

The WCRT of a schedule is the maximum completion time

minus the minimum start time of all the tasks. The WCRTs

produced by both approaches under various configurations are

shown in Figure 2.

In each figure, the black bars are for our approach and the

light bars for the CR approach. Each bar represents the relative

WCRT increase WCRTinc which is computed as follows:

WCRTinc (WCRTbase - WCRTalg)/WCRTbase

where WCRnase is the WCRT of a schedule, computed by

using the pEDF, for the same task set without any SPM, and

WC RTalg is the WCRT computed by the two approaches.

For the 10% SPM size in Setl, the CR approach cannot find

a feasible schedule that meets all the deadlines while our ap­

proach does. Therefore, the second bar is empty. For Set3,

the WCRTs computed by our approach and the CR approach

are close. For this task set, the schedules computed by both

have the same number of preemptions. However, our approach

achieves a slightly better SPM utilization due to our more effi­

cient SPM allocation algorithm. As a result, our approach per­

forms slightly better. For all the other task sets, our approach

performs significantly better. The maximum improvement on

WCRT of our approach over the CR approach is 20.31 %, which

occurs in Set2 under 30% SPM size configuration.

There are two major reasons that our approach performs bet­

ter. The first reason is that our approach preempts a task only

if it is necessary. The second reason is that our SPM allocation

algorithm is more efficient as we demonstrated in an example

in Section IV.

It is worth noting that SPM is much less effective for an out­

of-order processor than for an in-order processor used in [17].

The reason is that an out-of-order processor can hide off-chip

memory access latencies by executing other ready instructions.

VI. RELATED WORK

The problems of scheduling tasks with various constraints

have been extensively studied [8, 15, 16]. Various schedul­

ing techniques have been proposed. One common assump­

tion made by all the previous scheduling techniques is that the

WCET of each task is known. If SPM is used to replace cache,

this assumption does not hold any more. As a result, all the

previous scheduling techniques without considering SPM are

not applicable to the processors with SPM.

A number of research groups have studied the SPM alloca­

tion for a single task [1-3,9-11,17,24]. All the techniques

proposed assume that the amount of the SPM allocated to each

task is known, which is not true for typical embedded systems

with concurrent tasks. As a result, those techniques cannot be

used to solve the SPM allocation problem.

Recently, several research groups studied the SPM/cache al­

location problem for concurrent tasks. [22] exploits both cache

partitioning and dynamic cache locking to to provide worst­

case performance estimates for multitasking systems. [6] stud­

ies the problem of placing multiple tasks in the cache to im­

prove cache performance. It proposes an ILP based approach

746

98-3

- Minimum Preemption (MP) - Critical Path Reduction (CR)

Sett Set2 Set3

�
40

� � 30
" " " 30
.5 30 .5 .5
;:; ;:; ;:;

� � 20 �
= = = 20
.. 20
" " "
..
0 0 0

!:2 10 !:2 10 !:2 10
U U U
� � �

0 0 0
10% 20% 30% 10% 20% 30% 10% 20% 30%

SPMSize SPMSize SPMSize

Set4 SetS Set6

� t
30

� 40
" 30 " "
= = =

� := := 30 " 20 "

� � �
= 20 = =
.. 20 � � �
0 0 10 0

!:2 10 !:2 !:2 10
U U U
� � �

0 0 0
10% 20% 30% 10% 20% 30% 10% 20% 30%

SPMSize SPMSize SPMSize

Fig. 2.: WCRT comparison between MP and CR for six task sets and under three SPM configurations

to optimally placing multiple tasks in the cache. The ILP for­

mulations aim to minimize a cost function which is the total

conflicts multiplied by a weight assigned to each task. [4] pro­

poses a dynamic scratchpad memory code allocation technique

that supports dynamically created processes. Their approach

partitions SPM into pages. At runtime, an SPM manager loads

code pages of the running applications into the SPM on de­

mand. It supports different sharing strategies that determine

how the SPM is distributed among the running processes.

[21] proposes scratchpad memory management techniques

for priority-based preemptive multitasking systems. The tech­

niques are applicable to a real-time environment. It proposes

three methods: spatial, temporal, and hybrid methods, with an

objective to achieve energy reduction in the instruction memory

subsystems. It formulates each method as an ILP problem that

simultaneously determines (1) partitioning of scratchpad mem­

ory space for the tasks, and (2) allocation of program code to

scratchpad memory space for each task.

All the above-mentioned approaches do not consider the mu­

tual impacts between task scheduling and SPM allocation. As

a result, they cannot achieve the best SPM utilization. [18]

and [19] consider the mutual impacts between task schedul­

ing and SPM allocation. [18] proposes an integrated task map­

ping, scheduling, SPM partitioning, and data allocation tech­

nique based on ILP. All the tasks are free of timing constraints

and subject to precedence constraints. The ILP formulation ex­

plores the optimal performance limit and shows that integrated

task scheduling and SPM optimization improves performance

by up to 80% for embedded applications.

[19] presents several dynamic scratchpad allocation tech­
niques that take the process interferences into account to im­

prove the performance and predictability of the memory sys­

tem. It models the application as a MSC (Message Sequence

Chart) to capture the interprocess interactions. It proposes an

iterative allocation algorithm that consists of two critical steps:

(1) analyzing the MSC along with the existing allocation to

determine potential interference patterns, and (2) exploiting

this interference information to tune the scratchpad reloading

points and content so as to best improve the WCRT.

The approach proposed in [19] is the most related to ours.

Both their approach and ours take into account the mutual
impacts between task scheduling and SPM allocation. Both

consider real-time tasks with precedence constraints. How­

ever, there are four key differences between our approach and

theirs. Firstly, our SPM allocation algorithm is more efficient

than their graph coloring based approach. Secondly, by our ap­

proach, all the tasks are initially non-preemptible, which means

that each task occupies the whole SPM. A task is preempted

only if another task with a smaller deadline misses its dead­

line. By their approach, all the tasks are preemptible at the

beginning, and not allocated any SPM space. Detailed anal­

ysis in CR (Critical Path Interference Reduction) algorithm is

used to reduce the number of preemptions. As a result, our ap­

proach leads to fewer preemptions and higher SPM utilization.

Thirdly, the task models are different. Under their task model,

all tasks are periodic tasks without any additional release times,

and all tasks have the same deadline. Our task model assumes

that each task has its own release time and deadline. Lastly,

747

their approach aims to minimize the worst-case response time.

In contrast, our approach aims to minimize the number of pre­

emptions while constructing a feasible schedule.

VII. CONCLUSION

We have proposed a unified approach to the problem of

scheduling a set of tasks with individual release times, hard

deadlines, and precedence constraints on a single processor

where an SPM is used to replace data cache to store stack data

of each task, and the problem of allocating SPM to each task.

Our approach consists of two algorithms: a task scheduling al­

gorithm and an SPM allocation algorithm. The former aims at

minimizing the number of preemptions by using a mix of pre­

emptive and non-preemptive EDF scheduling strategies. The

latter employs a novel data structure, namely, the preemption

graph, to allocates SPM to each task. Our simulation results

show that our unified approach performs better than the ap­

proach proposed in [19]. Our future work is to extend our ap­

proach to mUltiprocessor systems.

ACKNOWLEDGMENTS

This research is supported by the Australian Research

Grants: DP0881330 and DPII0104628.

REFERENCES

[1] Jean-Francois Deverge and Isabelle Puaut. WCET-

directed dynamic scratchpad memory allocation of data.

In ECRTS, pages 179-190,2007.

[2] Bemhard Egger, Chihun Kim, Choonki Jang, Yoonsung

Nam, Jaejin Lee, and Sang Lyul Min. A dynamic code

placement technique for scratchpad memory using post­

pass optimization. In CASES, pages 223-233, 2007.

[3] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Dynamic

scratchpad memory management for code in portable sys­

tems with an MMU. In TECS, 7(2), 2008.

[4] Bernhard Egger, Jaejin Lee, and Heonshik Shin. Scratch­

pad memory management in a multitasking environment.

In EMSOFT, pages 265-274, 2008.

[5] Fadia Nemer, Hugues Cass, Pascal Sainrat, Jean-Paul

Bahsoun, Marianne De Michiel. Papabench : A free real­

time benchmark. In Workshop on Worst-Case Execution
Time Analysis, 2006.

[6] Gemot Gebhard and Sebastian Altmeyer. Optimal task

placement to improve cache performance. In EMSOFT,
pages 259-268, 2007.

[7] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and

Bj6m Lisper. The Mhlardalen WCET Benchmarks - Past,

Present and Future. In Workshop on Worst-Case Execu­
tion Time Analysis, pages 137-147,2010.

[8] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker.

Complexity of machine scheduling problems. Annals of
Discrete Mathematics, 1:343-362, 1977.

98-3

[9] Lian Li, Hui Feng, and Jingling Xue. Compiler-directed
scratchpad memory management via graph coloring.

TACO, 6(3):9:1-9:17, October 2009.

[10] Lian Li, Quan Hoang Nguyen, and Jingling Xue. Scratch­

pad allocation for data aggregates in superperfect graphs.

In LCTES, pages 207-26, 2007.

[11] Lian Li, Jingling Xue, and Jens Knoop. Scratchpad mem­
ory allocation for data aggregates via interval coloring in

superperfect graphs. TECS, 10(2):28: 1-28:42, January

2011.

[12] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roy­

choudhury. Chronos: A timing analyzer for embed­

ded software. Science of Computer Programming, 69(1-

3):56-67,2007.

[13] Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer.

Designing the low-power M*CORE architecture. In IEEE
Power Driven Microarchitecture Workshop, pages 145-

150,1998.

[14] SNU. SNU Real-Time Benchmarks. http://
www • cprover.org!goto-cc/examples/snu.htrnl.

[15] John A. Stankovic. Deadline scheduling for real-time sys­
tems: EDF and related algorithms. Springer, 1998.

[16] John A. Stankovic. Scheduling algorithms. Springer,

2007.

[17] Vivy Suhendra, Tulika Mitra, and Abhik Roychoudhury.

WCET centric data allocation to scratchpad memory. In

RTSS, pages 223-232, 2005.

[18] Vivy Suhendra, Chandrashekar Raghavan, and Tulika Mi­

tra. Integrated scratchpad memory optimization and task

scheduling for mpsoc architectures. In CASES, pages

401-410,2006.

[19] Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra.

Scratchpad allocation for concurrent embedded software.

In TOPLAS, 32(4), 2010.

[20] Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada.

Allocation of scratchpad memory in priority-based multi­

task systems. In VLSI-DAT, pages 68-71, 2009.

[21] Hideki Takase, Hiroyuki Tomiyama, and Hiroaki Takada.

Partitioning and allocation of scratchpad memory for

priority-based preemptive multi-task systems. In DATE,
pages 1124-1129,2010.

[22] Xavier Vera, Bj6m Lisper, and Jingling Xue. Data cache

locking for tight timing calculations. TECS, 7(1):4:1-

4:38, December 2007.

[23] Qing Wan, Hui Wu, and Jingling Xue. WCET-aware

data selection and allocation for scratchpad memory. In

LCTES, pages 41-50,2012.

[24] Hui Wu, Jingling Xue, and Sri Parameswaran. Optimal

WCET-aware code selection for scratchpad memory. In

EMSOFT, pages 59-68, 2010.

748

