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Abstract- We propose a unified approach to the problem of 

scheduling a set of tasks with individual release times, deadlines 

and precedence constraints, and allocating the data of each task 

to the SPM (Scratchpad Memory) on a single processor system. 

Our approach consists of a task scheduling algorithm and an SPM 

allocation algorithm. The former constructs a feasible schedule 

incrementally, aiming to minimize the number of preemptions in 

the feasible schedule. The latter allocates a portion of the SPM to 

each task in an efficient way by employing a novel data structure, 

namely, the preemption graph. We have evaluated our approach 

and a previous approach by using six task sets. The results show 

that our approach achieves up to 20.31 % on WCRT (Worst-Case 

Response Time) reduction over the previous approach. 

I. INTRODUCTION 

In a typical embedded system, there are multiple concurrent 
tasks. Tasks may be subject to release times, deadlines, and 
precedence constraints. The release time and the deadline of a 
task specify its earliest start time and the latest completion time 
in a feasible schedule. The precedence constraints specify the 
data and control dependencies between tasks. In hard real-time 
embedded systems, it is essential to find a feasible schedule for 
all the tasks at the design stage. 

The problems of scheduling a set of tasks with various con­
straints have been extensively studied [8,15,16]. Most schedul­
ing problems are NP-complete. On a single processor. if tasks 
are preemptible, the EDF (earliest deadline first) strategy is 
guaranteed to find a feasible schedule for a set of tasks with 
individual release times, deadlines and precedence constraints 
whenever one exists [8] . However, if tasks are not preemptible, 
the problem of finding a schedule with minimum lateness for 
a set of independent tasks with individual release times and 
deadlines on a single processor is NP-complete [8] . 

Scratchpad memory is the on-chip SRAM managed by the 
compiler. It is an attractive alternative to cache in embedded 
systems due to its three major advantages. Firstly, it consumes 
less energy than cache. Secondly, it is easier to compute the 
WCET (Worst-Case Execution time) of a task because the ac­
cess time of each variable or instruction is known at compile 
time. Thirdly, the compiler can usually hide data hazards in 
modem RISC processors without any hardware support as the 
latency of each data access to SPM is known at compile time. 
However, SPM also introduces additional challenges. One ma-

jor challenge is that the task scheduling problem and the SPM 
allocation problem are mutually dependent. On one hand, the 
WCET of a task is dependent on the size of the SPM allo­
cated to it. On the other hand, the size of the SPM allocated 
to each task is dependent on whether this task is preempted in 
the schedule or not. If a task Ti is preempted by another task 
Tj, then Ti and Tj cannot use the same section of SPM to store 
data assuming there is no dynamic SPM reallocation. 

In this paper, we study the problem of scheduling a set of 
tasks with individual release times, deadlines and precedence 
constraints on a single processor of an embedded system where 
SPM is used to replace data cache, and the problem of allocat­
ing the SPM to each task. We assume that the target embedded 
system is a hard real-time system where the deadline of each 
task must be met. We make the following major contributions. 

1. We propose a novel unified approach to the task schedul­
ing problem and and the SPM allocation problem. The 
unified approach consists of a task scheduling algorithm 
and an SPM allocation algorithm. The task scheduling al­
gorithm aims at minimizing the number of preemptions 
in a feasible schedule for the task set. The SPM alloca­
tion algorithm employs a novel data structure, namely, the 
preemption graph, to efficiently allocate SPM to tasks. 

2. We have evaluated our approach and the one proposed 
by Suhendra et al. [19] by using six task sets with 
tasks selected from three benchmark suites: Powerstone 
[13], MaJ.ardalen WCET Benchmarks [7] , SNU real-time 
benchmarks [14], and an open-source UAV (Unmanned 
Aerial Vehicle) control application from PapaBench [5]. 

For all the task sets, our approach achieves a maximum 
improvement of 20.31 % on the WCRT reduction. 

The rest of this paper is organized as follows. Section 11 de­
scribes the system model and key definitions. Section III shows 
how to determine the maximum SPM size for each task. Sec­
tion I V  describes our unified approach to task scheduling and 
SPM allocation. Section VI describes related work. Section V 
presents our experimental results, followed by the conclusion 
section in Section VII. 

11. SYSTEM MODEL AND DEFINITIONS 

The target hard real-time embedded system uses a single pro­
cessor where an SPM is used to replace data cache. The size 
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of the SPM is m bytes. The SPM occupies a contiguous sec­
tion of the processor's memory space. The start address of the 
SPM is O. The SPM is only used to store the local (stack) data 
of tasks. The problem of allocating the global data, heap data 
and code of a task set to SPM will be studied in future work. 
There is a set V = {Tb T2,···, Tn} of n tasks to be executed 
on the processor. Each task is preemptible by any other tasks. 
However, our unified algorithm for task scheduling and SPM 
allocation preempts a task only if it is necessary. Tasks have 
individual release times, deadlines and precedence constraints. 
The precedence constraints are represented by a DAG (directed 
acyclic graph) G = (V, E), where V = {Tb T2,···, Tn} is 
the set of tasks, E = {(Ti, Tj) : Tj can be executed only after 
Ti finishes } is a set of precedence constraints between tasks. 
Each task Ti has the following attributes: 

1. Pre-assigned release time R(Ti)' 

2. Pre-assigned deadline D(Ti)' 

3. The maximum size Si (Si :::; m) of the SPM space needed 
by Ti, and 

4. The worst-case execution time wcet(Ti, x) when an SPM 
with size of x bytes is allocated to Ti. 

Given a schedule for a set of tasks with individual release 
times, deadlines and precedence constraints, a task Ti is ready 
at time t if all its predecessors have been completed by t and 
t is greater than or equal to the release time of Ti. The ready 
time of Ti is the earliest time at which Ti is ready. 

EDF is a classical scheduling strategy. There are two 
versions, preemptive EDF (pEDF) and non-preemptive EDF 
(npEDF). The npEDF schedules a task only when the current 
running task is completed. The pEDF performs scheduling 
whenever a new task is ready. Both pEDF and npEDF schedule 
a ready task with the smallest deadline. 

Definition 1 Given a schedule a and a task Ti, the live range 
of Ti, denoted as L(Ti), is a time interval [S(Ti), F(Ti)], 
where S(Ti) and F(Ti) are the start time and the finish time, 
respectively, ofn in a. 

Given two tasks, they can share a section of SPM iff their live 
ranges do not overlap. 

Definition 2 Given a schedule a for a set of tasks, the inteifer­
ence graph of a is an undirected graph G(a) = (V, E), where 
V = {T1, T2,"', Tn} is the set of tasks, and E = {(n, Tj) : 
Ti, Tj E V and L(Ti) n L(Tj) -=I- 0 }. 

Definition 3 Given a schedule, a task Ti is said to preempt a 
task Tj if! one of the following conditions holds: 1) Ti preempts 
Tj directly. 2) Ti is scheduled immediately after the completion 
of another task Ts, and Ts preempts Tj in the schedule. 

Notice that our definition of preemption is a generalization of 
the traditional one. 

Definition 4 Given a schedule a for a set of tasks, the pre­
emption graph of a is a directed graph G = (V, E), where 
V = {Tl' T2,"', Tn} is the set of tasks, and E = {(n, Tj) : 
Ti, Tj E V and Tj preempts Ti in a}. 
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It is easy to see that the preemption graph of any schedule 
constructed by using an EDF scheduler is a forest. The pre­
emption graph is a key data structure of our unified algorithm 
for task scheduling and SPM allocation. We can easily prove 
that for each path in a preemption graph, the live ranges of any 
two tasks on the path overlap. 

Definition 5 Given a set of tasks with precedence constraints, 
individual release times and deadlines, the edge-consistent 
deadline of a task Ti, denoted D' (Ti), is recursively defined as 
follows. D'(Ti) = min{D(Ti), min{D'(Tj) - wcet(Tj, Sj): 
Tj is an immediate successor ofTi in the precedence graph}}.  

Ill. DETERMINING THE SPM SIZES OF INDIVIDUAL TASKS 

Our unified algorithm for task scheduling and SPM alloca­
tion needs to know the maximum SPM size Si of each task Ti. 
The impact of SPM on the WCET of each task may vary. For 
some tasks, SPM may drastically reduce their WCETs. For 
some other tasks, SPM may not be very effective. Therefore, it 
is very important to determine the maximum SPM size of each 
task in a fair manner. 

The approaches proposed in [20, 21] assume that the maxi­
mum SPM size of each task is known without proposing any 
approach to determining the maximum SPM size of each task 
in a fair manner. The approaches proposed in [18, 19] use a 
heuristic based on ILP (Integer Linear PrograDllling). Since 
the tasks in [18, 19] do not have individual deadlines, their ILP 
based heuristics are not applicable to our task model. 

Next, we propose a new approach for determining the maxi­
mum size of the SPM for each task based on our previous work 
on allocating variables of a single task to SPM [23]. For each 
variable Vi, we define a benefit vector benefit( Vi) as follows. 

(1) 

where I is the vector of the lengths, in non-increasing order, of 
the k longest paths of the task immediately before allocating Vi 
to the SPM, 1'( Vi) is the vector of the lengths, in non-increasing 
order, of the k longest paths of the task immediately after allo­
cating Vi to the SPM, and size( Vi) is the size of Vi. Intuitively, 
the benefit vector of a variable Vi is the normalized contribution 
of Vi to the k longest path lengths of the task. To compare any 
two benefit vectors, we use lexicographical ordering. 

In our definition of benefit vector, k is a parameter. On one 
hand, the larger the value of k, the more accurate a benefit vec­
tor. On the other hand, the larger the value of k is, the higher 
time complexity for computing a benefit vector. 

In order to determine the maximum SPM size for each task 
in a fair manner, we introduce a threshold benefit vector amin 
for all the tasks. For each task, we select a variable as an SPM 
resident only if its benefit vector is greater than amino The 
threshold benefit vector is a parameter of our approach. Given 
a specific task set, its value needs to be tuned for the best per­
formance of a given task set. 

We determine the maximum SPM size Si of each task Ti as 
follows: Keep selecting a variable of Ti on the longest path 
with the maximum benefit vector being greater than amin, and 
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allocating it to the SPM of the task until no variable can be se­
lected. For more details on selecting a most beneficial variable 
and allocating it to SPM, we refer to [23] . 

I V. UNIFIED TASK SCHEDULING AND SPM ALLOCATION 

Given a set S of tasks with individual release times, dead­
lines, and precedence constraints, our objective is to find a fea­
sible schedule for S on a single processor with an SPM with 
a size of m bytes to store local data of the tasks. A feasible 
schedule is the one satisfying all the constraints. 

Our unified approach to task scheduling and SPM allocation 
consists of two major parts: the task scheduling algorithm and 
the SPM allocation algorithm. The task scheduling algorithm 
aims at minimizing the number of preemptions when finding a 
feasible schedule for the task set. By default, it uses the npEDF 
scheduling. It uses the pEDF scheduling only if a task misses 
its deadline under the npEDF scheduling. Initially, no task is 
preempted. Therefore, the whole SPM is allocated to each task 
Ti. When a task currently scheduled meets its deadline, the 
task scheduling algorithm calls the SPM allocation algorithm 
to allocate SPM to the task and each of the predecessors of 
the task in the preemption graph. During the execution of our 
unified approach, if a task is preempted. the SPM size of each 
predecessor of the task may decrease. 

Our unified approach uses the following variables: 

• D(Ti): the deadline ofTi. 

• wcet(Ti): the current worst-case execution time of task 
Ti, 

• accu_time(Ti): the accumulated execution time of task 
Ti, 

• preempted(Ti): a Boolean variable, denoting if task Ti 
has been preempted before, 

• miss(Ti): a Boolean variable, denoting if task Ti has 
missed its deadline before, and 

• start: storing successive scheduling points. A scheduling 
point is a time point at which a task is scheduled. 

Our unified approach works as follows: 

1. Compute the edge-consistent deadlines for all the tasks, 
and initialize the relevant data structures. 

2. If a task Ti meets its deadline under the npEDF, do the 
following: 

(a) If Ti is not in the preemption graph, add Ti to the 
preemption graph. 

(b) If Ti has not been preempted before, do the follow­
ing: 

1. Find the task Tj that is most recently preempted 
and has not finished. 

ii. If Tj exists, add the directed edge (Tj, Ti) to 
the preemption graph. and call our incremental 
SPM allocator to allocate SPM to Ti and each 
of its predecessors in the preemption graph. 
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3. If a task Ti misses its deadline by the npEDF scheduling. 
Let Tj be the task scheduled at the release time of Ti. The 
following two cases are distinguished: 

(a) The deadline of Tj is not larger than Ti. In this case, 
no feasible schedule exists. 

(b) The deadline of Tj is larger than that of Ti. In this 
case, do the following: 

1. Preempt Tj at the ready time of Ti. 

ii. Find the set C of all the tasks scheduled after Tj 
in the current schedule. 

iii. Remove all the edges incident to the tasks in 
C in the current schedule from the preemption 
graph. 

iv. Undo the current schedule for C, and continue 
to schedule all the unscheduled tasks, including 
the tasks in C. 

4. Repeat steps 2 and 3 until all the tasks have been sched­
uled or a task cannot meet its deadline. 

The details of our unified algorithm for task scheduling and 
SPM allocation are shown in Algorithms 1 and 2. 

Algorithm 1: Our unified approach to task scheduling and 
SPM allocation 

Input: A set S of tasks with individual release times, 
deadlines and precedence constraints, an SPM with 
a size of m bytes, the maximum SPM size Si 
needed by each task Ti, and a processor P 

Output: A feasible schedule and an SPM allocation 
scheme for S 

1 Compute the edge-consistent deadline for each task; 
2 foreach task Ti E S do 
3l preempted(Ti) = false; 
4 Compute wcet(Ti, Si); 
5 wcet(Ti) = wcet(Ti, Si); 
6 accu_time(Ti) = 0; 
7 D(Ti) = D'(Ti); 

8 Create an empty preemption Graph G; 
9 start = the earliest release time of all the tasks in S; 

10 Scheduler _Allocator(S, start); 

The SPM allocation algorithm works incrementally based 
on the current partial SPM allocation scheme. It is called by 
the task scheduling algorithm whenever a new task Ti is suc­
cessfully scheduled. When being called, it starts with Ti and 
works toward the source (root) task along the path from Ti 
to the root in the preemption graph. For each task Tj visited 
in the preemption graph, our SPM allocation algorithm tries 
to allocate Sj bytes to it. If Sj bytes is not available, it al­
locates the remaining free SPM space to Tj considering the 
interference constraints. Once a task Tk cannot be allocated 
Sk bytes, all its predecessors in the preemption graph will not 
be allocated any SPM space. For each task Ti, we introduce 
four variables, starLaddr(Ti), end_addr(Ti), spm_size(Ti), 
and wcet(Ti), where starLaddr(Ti) and end_addr(Ti) are 
the start address and the end address of Ti, respectively, in the 
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Algorithm 2: 8cheduler �llocator(8, start) 

Input: A set 8 of tasks, the earliest release time start of 
all the tasks 

Output: Task schedule and SPM allocation results 
1 while 8 =f. 0 do 
2 Find a task Ti in 8 that is ready at time start and has 

the earliest deadline among all the ready tasks; 
3 if start + wcet(Ti) - accu_time(Ti) :::; D(Ti) then 
4 Schedule Ti at time start; 
5 start = start + wcet(Ti) - accu_time(Ti); 
6 accu_time(Ti) = wcet(Ti); 
7 8 = 8 - {Td; 
8 if Ti is not in G then 
9 L Add Ti to G; 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

else 

35 return; 

ifpreempted(Ti) = false then 
Let Tj be the most recently preempted task 
that has not finished by time start; 
if Tj exists then 
l Add (Tj, T i) to G; 

II Re-allocate SPM to � and 
all its predecessors 

Incr _8P M �llocator(Ti); 

if the ready time OfTi = start 11 miss(Ti) = true 
then 
L return No feasible schedule; 

else 
start = the release time of Ti; 
Let Tj be the task executing at time start in 
the current schedule; 
if D(Tj) :::; D(Ti) then 
L return No feasible schedule; 

else 
miss(Ti) = true; 
preempted(Tj) = true; 
C = {Tj} U {Tk : Tk is scheduled after Tj 
in the current schedule}; 
Preempt Tj at time start; 
Undo the partial schedule for all the tasks 
scheduled after time start; 
foreach task Tk E C do 
l Recalculate accu_time(Tk); 

Remove Tk and all its incident edges 
fromG; 
8 = 8U {Td; 

8cheduler _Allocator (8, start); 
break; 

SPM, spm_size(Ti) is the size of the SPM allocated to Ti, and 
wcet(Ti) is the WCET of Ti. For a leaf task, its start address is 
O. For a non-leaf task that can be allocated to SPM, its start ad­
dress is one plus the maximum end address of all its children. 
Our SPM allocation algorithm is shown in Algorithm 3. 
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Algorithm 3: I ncr _8 P M �llocator(Ti) 

Input: A preemption graph G, an allocation scheme for all 
the tasks in the preemption graph, and a new task 
Ti 

Output: A new SPM allocation scheme for all the tasks in 
G 

1 start-addr(Ti) = 0; 
2 end_addr(Ti) = min{m - 1, Si - 1}; 
3 Tj = the parent of Ti in G; 
4 while Tj =f. null do 
5 temp = max{ end_addr(Ts) : Ts is a child of Tj in 

G}; 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

if temp 2 m - 1 then 
l II No SPM space for Tj 

start-addr(Tj) = m; 
end_addr(Tj) = m; 
spm_size(TJ) = 0; 
wcet(TJ) = wcet(Tj, 0); 

else 
start-addr(Tj) = temp + 1; 
end_addr(Tj) = min{ m - 1, temp + Si}; 
spm_size(Tj) = 

end_addr(Tj) - start-addr(Tj) + 1; 
if spm_size(Tj) < Si then l II Not enough SPM space for Tj 

Compute wcet(Tj, spm_size(Tj)); 
wcet(Tj) = wcet(Tj, spm_size(Tj)); 

18 Tj = the parent task of Tj in G; 

Next, we use an example to explain how our unified ap­
proach to task scheduling and SPM allocation works. We also 
use it to compare our SPM allocation algorithm with the graph 
coloring based SPM allocation technique proposed in [19] . 

There are a set of 10 independent tasks to be executed on a 
single processor where an SPM of 2K bytes is used to store 
local data of the tasks. The task attributes are shown in Fig­
ure la, where the SPM size is the size of the SPM space needed 
by each task, and the WCET of each task is its WCET when its 
SPM size requirement is satisfied. For example, if Tl is allo­
cated 648 bytes of SPM space, its WCET is 4.5. 

A feasible schedule found by our task scheduling algorithm 
is shown in Figure lb, and the preemption graph of this sched­
ule is constructed as in Figure lc. Based on the preemption 
graph, the SPM allocation scheme computed by our SPM allo­
cation algorithm is shown in Figure le. As we can see, all the 
tasks are allocated to the SPM. 

Notice that by our SPM allocation algorithm, a task may not 
be fully allocated to the SPM. In this example, if we change 
the SPM size requirement of Tl to 1K bytes, our algorithm 
will allocate only 648 bytes of SPM space to Tl. 

Consider the final schedule shown in Figure lb. For simplic­
ity, we ignore the start times and finish times of all the tasks, 
and only consider their execution order. Next, we will show 
how the graph coloring based SPM allocation technique pro­
posed by in [19] works. The interference graph of all the tasks 
in the final schedule is shown in Figure Id. After applying the 
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Task Tl T2 T3 T4 T5 T6 T7 Ts Tg TlO 
Release time 0 1 1 1 6 12 12 16.S 18.5 18.S 

Deadline 17 12 S 8 9 14 IS 22 20 23 
WCET 4.S 3.S 1.5 2.S I.S 1 2 3.S 1 2 

SPM Size 648 600 800 300 700 400 800 1000 1048 1200 

(a) Task attributes 

ITl l T2 I T3 1 T4 I n I T2 1 Tl IT6 1 T7 I Tl I Ts ITg l Ts l TlO I 
0 1 3 4.5 7 8.5 10 12 13 15 16.5 18.5 19.5 21 23 

(b) Task schedule 

Tl Tl 
T4 

1\ 

TB T7 TB 
T2 T7 I I T6 TlO TlO 

0 T2 0 
T3 Ts T6 

T4 Tg T3 Ts Tg 

(c) Preemption graph (d) Interference graph 

TlO I 
Tg Ts 

T3 I T2 I Tl 
T4 I 

T5 I 
n I 

T7 I 
0 300400 700800 10481200 1400 2048 

(e) SPM allocation results based on the preemption graph 

I Color 1: T1, Ts, TlO I Color 2: T2, T6, T7, Tg I Color 3: T3, T4, T5 I 
0 1200 2248 3048 

(f) SPM allocation results based on graph coloring 

Fig. 1.: An example comparing preemption graph based and graph coloring based SPM allocation 

coloring algorithm, we have three colors. T1, T8 and TlO are 

assigned color 1, T2, T6, T7 and T9 are assigned color 2, and 

T3, T4 and T5 are assigned color 3. The SPM is partitioned 

into three disjoint sections for color 1, color 2 and color 3, re­

spectively, and all the tasks with the same color share a section 

of the SPM, as shown in Figure If. As we can see, in order 

to place all the tasks in the SPM, the size of the SPM must be 

at least 3048 bytes, in contrast to the SPM size of 2K bytes 

needed by our SPM allocation algorithm. As a result, their ap­

proach cannot find a feasible schedule given an SPM size of 

2Kbytes. 

V. EXPERIMENTAL RESULTS 

A. Experiment Setup 

for the first five task sets. 

TABLE I 

: Task sets 

Groups Applications 

Setl 
minver, jfdctint, fdct, statemate, ludcmp, 

compress, nsichneu, qurt, fir, select 

Set2 
lms, adpcm, crc, engine, pocsag, 

matmult,jpeg, fftlk, edn, v42 

Set3 all the tasks from Set! and Set2 

Set4 
adpcm, jfdctint, ludcmp, edn, fftlk, 

fdct, lms, minver, jpeg, matmult 

SetS 
statemate, nsichneu, qurt, select, fir, 

crc, engine, pocsag, v42, compress 

Set6 PapaBench 

98-3 

In order to evaluate our unified approach, we created six task 

sets as shown in Table I. We selected 20 applications from 

three benchmark suites: Powerstone [13] , Mlilardalen WCET 

Benchmarks [7] and SNU real-time benchmarks [14]. The 

statistics of all the applications are given in Table 11. Each ap­

plication is a task. Each task set consists of a subset of tasks 

from the 20 applications. There are no precedence constraints 

The 6th task set comes from a real-life open-source DAV 

control application, the PapaBench [5]. It consists of 28 tasks 

and operates in two modes: fly by wire and autopilot, which 

means that the aircraft can be controlled both manually and au­

tomatically. Each mode consists of several tasks to control the 
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TABLEll 

: Tasks information 

Benchmark Data size (bytes) I WCET with SPM (cycles) 

1udcmp 21680 12449 

qurt 92 17856 

minver 2604 14264 

engine 478 4859160 

pocsag 1216 1268830 

jpeg 77561 74621273 

statemate 227 21326 

nsichneu 1588 202212 

fftlk 16484 5223830 

Ims 1268 1762300 

jfdctint 340 58678 

adpcm 2212 256275 

fir 592 150293 

crc 1079 47786 

compress 1837 14758 

matmu1t 4840 167420 

fdct 220 6275 

select 124 6644 

edn 1884 164364 

v42 40973 40869080 

aircraft and communicate with ground station. For our eval­

uation purposes, we separated the tasks from the original im­

plementation, and maintained the control dependencies among 

these tasks. The statistics of all the tasks in the 6th task set can 

be found in [19]. 

We implemented both our unified approach and the CR ap­

proach proposed in [19] . When determining the maximum 

SPM size for each task, we set k to 2, and the threshold benefit 

vector C¥min to (0.1,0). Since the CR approach does not han­

dle individual deadlines, we revised it such that the interference 

between two tasks cannot be eliminated if delaying one task 

causes its deadline to be missed. In addition, we set the prior­

ity of each task to its deadline, and a smaller deadline implies 

a higher priority. 

We manually assigned each task in all the six task sets a re­

lease time and a deadline for every SPM configuration in such 

a way that many preemptions are needed in order to find a fea­

sible schedule. 

We modified Chronos 4.0 [12] to calculate the WCET of 

each application with different SPM sizes. The infeasible path 

detection is enabled in Chronos. The target architecture is an 

out-of-order, pipelined processor, with an instruction cache and 

perfect branch prediction. If the instruction cache is hit, an in­

struction fetch takes 1 cycle. Otherwise, it takes 100 cycles. 

The target processor uses scratchpad memory to replace data 

cache. The latencies of scratchpad memory and off-chip mem­

ory accesses are 1 cycle and 100 cycles as in [19], respectively. 

The execution time of each instruction is 1 cycle. 

B. Results and Analysis 

We evaluated both our approach and the CR approach under 

three different SPM size configurations: 10%, 20% and 30% 
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of the total data size. We use two performance metrics, namely 

WCRT and feasible schedule, to compare both approaches. 

The WCRT of a schedule is the maximum completion time 

minus the minimum start time of all the tasks. The WCRTs 

produced by both approaches under various configurations are 

shown in Figure 2. 

In each figure, the black bars are for our approach and the 

light bars for the CR approach. Each bar represents the relative 

WCRT increase WCRTinc which is computed as follows: 

WCRTinc (WCRTbase - WCRTalg)/WCRTbase 

where WCRnase is the WCRT of a schedule, computed by 

using the pEDF, for the same task set without any SPM, and 

WC RTalg is the WCRT computed by the two approaches. 

For the 10% SPM size in Setl, the CR approach cannot find 

a feasible schedule that meets all the deadlines while our ap­

proach does. Therefore, the second bar is empty. For Set3, 

the WCRTs computed by our approach and the CR approach 

are close. For this task set, the schedules computed by both 

have the same number of preemptions. However, our approach 

achieves a slightly better SPM utilization due to our more effi­

cient SPM allocation algorithm. As a result, our approach per­

forms slightly better. For all the other task sets, our approach 

performs significantly better. The maximum improvement on 

WCRT of our approach over the CR approach is 20.31 %, which 

occurs in Set2 under 30% SPM size configuration. 

There are two major reasons that our approach performs bet­

ter. The first reason is that our approach preempts a task only 

if it is necessary. The second reason is that our SPM allocation 

algorithm is more efficient as we demonstrated in an example 

in Section IV. 

It is worth noting that SPM is much less effective for an out­

of-order processor than for an in-order processor used in [17]. 

The reason is that an out-of-order processor can hide off-chip 

memory access latencies by executing other ready instructions. 

VI. RELATED WORK 

The problems of scheduling tasks with various constraints 

have been extensively studied [8, 15, 16]. Various schedul­

ing techniques have been proposed. One common assump­

tion made by all the previous scheduling techniques is that the 

WCET of each task is known. If SPM is used to replace cache, 

this assumption does not hold any more. As a result, all the 

previous scheduling techniques without considering SPM are 

not applicable to the processors with SPM. 

A number of research groups have studied the SPM alloca­

tion for a single task [1-3,9-11,17,24]. All the techniques 

proposed assume that the amount of the SPM allocated to each 

task is known, which is not true for typical embedded systems 

with concurrent tasks. As a result, those techniques cannot be 

used to solve the SPM allocation problem. 

Recently, several research groups studied the SPM/cache al­

location problem for concurrent tasks. [22] exploits both cache 

partitioning and dynamic cache locking to to provide worst­

case performance estimates for multitasking systems. [6] stud­

ies the problem of placing multiple tasks in the cache to im­

prove cache performance. It proposes an ILP based approach 
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Fig. 2.: WCRT comparison between MP and CR for six task sets and under three SPM configurations 

to optimally placing multiple tasks in the cache. The ILP for­

mulations aim to minimize a cost function which is the total 

conflicts multiplied by a weight assigned to each task. [4] pro­

poses a dynamic scratchpad memory code allocation technique 

that supports dynamically created processes. Their approach 

partitions SPM into pages. At runtime, an SPM manager loads 

code pages of the running applications into the SPM on de­

mand. It supports different sharing strategies that determine 

how the SPM is distributed among the running processes. 

[21] proposes scratchpad memory management techniques 

for priority-based preemptive multitasking systems. The tech­

niques are applicable to a real-time environment. It proposes 

three methods: spatial, temporal, and hybrid methods, with an 

objective to achieve energy reduction in the instruction memory 

subsystems. It formulates each method as an ILP problem that 

simultaneously determines (1) partitioning of scratchpad mem­

ory space for the tasks, and (2) allocation of program code to 

scratchpad memory space for each task. 

All the above-mentioned approaches do not consider the mu­

tual impacts between task scheduling and SPM allocation. As 

a result, they cannot achieve the best SPM utilization. [18] 

and [19] consider the mutual impacts between task schedul­

ing and SPM allocation. [18] proposes an integrated task map­

ping, scheduling, SPM partitioning, and data allocation tech­

nique based on ILP. All the tasks are free of timing constraints 

and subject to precedence constraints. The ILP formulation ex­

plores the optimal performance limit and shows that integrated 

task scheduling and SPM optimization improves performance 

by up to 80% for embedded applications. 

[19] presents several dynamic scratchpad allocation tech­
niques that take the process interferences into account to im­

prove the performance and predictability of the memory sys­

tem. It models the application as a MSC (Message Sequence 

Chart) to capture the interprocess interactions. It proposes an 

iterative allocation algorithm that consists of two critical steps: 

(1) analyzing the MSC along with the existing allocation to 

determine potential interference patterns, and (2) exploiting 

this interference information to tune the scratchpad reloading 

points and content so as to best improve the WCRT. 

The approach proposed in [19] is the most related to ours. 

Both their approach and ours take into account the mutual 
impacts between task scheduling and SPM allocation. Both 

consider real-time tasks with precedence constraints. How­

ever, there are four key differences between our approach and 

theirs. Firstly, our SPM allocation algorithm is more efficient 

than their graph coloring based approach. Secondly, by our ap­

proach, all the tasks are initially non-preemptible, which means 

that each task occupies the whole SPM. A task is preempted 

only if another task with a smaller deadline misses its dead­

line. By their approach, all the tasks are preemptible at the 

beginning, and not allocated any SPM space. Detailed anal­

ysis in CR (Critical Path Interference Reduction) algorithm is 

used to reduce the number of preemptions. As a result, our ap­

proach leads to fewer preemptions and higher SPM utilization. 

Thirdly, the task models are different. Under their task model, 

all tasks are periodic tasks without any additional release times, 

and all tasks have the same deadline. Our task model assumes 

that each task has its own release time and deadline. Lastly, 
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their approach aims to minimize the worst-case response time. 

In contrast, our approach aims to minimize the number of pre­

emptions while constructing a feasible schedule. 

VII. CONCLUSION 

We have proposed a unified approach to the problem of 

scheduling a set of tasks with individual release times, hard 

deadlines, and precedence constraints on a single processor 

where an SPM is used to replace data cache to store stack data 

of each task, and the problem of allocating SPM to each task. 

Our approach consists of two algorithms: a task scheduling al­

gorithm and an SPM allocation algorithm. The former aims at 

minimizing the number of preemptions by using a mix of pre­

emptive and non-preemptive EDF scheduling strategies. The 

latter employs a novel data structure, namely, the preemption 

graph, to allocates SPM to each task. Our simulation results 

show that our unified approach performs better than the ap­

proach proposed in [19]. Our future work is to extend our ap­

proach to mUltiprocessor systems. 
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