
Automatic Timing-Coherent Transactor Generation for
Mixed-level Simulations

Li-Chun Chen
Dept. of Electrical Engineering,
National Tsing-Hua University,

Hsinchu, Taiwan
s9861524@m98.nthu.edu.tw

Hsin-I Wu
Dept. of Computer Science,

National Tsing-Hua University,
Hsinchu, Taiwan

hiwu.dery@gmail.com

Ren-Song Tsay
Dept. of Computer Science,

National Tsing-Hua University,
Hsinchu, Taiwan

rstsay@cs.nthu.edu.tw

ABSTRACT

In this paper we extend the concept of the traditional transactor,
which focuses on correct content transfer, to a new timing-
coherent transactor that also accurately aligns the timing of each
transaction boundary so that designers can perform precise
concurrent system behavior analysis in mixed-abstraction-level
system simulations which are essential to increasingly complex
system designs. To streamline the process, we also developed an
automatic approach for timing-coherent transactor generation.
Our approach is actually applied in mixed-level simulations and
the results show that it achieves 100% timing accuracy while the
conventional approach produces results of 25% to 44% error rate.

1. INTRODUCTION
As system complexity continues to increase, system-level
abstractions and mixed-level simulations for both functional and
timing verifications are critical for design productivity. In order to
reduce verification complexity, designers often focus only on one
specific component at a time and keep the rest of the target system
abstract model in a top-down design process [1-2]. Hence, it is
crucial to have a methodology that can seamlessly integrate
models of different abstraction levels while ensuring functional
correctness and timing coherence for mixed-level simulations.

Transactor [6-11] techniques have been widely applied to enable
system simulations and integrations. A transactor translates
information of different formats from one component model to
another. Previous works focus on the modeling and automation of
transactors to convert the contents of the transaction but do not
consider timing effects. Therefore, these approaches cannot
guarantee timing coherence, for which both components
connected by a transactor should have the same transaction
timing reference. For instance, both should see the same
transaction start and end time. Without timing coherence, system
components cannot be correctly synchronized. Hence, system
concurrent behaviors cannot be accurately captured or verified
with these approaches.

To illustrate the coherence issue, we show in Figure 1(a) a model
of a conventional transactor. We assume that a Cycle-Accurate
(CA) model is on one side of the transactor and a Programmer-
View-with-Time (PVT) model is on the other. In the CA model,
all signals are examined cycle by cycle following the bus protocol,
but in the PVT model, payload (i.e. the collection of bus addresses
and data transferred) is passed as a parameter through a function
call. For a transaction from the PVT to the CA, the transactor
reads the PVT payload and distributes the corresponding signals
to the CA model. Conversely, for a transaction from the CA to the
PVT, the transactor collects the address and data from the CA

model and packs them into a payload for the PVT model. As a
result, the contents of the transaction are correctly translated.

However, the timing behavior is not consistent when translating a
transaction from a CA model to a PVT model. Figure 1(b) shows
the time span of a CA-to-PVT write transaction translated by a
conventional transactor. In this case, the transactor can issue the
write transaction call only after completing the payload collection,
i.e., at the time point indicated by the upward arrow. Now, a
subtle issue emerges: when collecting payload, the transactor
must advance the clock cycle-by-cycle in order to process address
and data transfers according to the CA interface protocol.
Therefore, the conventional transactor approaches have to delay
issuing the transaction to the PVT side until the collection process
is completed. As a result, the two models each owns different time
reference for the transaction and this results in compromised
simulation results.

The reason why the above timing incoherent issue occurs is
because a transactor cannot instantly determine the payload when
a CA transaction is being processed. Additionally, since both the
CA and PVT interface protocols are timing sensitive, any clock
cycle misalignment will result in timing incoherent results.

A part of the above issue can easily be resolved by having a
separate local clock for each component model on one side of the

(a)

write(payload)

PVT Bus

CA Master

Transactor

PVT

CA

delayed issue

Figure 1: (a) A transactor connecting a PVT and a CA models. (b)
Timing incoherence occurs when data is transferred from a CA
model to a PVT model through a conventional transactor.

(b)
Transaction lifetime viewed by Model

a

d

Address

Data

write(payload, delay);

read(payload, delay);

PVT CA

collect

distribute

Transactor

d d d d
a

transactor to avoid any delayed content issuing. Specifically, we
let the transactor manage the local clocks of the connected
models and have each component model advance its own local
clock separately. However, to fully resolve the issue we need to
further develop a full timing coherence policy for the transactor
to integrate component models of different abstraction levels
while following the interface protocols. Details of our proposed
timing coherence approach will be elaborated in Section 3.

To alleviate designers from tedious and error-prone manual
implementation, we use FSM (Finite State Machine) to describe
the interface behavior of each abstraction level and devise a
generation algorithm. We automatically extract timing-coherent
constraints from the interface FMSs to guide our transactor
generation algorithm and guarantee consistent beginning and
ending points of every transaction. We will illustrate the details in
Section 4.

Our idea has been implemented and tested on industrial cases and
the experimental results show that our approach can simulate
accurately while the conventional approach has a 25% to 44% of
accuracy degradation.

The remainder of this paper is organized as follows: Section 2
describes related work, Section 3 explains issues in timing
coherence of mixed-level simulation and the proposed transactor
generation algorithm is described in Section 4, Section 5 discusses
experimental results and Section 6 presents our conclusion.

2. RELATED WORK
Transactors have been widely adopted in today’s SoC (System-
on-Chip) design processes. They were originally used in
Transaction Based Verification (TBV) [9]. By separating the
verification process of an RTL IP (Register-Transfer-Level
Intellectual Property) into transactor modeling and testbench
design, a complex test suite can be built effectively. The concept
is further applied to the verification of TLM (Transaction Level
Modeling) models using RTL testbenches and the co-simulation
of TLM and RTL models [10, 11]. These works mainly aim to
translate the transaction contents between component models in
different abstraction levels, and omit timing coherence
consideration.

Transactors are also used for communication architecture
exploration and design [16-18]. A TLM model can be connected
to a CA bus through a transactor as shown in Figure 1(a). Since
timing coherence is not considered, the mix-level simulation
results of the architecture performance estimations are inaccurate
as discussed in the introduction section.

To improve the tedious and error-prone transactor modeling
process, researchers have also proposed a few automatic
transactor generation algorithms [6-8]. However, none of these
approaches address the timing coherence problem in connecting
component models of different abstraction levels. Therefore, they
are only suitable for functional verification rather than
performance estimation or concurrent behavior simulations.

Despite not being able to guarantee timing coherence, Bombieri et.
al. [6] propose a template-based approach for transactor
generation. The approach is restricted to AHB (AMBA High-
performance Bus)-like protocol and cannot handle pipelined and
out-of-order bus protocols. Balarin et al. in [7] propose a finite
automaton-based approach that is widely adopted for converter
(or transducer) synthesis [19-20] with protocol behavior captured
by one or multiple FSMs (Finite State Machines) depending on

the concurrency property. We adopt and extend the approach in
[20] for our purpose as out-of-order protocol behavior can be
captured easily by multiple FSMs.

The study of transactor generation has also attracted industrial
attention. Examples are TransactorWizard from Structured
Design Verification [12], BusCompiler from Synopsys [13] and
Cohesive from Spiratech [14]. However, due to the proprietary
nature of these commercial tools, we omit making direct
comparisons with these tools.

As aforementioned, none of these approaches can achieve timing-
coherent mixed-level simulations. Our proposal is the first
automatic transactor generation approach that can guarantee
timing-coherent results of mixed-level system simulation. To
explicate the idea, timing coherence issue is first elaborated.

3. THE PROPOSED APPROACH
Without loss of generality, in the following we use the example of
connecting a CA component model to a PVT component model to
explain our approach.

First, note that both payload content correctness and timing
coherence are required for performing mixed-level simulations.
To ensure payload correctness, the mapping between signals in
the CA (i.e. address and data) and payload in the PVT has to be
encoded in the transactor, which distributes address and data or
collects payload according to the given protocols. To guarantee
timing coherence, as discussed in the introduction, we have a
separated local clock for each component model and then
synchronize timing only at the transaction boundaries. Before
describing the details of our approach, we will first present the
timing coherence issues in the TLM abstraction levels.

3.1 Timing coherence
As shown in Figure 2, components modeled at different
abstraction levels may have different timing details of a
transaction. A PVT model concerns only the beginning and
ending points of the transaction. A Bus-Accurate (BA) model,
however, also requires the beginning and ending time points of
each sub-transaction, such as the request phase or data phase
defined in OCP [21]. A CA model defines the behavior of every
cycle.

To simplify our later discussion, in Figure 2 we use white dots
and black dots to indicate the beginning and ending points of

request

address

d d d d

PVT

BA

CA

Figure 2: An illustration of timing coherence among models in
different TLM abstraction levels.

: The beginning of a
transaction (or sub-
transaction)

: The ending of a
transaction (or sub-
transaction)

transaction

data

transactions (or sub-transactions) respectively.

Now we say that a transactor is timing-coherent if the
communications between the two connected component models
not only have correct functionality but also exhibit consistent
transaction beginning and ending timing points.

3.2 Local clock management
To construct a timing-coherent transactor, the key is to have the
transactor manage the local clocks of the connected component
models. A transactor should separately advance the clock of each
connected component model and coordinate the clocks to ensure
coherent global timing.

Essentially, instead of having the simulators control clock signals
as in the conventional approaches, we let the transactor control
the local clocks as shown in Figure 3(a). In this scheme, before a
payload is issued, the transactor advances only the local clock of
the low level component model while the clock of the high level
component model is not affected. Once the payload information is
fully collected, then the transactor issues the transaction call and
advances the local clock of the high level component model to the
correct transaction ending time. We name this process local clock
wrapping as the transactor wraps the local clock behavior of the
low level model around the transactional information for a higher
level model.

The timing diagrams in Figures 3(b)~3(e) illustrate the local clock

wrapping process. We assume that the CA master component
model is below the solid line while the PVT bus component
model is above the solid line, and the solid line itself represents
the transactor. As the CA master issues a transfer, the transactor
records the beginning time of the transfer and drives the local
clock until it finishes collecting the payload. Note that we drive
only the local clock of the CA component as shown in Figure 3(b),
and that the time of the CA model is now 50 ns while the time of
the PVT model remains at 0 ns (assuming the clock period is 10
ns). At this point, the content of the payload is valid and the
transactor issues a transaction call to the PVT component model
as shown in Figure 3(c). Assuming that the returned delay is 50 ns,
the transactor then advances the clock of the PVT model, as
shown in Figure 3(d), so that the beginning and the ending points
of the transaction are consistent on both sides of the transactor as
shown in Figure 3(e).

In the following we shall discuss the case that a transaction is only
determinable at runtime.

3.3 Dynamic timing matching
Models of different abstraction levels not only have different
timing view of a transaction but also have different ways of
managing delay behaviors. For instance, a PVT model simply
takes a delay parameter while a CA model adopts a signal
handshake to determine the actual delay values.

The examples in Figure 3(f)-(g) illustrate the scenario that the CA
model recognizes the end of a transaction when the handshake
signal of the last data transfer is raised (such as HREADY signal
in the AHB bus protocol). In this case, the returned delay from the
PVT bus is not the ideal 50 ns value. We assume that the returned
delay is 70 ns, which includes an additional contention delay. To
be consistent, our proposed approach automatically detects from
the interface protocol and lets the transactor keep the HREADY
signal low for an additional 20 ns so that the transaction end
points on both sides would match exactly. Details are discussed in
the next section.

Although the transactor mechanism proposed above is effective,
it would be tedious and error-prone if implemented manually. In
order to relieve designers from this tedious process, we devise an
algorithm for automatic timing-coherent transactor generation as
discussed in the following.

4. AUTOMATIC GENERATION
We propose a FSM-based generation algorithm that can
automatically generate a timing-coherent transactor from the two
given FSMs that describe the interface behavior of the connected
components. Essentially, our algorithm generates a third FSM that
represents the transactor to interact between the given FSMs and
to conduct transactions with both correct function and coherent
timing.

4.1 Interface FSM specification
First, we define the notations used in the FSM that describes the
behavior of an interface protocol. As shown in Figure 4, the
notation ‘!’ indicates the setting of signals and ‘?’ represents the
reading of signals. We name the FSM issuing a transaction as the
Initiator and the one responding to the transaction as the Target.
Note that the Initiator and Target complement each other and both
can progress synchronously to accomplish a transaction.

PVT time=0

CA time=50 ns

PVT time=0

CA time=50 ns

PVT time=50 ns

CA time=50 ns

CA
module

Transactor

PVT
platform

low level interface

high level
interface

(a)

(b) (c)

(d) (e)

clk

PVT time=50 ns

CA time=50 ns

Figure 3: (a) An overview of the transactor architecture. (b) The transactor
collects payload from the CA-level model component and advances its clock.
(c) The transactor issues the collected payload to the PVT model component
at the right time point. (d) The transactor advances the PVT clock to match
the ending point of the transaction. (e) The transactor sets consistent
transaction boundaries. (f) The transactor keeps the HREADY signal low for
20 ns more. (g) The timing coherent result for the case in (f).

PVT time=0

CA time=70 ns

(f) (g)

1 0 1 HREADY

CA time=70 ns

1 0 1 HREADY

PVT time=70 ns

d d d d a
d d d d a

d d d d a
d d d d a

d d d d a
d d d a

d

For example, Figure 4(a) shows a complementary CA-level
interface pair that describes the behavior of transferring one
address and two data via cycle-by-cycle signal handshaking.
Conversely, Figure 4(b) shows a complementary FSM pair for a
PVT, which is a higher transaction-level interface model whose
transition is associated with a function call and parameter passing;
there is no clock triggering and no signal setting, unlike the CA
model. Note that in a higher-level TLM environment, the
communication is mostly done through IMC (Interface Method
Call) instead of signal handshaking.

We now examine the PVT Initiator FSM in Figure 4(b) in more
detail. In the transition from state 0 to state 1, a transaction call is
initiated (begin_call!) and the payload is sent to the Target
(payload!). Then, to progress the transition from state 1 to state 2,
we have to wait for the notification for the end of the transaction
call along with a returned transaction delay value, and the
response field of the payload being filled in.

Since a transaction always occurs between two components, we
take the Initiator FSM of one component and the Target FSM of
the other component as the input for our transactor generation
algorithm.

4.2 Transactor generation
There are two steps to our generation process as shown in Figure
5. The first step is to find the complementary form of the two
input FSMs of the components to be connected. Second, our
generation algorithm explores the two complementary FSMs and
generates a timing-coherent transactor.

4.2.1 Complementary FSM
To connect components of different abstraction levels, the
transactor must be able to communicate with the FSMs that
represent the interface behaviors of the two components. Thus, the

transactor to be constructed is simply a composition of the two
complementary FSMs of the two original FSMs of interest. The
complement of an FSM is simply the inversion of all its actions.
For instance, the Initiator and Target shown in Figure 4, each is a
complement to the other.

If we assume that I1 is the initiator FSM of the first component
and T1 is its complementary FSM. Correspondingly, T2 is the
input FSM of the second component and I2 is its complementary
FSM. Then, I1 and T2 will be the inputs to our generation process
and their complements, i.e., I2 and T1, will be used to synthesize
the transactor as shown in Figure 5.

4.2.2 Automatic Generation Algorithm
Now, we elaborate the transactor generation algorithm which is
extended from the synthesis approaches in [19-20]. The key of the
algorithm is to properly coordinate the two complementary FSMs
and make sure that all transitions of the resultant transactor are
legal (i.e., the transactor translates the transaction correctly and is
timing-coherent). For a transition to be legal, the payload has to
be transferred correctly and the timing has to be coherent.

To check the legality of a transition, we first examine what
qualifies as a legal transition of one state pair to the next as shown
in Figure 6. Here, we use the term state pair to indicate a pair of
states on the two complementary FSMs (e.g., I2 and T1 shown in
the previous example) to be synthesized for the transactor. The
two initial states of the FSMs naturally form the first state pair.
Next we consider the process of traversing an intermediate state
pair. We then can generalize it to the complete transition process.

We assume that there are n possible transitions from one of the
intermediate states, say state P, of T1 (one of the FSM pair) and m
next transitions from another intermediate state Q of I2. The task

Generation
complement complement

CA
model

PVT
model

Figure 5: An overview of the generation process

1
2

transactor

I1

T1 I2

T2

P Q

... ...
P1 Pn Q1 Qm

P1 Q P Q1 ...

P Q

Figure 6: A typical exploration step.

P Qm Pn Q
...

Figure 4: (a) An example FSM of a CA interface pair; (b) A sample
FSM representation of a transaction-level interface pair.

begin_call !
payload !

end_call ?
delay ?
payload?

Initiator

0

1

2

Target

begin_call ?
payload ?

end_call !
delay !
payload!

0

1

2

(b)

(a)

GRANT?1
ADDR!

READY?1
DATA!

1

2

3

READY?1

4

5

READY?1
DATA!

GRANT?0

READY?0

READY?0

READY?0

GRANT!1
ADDR?

READY!1
DATA?

1

2

3

READY!1
4

5

READY!1
DATA?

GRANT!0

READY!0

READY!0

READY!0

Initiator Target

REQ!1 REQ?1
0 0

T1 I1

I2 T2

is to determine which transitions are legal among the possible n +
m transitions. Any transition that violates legality is excluded.

For payload correctness, we have to ensure that the payload has
all the required information being transferred, if the transition
triggers a payload transfer. Any transition that violates the
requirement is also excluded.

For timing coherence, we leverage the local clock wrapping and
dynamic timing matching technique discussed in Section 3 to
ensure coherence. We say that a state-pair transition is not timing-
coherent if the target state reaches a transaction boundary while
the initiator state still cannot determine the transaction time.

Then with local clocks being advanced separately, we choose only
one transition from either state P or state Q instead of a concurrent
transition pair at each step for progression as shown in Figure 6.
Thus, for each step we only need to check at most 𝑛 +𝑚
transitions instead of 𝑛 ×𝑚 transitions. In this way, the search
algorithm can perform efficiently.

Furthermore, for dynamic timing matching, the transactor has to
translate the returned delay of the PVT model into a number of
cycles in the CA model by keeping the handshake signal inactive
for the corresponding period of time. To achieve this, we parse the

FSM of the CA interface to find the last handshake state, such as
state 4 in Figure 4(a), and convert it into a delay consumption
model as shown in Figure 7(b). In this way, any transition to the
final state that occurs before the receipt of the delay parameter is
regarded as an illegal transition since there would be no delay to
consume. The transactor essentially keeps the handshake signal
inactive at this state until the specified delay is consumed. By
doing so, the ending point of the transaction on the PVT model
according to the delay parameter can be matched with that of CA
at the last transition.

Moreover, we need to do special processing on control signals,
such as the READY signal, which occur in self-loops and affect
timing as shown in Figure 4(a). For our approach, we simply
remove these self-looping transitions except the last one before
completion of transactor generation and adjust the timing at the
last handshake state as discussed,

The generation algorithm is summarized below for reference. We
apply the DFS (Depth-First-Search) to explore the combined
states of the input FSM pair. In addition to the FSM pair, the
mapping of the payload, such as L={addr, data, data} for the
example in Figure 4, is assumed to be provided by designers.

The two initial states of the input FSMs naturally form the first
state pair which will be the first to be explored. At each step, the
algorithm checks the consistency of the data and timing of all the
out-going transition to ensure payload correctness and timing
coherence. Any transition that violates the constraints will not be

explored further. We also check if the transition is a self-loop and
skip it to avoid infinite recursion. If the transition is legal, then we
add it into the output transactor FSM. If the state pair being
visited is the final state pair, we directly add it into the output
FSM and exit and determine that a legal transactor is found. If a
state pair has already been visited, then we know that all its
descendants have been explored and no transitions of this state
pair can reach final state pair. We then remove this state and
continue exploring other states until a legal transactor found or
exhausted.

Algorithm: Generation(T, I, L)
1. Input: A FSM pair T,I ; The mapping of payload L
2. Output: A transactor FSM G, initialized to Ø
3. S: A stack of {p, q} = Ø for DFS
4. Begin
5. S.push(<0,0>); // push initial state
6. while S != Ø do
7. begin
8. {p, q} = S.pop(); // p is a state in T and q is a state in I
9. if {p, q} has been visited, G.delete(all outgoing

transitions from {p,q}) and go to step 6;
10. mark {p,q} visited;
11. if leaf-node, exit; //success
12. for each outgoing transition p→ p'
13. if(data inconsistent || timing inconsistent) continue;

//to next transition
14. if(p’ != p) S.push({p', q}); // do not follow SELF-LOOP;
15. G.add({p,q}→{p’,q});
16. end-for
17. for each outgoing transition q→ q'
18. if(data inconsistent || timing inconsistent) continue;

//to next transition
19. if(q’! = q) S.push({p, q'});// do not follow SELF-LOOP;
20. G.add({p,q}→{p,q’});
21. end-for
22. end-while
23. End

In Figure 8, we show the resultant transactor FSM of the input
Initiator in Figure 4(a) and the Target in Figure 4(b). This
transactor can correctly perform timing-coherent translation as
shown in Figure 3.

5. CASE STUDY

We have implemented our proposed timing-coherent transactor
generation algorithm and verified its effectiveness on a few
industrial designs. The experiments were performed on a platform
equipped with an Intel Xeon 3.4GHz quad-core and 2GB ram.
The target design was modeled in SystemC 2.2.0.

READY!0

READY!1

delay !=1
delay - -
READY!0 delay == 1

READY!1

Figure 7: (a) The last handshake state of the Target in Figure 4(a). (b)
Adding a delay consumption model.

(a) (b)

4

5 5

4

REQ?1

GRANT!1
ADDR?

READY!1
DATA?

READY!1
DATA?

begin_call !
payload !

end_call ?
delay ?
payload?

READY!1
delay==1

Figure 8: The result of the transactor generated from the Initiator in
Figure 4(a) and Target in Figure 4(b).

READY!0,
delay!=1, delay - -

We took the PAC platform [18] shown in Figure 9 for a case
study. For the experiment, we adopted a CCA (Cycle-Count
Accurate) bus model [5], along with the rest of the PVT models
except for the EMDMA. The EMDMA is of the CA abstraction
model with a CoWare communication interface. We connected
the EMDMA to the high level platform through a transactor. We
compared our timing-coherent approach with the traditional
integration approach. We computed the accuracy rate of each
transaction by comparing the beginning and ending times of the
transaction. We found that our approach can accurately capture
the timing of each transaction while the conventional approach
has a 25% to 44% inaccuracy rate.

In Table 1, we list the testing results of three testbenches for the
EMDMA module in Figure 9. The general channel test contains
burst transfers of various lengths and the multimedia test includes
common context tasks in multimedia applications (which involve
transferring data from two sources to one destination or from one
source to two destinations). The last column shows the error rate
of each transaction from executing the H264 code. With the local
clock wrapping and dynamic timing matching, our approach
achieves 100% accuracy on the full system simulation.

Table 1: The accuracy rate comparison

 General
Channel Test Multimedia Test H264

Error Rate of
Our Approach 0% 0% 0%

Error Rate of the
Conventional

Approach
44% 25% 42%

6. CONCLUSION
This paper proposes an automatic transactor generation approach
that can guarantee timing-coherent results in mixed-level system
simulations. We demonstrate that our approach achieves 100%
timing accuracy in mixed level system simulations while the
conventional approach produces a 25% to 44% error rate. Our
proposed approach ensures reliable performance estimation and
accurate system concurrent behavior simulations. The method can
be generalized to perform system integration of high-abstraction
software models with hardware implemented models.

7. REFERENCES
[1] CAI, Lukai; GAJSKI, Daniel. Transaction level modeling: an

overview. In: Proceedings of the 1st IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis. ACM, 2003. p. 19-24..

[2] DONLIN, Adam. Transaction level modeling: flows and use
models. In: Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign and
system synthesis. ACM, 2004. p. 75-80.

[3] PASRICHA, Sudeep; DUTT, Nikil; BEN-ROMDHANE,
Mohamed. Extending the transaction level modeling approach
for fast communication architecture exploration. In:
Proceedings of the 41st annual Design Automation Conference.
ACM, 2004. p. 113-118.

[4] LO, Chen Kang; TSAY, Ren Song. Automatic generation of
Cycle Accurate and Cycle Count Accurate transaction level
bus models from a formal model. In: Design Automation
Conference, 2009. ASP-DAC 2009. Asia and South Pacific.
IEEE, 2009. p. 558-563.

[5] LO, Yi-Len; LI, Mao-Lin; TSAY, Ren-Song. Cycle count
accurate memory modeling in system level design. In:
Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis. ACM, 2009.
p. 287-294.

[6] BOMBIERI, Nicola; FUMMI, Franco. On the automatic
transactor generation for TLM-based design flows. In: High-
Level Design Validation and Test Workshop, 2006. Eleventh
Annual IEEE International. IEEE, 2006. p. 85-92.

[7] BALARIN, Felice; PASSERONE, Roberto. Specification,
synthesis, and simulation of transactor processes. Computer-
Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 2007, 26.10: 1749-1762.

[8] BOMBIERI, Nicola; DEGANELLO, Nicola; FUMMI, Franco.
Integrating RTL IPs into TLM designs through automatic
transactor generation. In: Proceedings of the conference on
Design, automation and test in Europe. ACM, 2008. p. 15-20.

[9] BRAHME, Dhanajay, et al. The transaction-based verification
methodology. Cadence Design Systems, Inc, 2000.

[10] IP, C. Norris; SWAN, Stuart. A tutorial introduction on the
new SystemC verification standard. White paper, 2003.

[11] JINDAL, Rohit; JAIN, Kshitiz. Verification of transaction-
level SystemC models using RTL testbenches. In: Formal
Methods and Models for Co-Design, 2003. MEMOCODE'03.
Proceedings. First ACM and IEEE International Conference on.
IEEE, 2003. p. 199-203.

[12] TransactorWizard. Citing Websites. http://www.sdvinc.com
[13] BusCompiler. Citing Websites. http://www.synopsys.com
[14] Cohesive. Citing Websites. http://www.mentor.com
[15] LIAO, Thorsten Grötkerand Stan, et al. System design with

SystemC. Springer, 2002.
[16] VAN MOLL, H. W. M., et al. Fast and accurate protocol

specific bus modeling using TLM 2.0. In: Design, Automation
& Test in Europe Conference & Exhibition, 2009. DATE'09.
IEEE, 2009. p. 316-319.

[17] ABDI, Samar; SHIN, Dongwan; GAJSKI, Daniel. Automatic
communication refinement for system level design. In:
Proceedings of the 40th annual Design Automation
Conference. ACM, 2003. p. 300-305.

[18] HSU, Zhe-Mao; YEH, Jen-Chieh; CHUANG, I.-Yao. An
accurate system architecture refinement methodology with
mixed abstraction-level virtual platform. In: Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2010. IEEE, 2010. p. 568-573.

[19] PASSERONE, Roberto; ROWSON, James A.;
SANGIOVANNI-VINCENTELLI, Alberto. Automatic
synthesis of interfaces between incompatible protocols. In:
Proceedings of the 35th annual Design Automation
Conference. ACM, 1998. p. 8-13.

[20] WATANABE, Shigeru, et al. Protocol transducer synthesis
using divide and conquer approach. In: Proceedings of the
2007 Asia and South Pacific Design Automation Conference.
IEEE Computer Society, 2007. p. 280-285.

[21] Open Core Protocol International Partnership (OCP-IP),
www.ocpip.org.

[22] FLYNN, David. AMBA: enabling reusable on-chip designs.
Micro, IEEE, 1997, 17.4: 20-27.

CCA Bus Model

PAC1 PAC2

Transactor

Figure 9: PAC Duo platform

EMDMA

SRAM DDR2 LCDC

