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ABSTRACT 

In this paper we extend the concept of the traditional transactor, 
which focuses on correct content transfer, to a new timing-
coherent transactor that also accurately aligns the timing of each 
transaction boundary so that designers can perform precise 
concurrent system behavior analysis in mixed-abstraction-level 
system simulations which are essential to increasingly complex 
system designs. To streamline the process, we also developed an 
automatic approach for timing-coherent transactor generation. 
Our approach is actually applied in mixed-level simulations and 
the results show that it achieves 100% timing accuracy while the 
conventional approach produces results of 25% to 44% error rate. 

1. INTRODUCTION 
As system complexity continues to increase, system-level 
abstractions and mixed-level simulations for both functional and 
timing verifications are critical for design productivity. In order to 
reduce verification complexity, designers often focus only on one 
specific component at a time and keep the rest of the target system 
abstract model in a top-down design process [1-2]. Hence, it is 
crucial to have a methodology that can seamlessly integrate 
models of different abstraction levels while ensuring functional 
correctness and timing coherence for mixed-level simulations. 

Transactor [6-11] techniques have been widely applied to enable 
system simulations and integrations. A transactor translates 
information of different formats from one component model to 
another. Previous works focus on the modeling and automation of 
transactors to convert the contents of the transaction but do not 
consider timing effects. Therefore, these approaches cannot 
guarantee timing coherence, for which both components 
connected by a transactor should have the same transaction 
timing reference. For instance, both should see the same 
transaction start and end time. Without timing coherence, system 
components cannot be correctly synchronized. Hence, system 
concurrent behaviors cannot be accurately captured or verified 
with these approaches.  

To illustrate the coherence issue, we show in Figure 1(a) a model 
of a conventional transactor. We assume that a Cycle-Accurate 
(CA) model is on one side of the transactor and a Programmer-
View-with-Time (PVT) model is on the other. In the CA model, 
all signals are examined cycle by cycle following the bus protocol, 
but in the PVT model, payload (i.e. the collection of bus addresses 
and data transferred) is passed as a parameter through a function 
call. For a transaction from the PVT to the CA, the transactor 
reads the PVT payload and distributes the corresponding signals 
to the CA model. Conversely, for a transaction from the CA to the 
PVT, the transactor collects the address and data from the CA 

model and packs them into a payload for the PVT model. As a 
result, the contents of the transaction are correctly translated. 

However, the timing behavior is not consistent when translating a 
transaction from a CA model to a PVT model. Figure 1(b) shows 
the time span of a CA-to-PVT write transaction translated by a 
conventional transactor. In this case, the transactor can issue the 
write transaction call only after completing the payload collection, 
i.e., at the time point indicated by the upward arrow. Now, a 
subtle issue emerges: when collecting payload, the transactor 
must advance the clock cycle-by-cycle in order to process address 
and data transfers according to the CA interface protocol. 
Therefore, the conventional transactor approaches have to delay 
issuing the transaction to the PVT side until the collection process 
is completed. As a result, the two models each owns different time 
reference for the transaction and this results in compromised 
simulation results. 

The reason why the above timing incoherent issue occurs is 
because a transactor cannot instantly determine the payload when 
a CA transaction is being processed. Additionally, since both the 
CA and PVT interface protocols are timing sensitive, any clock 
cycle misalignment will result in timing incoherent results. 

A part of the above issue can easily be resolved by having a 
separate local clock for each component model on one side of the 
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Figure 1: (a) A transactor connecting a PVT and a CA models. (b) 
Timing incoherence occurs when data is transferred from a CA 
model to a PVT model through a conventional transactor.  
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transactor to avoid any delayed content issuing. Specifically, we 
let the transactor manage the local clocks of the connected 
models and have each component model advance its own local 
clock separately. However, to fully resolve the issue we need to 
further develop a full timing coherence policy for the transactor 
to integrate component models of different abstraction levels 
while following the interface protocols. Details of our proposed 
timing coherence approach will be elaborated in Section 3. 

To alleviate designers from tedious and error-prone manual 
implementation, we use FSM (Finite State Machine) to describe 
the interface behavior of each abstraction level and devise a 
generation algorithm. We automatically extract timing-coherent 
constraints from the interface FMSs to guide our transactor 
generation algorithm and guarantee consistent beginning and 
ending points of every transaction. We will illustrate the details in 
Section 4. 

Our idea has been implemented and tested on industrial cases and 
the experimental results show that our approach can simulate 
accurately while the conventional approach has a 25% to 44% of 
accuracy degradation.  

The remainder of this paper is organized as follows: Section 2 
describes related work, Section 3 explains issues in timing 
coherence of mixed-level simulation and the proposed transactor 
generation algorithm is described in Section 4, Section 5 discusses 
experimental results and Section 6 presents our conclusion. 

2. RELATED WORK 
Transactors have been widely adopted in today’s SoC (System-
on-Chip) design processes. They were originally used in 
Transaction Based Verification (TBV) [9]. By separating the 
verification process of an RTL IP (Register-Transfer-Level 
Intellectual Property) into transactor modeling and testbench 
design, a complex test suite can be built effectively. The concept 
is further applied to the verification of TLM (Transaction Level 
Modeling) models using RTL testbenches and the co-simulation 
of TLM and RTL models [10, 11]. These works mainly aim to 
translate the transaction contents between component models in 
different abstraction levels, and omit timing coherence 
consideration. 

Transactors are also used for communication architecture 
exploration and design [16-18]. A TLM model can be connected 
to a CA bus through a transactor as shown in Figure 1(a). Since 
timing coherence is not considered, the mix-level simulation 
results of the architecture performance estimations are inaccurate 
as discussed in the introduction section. 

To improve the tedious and error-prone transactor modeling 
process, researchers have also proposed a few automatic 
transactor generation algorithms [6-8]. However, none of these 
approaches address the timing coherence problem in connecting 
component models of different abstraction levels. Therefore, they 
are only suitable for functional verification rather than 
performance estimation or concurrent behavior simulations.  

Despite not being able to guarantee timing coherence, Bombieri et. 
al. [6] propose a template-based approach for transactor 
generation. The approach is restricted to AHB (AMBA High-
performance Bus)-like protocol and cannot handle pipelined and 
out-of-order bus protocols. Balarin et al. in [7] propose a finite 
automaton-based approach that is widely adopted for converter 
(or transducer) synthesis [19-20] with protocol behavior captured 
by one or multiple FSMs (Finite State Machines) depending on 

the concurrency property. We adopt and extend the approach in 
[20] for our purpose as out-of-order protocol behavior can be 
captured easily by multiple FSMs. 

The study of transactor generation has also attracted industrial 
attention. Examples are TransactorWizard from Structured 
Design Verification [12], BusCompiler from Synopsys [13] and 
Cohesive from Spiratech [14]. However, due to the proprietary 
nature of these commercial tools, we omit making direct 
comparisons with these tools. 

As aforementioned, none of these approaches can achieve timing-
coherent mixed-level simulations. Our proposal is the first 
automatic transactor generation approach that can guarantee 
timing-coherent results of mixed-level system simulation. To 
explicate the idea, timing coherence issue is first elaborated. 

3. THE PROPOSED APPROACH 
Without loss of generality, in the following we use the example of 
connecting a CA component model to a PVT component model to 
explain our approach.  

First, note that both payload content correctness and timing 
coherence are required for performing mixed-level simulations. 
To ensure payload correctness, the mapping between signals in 
the CA (i.e. address and data) and payload in the PVT has to be 
encoded in the transactor, which distributes address and data or 
collects payload according to the given protocols. To guarantee 
timing coherence, as discussed in the introduction, we have a 
separated local clock for each component model and then 
synchronize timing only at the transaction boundaries. Before 
describing the details of our approach, we will first present the 
timing coherence issues in the TLM abstraction levels. 

3.1 Timing coherence 
As shown in Figure 2, components modeled at different 
abstraction levels may have different timing details of a 
transaction. A PVT model concerns only the beginning and 
ending points of the transaction. A Bus-Accurate (BA) model, 
however, also requires the beginning and ending time points of 
each sub-transaction, such as the request phase or data phase 
defined in OCP [21]. A CA model defines the behavior of every 
cycle. 

To simplify our later discussion, in Figure 2 we use white dots 
and black dots to indicate the beginning and ending points of 
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Figure 2: An illustration of timing coherence among models in 
different TLM abstraction levels. 
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transactions (or sub-transactions) respectively. 

Now we say that a transactor is timing-coherent if the 
communications between the two connected component models 
not only have correct functionality but also exhibit consistent 
transaction beginning and ending timing points.  

3.2 Local clock management 
To construct a timing-coherent transactor, the key is to have the 
transactor manage the local clocks of the connected component 
models. A transactor should separately advance the clock of each 
connected component model and coordinate the clocks to ensure 
coherent global timing. 

Essentially, instead of having the simulators control clock signals 
as in the conventional approaches, we let the transactor control 
the local clocks as shown in Figure 3(a). In this scheme, before a 
payload is issued, the transactor advances only the local clock of 
the low level component model while the clock of the high level 
component model is not affected. Once the payload information is 
fully collected, then the transactor issues the transaction call and 
advances the local clock of the high level component model to the 
correct transaction ending time. We name this process local clock 
wrapping as the transactor wraps the local clock behavior of the 
low level model around the transactional information for a higher 
level model. 

The timing diagrams in Figures 3(b)~3(e) illustrate the local clock 

wrapping process. We assume that the CA master component 
model is below the solid line while the PVT bus component 
model is above the solid line, and the solid line itself represents 
the transactor. As the CA master issues a transfer, the transactor 
records the beginning time of the transfer and drives the local 
clock until it finishes collecting the payload. Note that we drive 
only the local clock of the CA component as shown in Figure 3(b), 
and that the time of the CA model is now 50 ns while the time of 
the PVT model remains at 0 ns (assuming the clock period is 10 
ns). At this point, the content of the payload is valid and the 
transactor issues a transaction call to the PVT component model 
as shown in Figure 3(c). Assuming that the returned delay is 50 ns, 
the transactor then advances the clock of the PVT model, as 
shown in Figure 3(d), so that the beginning and the ending points 
of the transaction are consistent on both sides of the transactor as 
shown in Figure 3(e). 

In the following we shall discuss the case that a transaction is only 
determinable at runtime. 

3.3 Dynamic timing matching 
Models of different abstraction levels not only have different 
timing view of a transaction but also have different ways of 
managing delay behaviors. For instance, a PVT model simply 
takes a delay parameter while a CA model adopts a signal 
handshake to determine the actual delay values.  

The examples in Figure 3(f)-(g) illustrate the scenario that the CA 
model recognizes the end of a transaction when the handshake 
signal of the last data transfer is raised (such as HREADY signal 
in the AHB bus protocol). In this case, the returned delay from the 
PVT bus is not the ideal 50 ns value. We assume that the returned 
delay is 70 ns, which includes an additional contention delay. To 
be consistent, our proposed approach automatically detects from 
the interface protocol and lets the transactor keep the HREADY 
signal low for an additional 20 ns so that the transaction end 
points on both sides would match exactly. Details are discussed in 
the next section. 

Although the transactor mechanism proposed above is effective, 
it would be tedious and error-prone if implemented manually. In 
order to relieve designers from this tedious process, we devise an 
algorithm for automatic timing-coherent transactor generation as 
discussed in the following. 

4. AUTOMATIC GENERATION 
We propose a FSM-based generation algorithm that can 
automatically generate a timing-coherent transactor from the two 
given FSMs that describe the interface behavior of the connected 
components. Essentially, our algorithm generates a third FSM that 
represents the transactor to interact between the given FSMs and 
to conduct transactions with both correct function and coherent 
timing. 

4.1 Interface FSM specification 
First, we define the notations used in the FSM that describes the 
behavior of an interface protocol. As shown in Figure 4, the 
notation ‘!’ indicates the setting of signals and ‘?’ represents the 
reading of signals. We name the FSM issuing a transaction as the 
Initiator and the one responding to the transaction as the Target. 
Note that the Initiator and Target complement each other and both 
can progress synchronously to accomplish a transaction. 
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Figure 3: (a) An overview of the transactor architecture. (b) The transactor 
collects payload from the CA-level model component and advances its clock. 
(c) The transactor issues the collected payload to the PVT model component 
at the right time point. (d) The transactor advances the PVT clock to match 
the ending point of the transaction. (e) The transactor sets consistent 
transaction boundaries. (f) The transactor keeps the HREADY signal low for 
20 ns more. (g) The timing coherent result for the case in (f). 
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For example, Figure 4(a) shows a complementary CA-level 
interface pair that describes the behavior of transferring one 
address and two data via cycle-by-cycle signal handshaking. 
Conversely, Figure 4(b) shows a complementary FSM pair for a 
PVT, which is a higher transaction-level interface model whose 
transition is associated with a function call and parameter passing; 
there is no clock triggering and no signal setting, unlike the CA 
model. Note that in a higher-level TLM environment, the 
communication is mostly done through IMC (Interface Method 
Call) instead of signal handshaking. 

We now examine the PVT Initiator FSM in Figure 4(b) in more 
detail. In the transition from state 0 to state 1, a transaction call is 
initiated (begin_call!) and the payload is sent to the Target 
(payload!). Then, to progress the transition from state 1 to state 2, 
we have to wait for the notification for the end of the transaction 
call along with a returned transaction delay value, and the 
response field of the payload being filled in.  

Since a transaction always occurs between two components, we 
take the Initiator FSM of one component and the Target FSM of 
the other component as the input for our transactor generation 
algorithm. 

4.2 Transactor generation 
There are two steps to our generation process as shown in Figure 
5. The first step is to find the complementary form of the two 
input FSMs of the components to be connected. Second, our 
generation algorithm explores the two complementary FSMs and 
generates a timing-coherent transactor. 

4.2.1 Complementary FSM 
To connect components of different abstraction levels, the 
transactor must be able to communicate with the FSMs that 
represent the interface behaviors of the two components. Thus, the 

transactor to be constructed is simply a composition of the two 
complementary FSMs of the two original FSMs of interest. The 
complement of an FSM is simply the inversion of all its actions. 
For instance, the Initiator and Target shown in Figure 4, each is a 
complement to the other. 

If we assume that I1 is the initiator FSM of the first component 
and T1 is its complementary FSM. Correspondingly, T2 is the 
input FSM of the second component and I2 is its complementary 
FSM. Then, I1 and T2 will be the inputs to our generation process 
and their complements, i.e., I2 and T1, will be used to synthesize 
the transactor as shown in Figure 5.  

4.2.2 Automatic Generation Algorithm 
Now, we elaborate the transactor generation algorithm which is 
extended from the synthesis approaches in [19-20]. The key of the 
algorithm is to properly coordinate the two complementary FSMs 
and make sure that all transitions of the resultant transactor are 
legal (i.e., the transactor translates the transaction correctly and is 
timing-coherent). For a transition to be legal, the payload has to 
be transferred correctly and the timing has to be coherent.  

To check the legality of a transition, we first examine what 
qualifies as a legal transition of one state pair to the next as shown 
in Figure 6. Here, we use the term state pair to indicate a pair of 
states on the two complementary FSMs (e.g., I2 and T1 shown in 
the previous example) to be synthesized for the transactor. The 
two initial states of the FSMs naturally form the first state pair. 
Next we consider the process of traversing an intermediate state 
pair. We then can generalize it to the complete transition process. 

We assume that there are n possible transitions from one of the 
intermediate states, say state P, of T1 (one of the FSM pair) and m 
next transitions from another intermediate state Q of I2. The task 
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is to determine which transitions are legal among the possible n + 
m transitions. Any transition that violates legality is excluded. 

For payload correctness, we have to ensure that the payload has 
all the required information being transferred, if the transition 
triggers a payload transfer. Any transition that violates the 
requirement is also excluded. 

For timing coherence, we leverage the local clock wrapping and 
dynamic timing matching technique discussed in Section 3 to 
ensure coherence. We say that a state-pair transition is not timing-
coherent if the target state reaches a transaction boundary while 
the initiator state still cannot determine the transaction time. 

Then with local clocks being advanced separately, we choose only 
one transition from either state P or state Q instead of a concurrent 
transition pair at each step for progression as shown in Figure 6. 
Thus, for each step we only need to check at most 𝑛 +𝑚 
transitions instead of 𝑛 ×𝑚 transitions. In this way, the search 
algorithm can perform efficiently. 

Furthermore, for dynamic timing matching, the transactor has to 
translate the returned delay of the PVT model into a number of 
cycles in the CA model by keeping the handshake signal inactive 
for the corresponding period of time. To achieve this, we parse the 

FSM of the CA interface to find the last handshake state, such as 
state 4 in Figure 4(a), and convert it into a delay consumption 
model as shown in Figure 7(b). In this way, any transition to the 
final state that occurs before the receipt of the delay parameter is 
regarded as an illegal transition since there would be no delay to 
consume. The transactor essentially keeps the handshake signal 
inactive at this state until the specified delay is consumed. By 
doing so, the ending point of the transaction on the PVT model 
according to the delay parameter can be matched with that of CA 
at the last transition. 

Moreover, we need to do special processing on control signals, 
such as the READY signal, which occur in self-loops and affect 
timing as shown in Figure 4(a). For our approach, we simply 
remove these self-looping transitions except the last one before 
completion of transactor generation and adjust the timing at the 
last handshake state as discussed, 

The generation algorithm is summarized below for reference. We 
apply the DFS (Depth-First-Search) to explore the combined 
states of the input FSM pair. In addition to the FSM pair, the 
mapping of the payload, such as L={addr, data, data} for the 
example in Figure 4, is assumed to be provided by designers.  

The two initial states of the input FSMs naturally form the first 
state pair which will be the first to be explored. At each step, the 
algorithm checks the consistency of the data and timing of all the 
out-going transition to ensure payload correctness and timing 
coherence. Any transition that violates the constraints will not be 

explored further. We also check if the transition is a self-loop and 
skip it to avoid infinite recursion. If the transition is legal, then we 
add it into the output transactor FSM. If the state pair being 
visited is the final state pair, we directly add it into the output 
FSM and exit and determine that a legal transactor is found. If a 
state pair has already been visited, then we know that all its 
descendants have been explored and no transitions of this state 
pair can reach final state pair. We then remove this state and 
continue exploring other states until a legal transactor found or 
exhausted. 

Algorithm: Generation(T, I, L) 
1. Input: A FSM pair T,I ; The mapping of payload L 
2. Output: A transactor FSM G, initialized to Ø 
3. S: A stack of {p, q} = Ø for DFS 
4. Begin 
5.    S.push(<0,0>); // push initial state  
6.    while S != Ø do 
7.    begin 
8.       {p, q} = S.pop();   // p is a state in T and q is a state in I 
9.       if {p, q} has been visited, G.delete( all outgoing 

transitions from {p,q} ) and go to step 6; 
10.       mark {p,q} visited; 
11.       if leaf-node, exit; //success 
12.       for each outgoing transition p→ p' 
13.          if( data inconsistent || timing inconsistent ) continue; 

//to next transition 
14.          if( p’ != p) S.push( {p', q} ); // do not follow SELF-LOOP; 
15.          G.add( {p,q}→{p’,q} ); 
16.       end-for 
17.       for each outgoing transition q→ q' 
18.          if( data inconsistent || timing inconsistent ) continue; 

//to next transition 
19.          if( q’! = q) S.push( {p, q'} );// do not follow SELF-LOOP; 
20.          G.add( {p,q}→{p,q’} ); 
21.       end-for 
22.    end-while 
23. End 
 
In Figure 8, we show the resultant transactor FSM of the input 
Initiator in Figure 4(a) and the Target in Figure 4(b). This 
transactor can correctly perform timing-coherent translation as 
shown in Figure 3. 

5. CASE STUDY 

We have implemented our proposed timing-coherent transactor 
generation algorithm and verified its effectiveness on a few 
industrial designs. The experiments were performed on a platform 
equipped with an Intel Xeon 3.4GHz quad-core and 2GB ram. 
The target design was modeled in SystemC 2.2.0. 
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We took the PAC platform [18] shown in Figure 9 for a case 
study. For the experiment, we adopted a CCA (Cycle-Count 
Accurate) bus model [5], along with the rest of the PVT models 
except for the EMDMA. The EMDMA is of the CA abstraction 
model with a CoWare communication interface. We connected 
the EMDMA to the high level platform through a transactor. We 
compared our timing-coherent approach with the traditional 
integration approach. We computed the accuracy rate of each 
transaction by comparing the beginning and ending times of the 
transaction. We found that our approach can accurately capture 
the timing of each transaction while the conventional approach 
has a 25% to 44% inaccuracy rate. 

In Table 1, we list the testing results of three testbenches for the 
EMDMA module in Figure 9. The general channel test contains 
burst transfers of various lengths and the multimedia test includes 
common context tasks in multimedia applications (which involve 
transferring data from two sources to one destination or from one 
source to two destinations). The last column shows the error rate 
of each transaction from executing the H264 code. With the local 
clock wrapping and dynamic timing matching, our approach 
achieves 100% accuracy on the full system simulation. 

Table 1: The accuracy rate comparison 

 General 
Channel Test Multimedia Test H264 

Error Rate of 
Our Approach 0% 0% 0% 

Error Rate of the 
Conventional 

Approach 
44% 25% 42% 

6. CONCLUSION 
This paper proposes an automatic transactor generation approach 
that can guarantee timing-coherent results in mixed-level system 
simulations. We demonstrate that our approach achieves 100% 
timing accuracy in mixed level system simulations while the 
conventional approach produces a 25% to 44% error rate. Our 
proposed approach ensures reliable performance estimation and 
accurate system concurrent behavior simulations. The method can 
be generalized to perform system integration of high-abstraction 
software models with hardware implemented models. 
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