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ABSTRACT 
 
Two approaches for modulation spectrum equalization are 
proposed for robust feature extraction in speech recognition. 
In both cases the temporal trajectories of the feature 
parameters are first transformed into the modulation 
spectrum. In the spectral histogram equalization (SHE) 
approach, we equalize the histogram of the modulation 
spectrum for each utterance to a reference histogram 
obtained from clean training data. In the magnitude ratio 
equalization (MRE) approach, we equalize the magnitude 
ratio of lower to higher frequency components on the 
modulation spectrum to a reference value also obtained 
from clean training data. Preliminary experimental results 
performed on the AURORA 2 testing environment indicate 
that significant performance improvements are achievable 
with these approaches, when integrated with cepstral mean 
and variance normalization (CMVN), for all testing sets A, 
B, and C, all types of noise, for all SNR values. We also 
show that the approach of magnitude ratio equalization 
(MRE) offers additional performance improvements when 
integrated with other more advanced feature normalization 
approaches such as histogram equalization (HEQ) and 
higher-order cepstral moment normalization (HOCMN). 
 

Index Terms— Modulation spectrum, feature 
normalization, robust feature extraction, temporal filter 
 

1. INTRODUCTION 
 
The performance of speech recognition systems is very 
often degraded due to the mismatch between the acoustic 
conditions of the training and testing environments. A very 
popular approach for handling this problem is to try to 
normalize the statistical behavior of the speech features in 
order to reduce the effect of such mismatch under various 
environmental conditions. Cepstral mean subtraction (CMS) 
[1], cepstral mean and variance normalization (CMVN) [2],   
histogram equalization (HEQ) [3],  and higher-order 
cepstral moment normalization (HOCMN) [4] are typical 
examples of such techniques. CMS and CMVN normalize 
the first-order and/or the second-order feature  moments, 
and HOCMN further normalizes other moments of higher 
orders. HEQ, on the other hand, equalizes the histogram of 
speech features to some reference cumulative distribution 

function (CDF). In general, these techniques all seek to 
normalize the distributions of the speech features.  

Another approach to reducing the above mismatch is 
to try to filter the time trajectories of the speech features, or 
to perform filtering in the modulation spectrum. RASTA 
filtering [5] [6] or other similar approaches with filters 
designed by data-driven methods based on different criteria 
such as linear discriminant analysis (LDA) [7], principle 
component analysis (PCA) [8], and minimum classification 
error (MCE) [10] are good examples of this approach. 
Properly using information induced from the modulation 
spectrum [12] or performing square-root Wiener filtering on 
the modulation spectrum [13] are also good examples. It has 
been shown in most studies that the modulation spectrum 
around 4 Hz is the most useful for speech recognition 
[5][9][10][11]. 

In this paper, we propose a new approach for 
modulation spectrum equalization in which the modulation 
spectra of noisy speech utterances are equalized to those of 
clean speech. This includes two equalization techniques. 
The first is to equalize the cumulative density functions 
(CDFs) of the modulation spectra of clean and noisy speech, 
such that the differences between them are reduced. The 
second is to equalize the magnitude ratio of lower to higher 
components in the modulation spectrum, which also reduces 
the difference between the modulation spectra of clean and 
noisy speech. Experiments performed on the AURORA 2 
testing environment offered very encouraging results. The 
rest of the paper is organized as follows. In section 2, the 
proposed approach is presented. In sections 3 and 4 the 
experimental setup and results are reported. Concluding 
remarks are finally presented in section 5. 

 
2. PROPOSED APPROACH 

 
As shown in Figure 1, given a sequence of feature vectors 
{x(n),n=1,2,…,N} for an utterance, each including D feature 
parameters, where n is the time index, and d=1,…,D is the 
parameter index,  
 
x(n)= [x(n,1),x(n,2), …,x(n,d),…,x(n,D)]T , n=1, …,N.       (1) 
 
Then the time trajectory of the d-th parameter of 
{x(n),n=1,2,…N} is the sequence [x(1,d) x(2,d) …x(N,d)], 
denoted as yd(n), where yd(n)= x(n,d). Now we can 
transform the temporal sequence yd(n) to the modulation 
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Figure 1: The representation of the time trajectories of 
feature parameter sequences 
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where k is the frequency index of the discrete Fourier 
transform. The two techniques proposed here can then be 
performed with Yd(k). If complexity is a concern for real-
time applications, a fixed value N optimized for the FFT 
algorithm can be chosen and Yd(k) can be obtained window-
by-window.  
 
2.1. Spectral Histogram Equalization (SHE) 
 
Histogram equalization (HEQ) has been shown to be very 
useful in image processing and speech feature normalization. 
Here, we try to borrow this concept but apply it in the 
modulation spectrum, or Yd(k) as in equation (2). This is 
referred to as spectral histogram equalization (SHE). Let 
Yd,test(k) represent the modulation spectrum of a testing 
utterance. Such a modulation spectrum for the MFCC 
parameter c0 for a typical example test utterance of 
AURORA 2 is shown in Figure 2. We can observe that this 
modulation spectrum is greatly altered when the SNR is 
degraded to 10 dB or 0 dB. In general Yd(k) is a complex 
number, but here we only consider equalizing the magnitude 
|Yd(k)|, while keeping the phase unchanged. We first 
calculate the cumulative distribution function (CDF) of the 
magnitudes of the modulation spectra, |Yd(k)|, for all 
utterances in the clean training data of AURORA 2 to be 
used as the reference CDF, CDFref[·]. For any test utterance, 
the CDF for its modulation spectrum magnitude, |Yd,test(k)|, 
can be similarly obtained as CDFtest[·]. Hence the equalized 
magnitude of modulation spectrum | )(ˆ

, kY testd | is  
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,

1
, kYCDFCDFkY testdtestreftestd

 
where CDF-1

ref[·] is the inverse of the cumulative 
distribution function. This is the spectral histogram 
equalization (SHE), and after this process the statistical 
distribution of |Yd,test(k)| is better matched to that of the clean 
training speech data. 
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Figure 2: Modulation spectrum of c0 for an example 
utterance in the AURORA 2 corpus under clean, 10 dB, and 
0 dB SNR conditions, where the horizontal scale is the 
modulation frequency (Hz), and the vertical scale is the 
magnitude. 
 
2.2. Magnitude Ratio Equalization (MRE) 
 
For a speech utterance, we first define a magnitude ratio 
(MR) for lower to higher frequency components for each 
parameter index d as follows: 
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where kc is the cut-off frequency used here,  N is the order 
of the discrete Fourier transform, and [N/2] is a function that 
returns the largest integer less than or equal to N/2 . Thus 
MRd is simply the ratio of sum of the lower frequency 
components to that of the higher frequency components on 
the modulation spectrum, where the lower and higher 
frequency components are divided by kc. It is well known 
that for the modulation spectrum of speech signals the major 
signal components are in the lower frequencies, and those in 
the higher frequencies are primarily non-speech, or noise. 
Therefore MRd as obtained in equation (4) can be seen as an 
indicator for the noise conditions of a given utterance.  

The distribution of the value of MRd for kc taken as 5 
Hz (the selection of this value will be discussed later on) for 
the parameter c0 for all test utterances in AURORA 2 
including all testing sets at different SNR values is shown in 
Figure 3. We can observe from this figure that the mean 
value of MRd is degraded when SNR is degraded, and thus 
MRd is highly correlated with SNR. It is therefore 
reasonable to equalize the value of MRd for a noisy 
utterance to a reference MRd value obtained from clean 
training data.  

We first calculate the average of MRd for all utterances 
in the clean training data of AURORA 2 as the reference 
value MRd,ref. Likewise, we then calculate the value of MRd 
for each test utterance as MRd,test. We thus define a scaling 
factor Fd as 

testd

refd
d MR

MR
F

,
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Figure 3: The distribution of the magnitude ratio (MRd) 
values of c0 for all testing utterances in AURORA 2 for all 
sets at all SNRs. Each point represents the MRd value of c0 
for an utterance. 
                                                       
With Fd in equation (5), we then equalize the magnitude of 
the modulation spectrum for the test utterance |Yd,test(k)| as  
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where 0<p<1 is the weighted-power for the scaling factor. 
For example, if p=0.5, we use the same scaling factor to 
enhance the lower frequency components (or speech) and 
also to suppress the higher frequency components (or noise) 
in order to make the values of MRd,test identical to those of 
MRd,ref. If p=0.3, we still make the values of MRd,test 
identical to MRd,ref, but the lower frequency components are 
less enhanced while the higher ones are more suppressed. It 
will be shown later that the best values of kc and p can be 
determined empirically. 
 
2.3. The Overall Framework of the Proposed Approach 
 
The overall framework of the approach proposed here is 
shown in Figure 4. We first perform feature normalization 
(CMVN, HEQ, or HOCMN) on both the training data and 
each test utterance before transforming them to the 
modulation spectrum. After then performing SHE and MRE, 
each test utterance has its own modulation spectrum 
histogram CDFref[.] and MRd,test values, and thus is 
transformed individually. This is different from many 
conventional temporal filtering approaches, in which the 
same transformation (or set of filter coefficients) is used for 
different utterances and different noise conditions. 
 

3. EXPERIMENTAL SETUP 
 
The above approaches were evaluated under the AURORA 
2 testing environment with an English connected-digit string 
corpus. Two training conditions (clean-condition and multi-
condition) and three testing sets (sets A, B, and C) are 
defined in AURORA 2 [14]. In clean-condition training the 
acoustic models are trained on clean speech only, while in 
multi-condition training the models are trained using a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: The overall framework of modulation spectrum 
equalization techniques. 
 
corpus with both clean and noisy speech. The testing set A 
includes four different types of noise used in multi-
condition training (subway, babble, car and exhibition), 
while the testing set B includes another four different types 
of noise not used in multi-condition training (restaurant, 
street, airport and train station). The testing set C then 
includes two noise types respectively from sets A and B 
(subway and street), plus additional convolutional noise. 
Five different SNR values ranging from 20 dB to 0 dB were 
tested in each case. Whole-word HMM models were used as 
specified by AURORA 2. Each word had 16 states and 3 
Gaussian mixtures per state. The speech features were 
extracted by the AURORA WI007 front-end, which 
converted each signal frame into 13 cepstral coefficients 
(MFCCs, c0-c12), on which all the modulation spectrum 
equalization techniques proposed above were performed. 
The first and second derivatives were then computed from 
the equalized cepstral coefficients and used as well in the 
tests. The implementation of all the approaches tested here 
was based on the entire utterance; that is, N in equation (2) 
is the number of frames in an utterance. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Selection of Cut-Off Frequency kc and Weighted-
Power p in MRE 
 
As can be found in equation (6) of section 2.2, the cut-off 
frequency kc and weighted-power p play the key role in the 
proposed MRE technique. Since the cut-off frequency is 
very possibly the most important parameter here, we first set 
p=0.5 when choosing the optimal value of kc.  In Figure 5 
(a), we show the word accuracy averaged over all noise 
types and all SNR values in sets A, B, and C for CMVN 
followed by MRE alone (without performing SHE), given 
the cut-off frequency kc, where kc is shown in Hz. From this 
figure we can see that a 4 Hz cut-off frequency is the best 
choice for MRE when p is 0.5. This makes good sense since 
the syllabic-rate in the AURORA 2 testing corpus is about 4 

Training phase

Testing  phase
MRE

Feature Normalization
(CMVN,HEQ,or HOCMN)

Fourier transform to 
modulation spectrum Yd(k)  

Evaluation of 
CDFref[.]

Evaluation of 
CDFtest[.]

Training
MFCC

Testing
MFCC

SHE

Evaluation of 
MRd,ref

Evaluation of 
MRd,test Inverse Fourier

transform

Equalized 
features

Fourier transform to 
modulation spectrum Yd(k) 

Feature Normalization
(CMVN,HEQ,or HOCMN)

Training phase

Testing  phase
MRE

Feature Normalization
(CMVN,HEQ,or HOCMN)

Fourier transform to 
modulation spectrum Yd(k)  

Evaluation of 
CDFref[.]

Evaluation of 
CDFtest[.]

Training
MFCC

Testing
MFCC

SHE

Evaluation of 
MRd,ref

Evaluation of 
MRd,test Inverse Fourier

transform

Equalized 
features

Fourier transform to 
modulation spectrum Yd(k) 

Feature Normalization
(CMVN,HEQ,or HOCMN)

83

Authorized licensed use limited to: National Taiwan University. Downloaded on September 13, 2009 at 23:04 from IEEE Xplore.  Restrictions apply. 



Hz, so if we choose this as the cut-off frequency, we will 
have the primary parts of speech information in the lower 
frequency band, in turn making MRd in equation (4) a good 
candidate for equalization. This is consistent with earlier 
findings [5][9][10][11]. Also it is clear in Figure 5 (a) that 
with MRE with kc set to 4 Hz, significant improvements can 
be obtained over CMVN alone.  

We then investigated optimal values for weighted-
power p, assuming kc is set to 4 Hz. In Figure 5 (b), word 
accuracy is shown as in Figure 5 (a), except for different 
weighted-power p with kc set to 4 Hz. It is clear from Figure 
5 (b) that p=0.2 gives the best results for MRE, and 
significant improvements can again be obtained as 
compared to p=0.5. Since the scaling factor Fd is usually 
larger than 1, this result (p=0.2<0.5) implies that increasing 
the suppression of higher frequency components (or noise) 
brings more benefits than enhancing lower frequency 
components (or speech) when we keep the value of MRd,test 
identical to that of MRd,ref. This is also reasonable. 
 
4.2. Performance of Modulation Spectrum Equalization 
Integrated with CMVN 
 
The initial experimental results for clean condition training 
are shown in Table 1 for average results over all cases in 
testing sets A, B, and C and the overall average. The first 
two rows (1) (2) are for the MFCC baseline (using c0 
instead of log energy) and CMVN respectively, and serve as 
the baselines for comparison. The last column of Table 1 is 
the error rate reduction with respect to CMVN (row (2)). 
Row (3) is CMVN followed by RASTA filtering, providing 
a limited error rate reduction of 0.45% over CMVN. Rows 
(4) and (5) are CMVN followed by PCA-derived (with filter 
length L=15) [8] and LDA-derived temporal filtering [7][8] 
(with filter length L=5), offering error rate reductions of 
12.56% and 18.35% over CMVN. Rows (6), (7), (8) are 
then respectively the results of CMVN followed by SHE 
alone,  MRE alone, and SHE+MRE, all with the best cut-off 
frequency kc of 4 Hz and the best weighted-power p of 0.2 
as selected in Section 4.1 above. Clearly, CMVN followed 
by either SHE or MRE in rows (6) and (7) provides 
significantly better results than CMVN alone (row (2)), or 
followed by temporal filtering approaches such as 
RASTA(row (3)), PCA (row (4)) or LDA (row (5)) under 
all test conditions. Also, MRE (row (7)) is able to provide 
much better results than SHE (row (6)); using both 
techniques (row (8)) is more effective than either single 
technique. The approaches of modulation spectrum 
equalization proposed in this paper --- SHE alone (row (6)), 
MRE alone (row (7)) and their integration (row (8)), all 
following CMVN --- are able to offer 23.64%, 29.07%, 
29.39% error rate reduction with respect to CMVN alone. 
Moreover, MRE alone (row (7)) is better than SHE alone 
(row (6)) in all cases, and the combination of SHE and 
MRE (row (8)) is only slightly better than MRE alone 
(row(7)). Hence in many cases we may use MRE alone for 
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Figure 5: Recognition accuracy using MRE (a) for cut-off 
frequency selection when p=0.5 and (b) for weighted-power 
selection when cut-off frequency is 4 Hz. 
 

 
Table 1: Comparison of several representative methods for 
AURORA 2 clean-condition training. “Impr.” is the error 
rate reduction as compared to CMVN. 
 
simplicity. 
 
4.3. Analysis of Different Noise Types and Different SNR 
Values 
 
In Fig 6 (a), we further compare the performance of the 
different approaches compared in Table 1 for different types 
of noise, but averaged over all SNR values. Every bar here 
in each set corresponds to a row in Table 1. We find that the 
proposed approaches (the last three bars (6) (7) (8)) 
performed better than the conventional approaches (bars (2) 
(4) (5)) for almost all types of noise.  

In Fig 6 (b), we compare these methods for different 
SNR values but averaged over all noise types. Similar 
observations can be made. The proposed approaches (bars 
(6) (7) (8)) worked very well in all cases. In particular,  
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Figure 6: Performance comparison for (a) different types of 
noise but averaged over all SNR values and (b) different 
SNR values but averaged over all types of noise. 
 
CMVN+MRE (bar (7)) offered almost the same 
performance as CMVN alone for clean speech, and was the 
best for the higher SNRs of 20, 15, and 10 dB. SHE+MRE 
(bar (8)) worked very well for lower SNRs (5, 0, and -5 dB), 
but turned out to be slightly worse than MRE alone for 
higher SNRs (20, 15, and 10 dB). This is probably because 
SHE involves equalization of the entire modulation 
spectrum distribution, so the speech characteristics may be 
over-fitted to a given distribution CDFref[.] and thus some 
individual speech characteristics for each utterance may 
somehow be lost slightly, especially for higher SNR cases. 
MRE, on the other hand, only equalizes the magnitude ratio 
MRd of the modulation spectrum and does not change many 
other statistics, and may therefore preserve more of the 
original speech characteristics. This may be the reason why 
MRE performed better than SHE for higher SNR cases. 

 
4.4. Analysis of Time and Frequency Domain Behavior 
 
When a modulation spectrum Yd(k) is transformed into 
another modulation spectrum )(ˆ kYd , be it using SHE, MRE, 
or the combination thereof, there exists a corresponding 
“frequency response” )(/)(ˆ)( kYkYkH ddd

. The inverse Fourier 
transform of Hd(k) gives the corresponding “impulse 
response” hd(n), although here hd(n) changes for each 
utterance. When Yd(k) is the modulation spectrum with 
CMVN alone, and )(ˆ kYd  is that for modulation spectrum  
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Figure 7: Time and frequency domain behavior hd(n) and 
Hd(k) for (a) MRE and (b)SHE+MRE. 
 
equalization (MRE or SHE+MRE) in addition, hd(n) and 
Hd(k) then represent the time and frequency domain 
behavior of MRE or SHE+MRE. Figure 7 shows hd(n) and 
Hd(k) for the c0 parameter for a typical example utterance in 
the AURORA 2 corpus respectively for MRE (Figure 7 (a)) 
and SHE+MRE (Figure 7 (b)) for the three SNR values 20, 
10, and 0 dB. Figure 7 (a1) shows hd(n) for MRE. It can be 
found that for higher SNR, hd(n) is very close to a delta-
Dirac function, that is, the temporal trajectories are 
essentially unchanged. With degradation of the SNR value, 
hd(n) becomes smoother; this represents the time domain 
behavior of MRE. The frequency domain behavior Hd(k) of 
MRE is shown in Figure 7 (a2). We can observe that MRE 
acts as an ideal low-pass filter cut off at kc for lower SNRs. 
For higher SNRs, MRE still acts like an ideal low-pass filter 
but the higher frequency parts are partially preserved while 
the lower frequency parts are slightly less enhanced. 
Intuitively, all of these trends are very reasonable. Shown in 
Figure 7 (b1) (b2) are the time and frequency domain 
behaviors of SHE+MRE; here similar observations can be 
made, except that with SHE the frequency domain behavior 
becomes slightly more complicated, as shown in Figure 7 
(b2).  Note that SHE and MRE actually adapt the filter 
coefficients (ie. hd(n) and Hd(k)) to different noise and SNR 
conditions for each utterance, so they  performed very well 
in almost all conditions. 
 
4.5. Integration of MRE with Other Feature 
Normalization Techniques 

 
HEQ and higher-order cepstral moment normalization 
(HOCMN) [4] [15] have proved to be very useful for 
feature normalization in speech recognition tasks. Here we 
attempted integration of the MRE approach with these 
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techniques. In these experiments, the “feature 
normalization” block in Figure 4, previously represented by 
CMVN, was replaced by HEQ and HOCMN. We only 
consider MRE here because the additional improvements 
obtainable with SHE+MRE as shown in Table 1 were found 
to be limited, and indeed involved much higher 
computational costs. The results are shown in Table 2 for 
testing sets A, B, and C and the overall average. In row (1) 
are the results for CMVN, and serve as a reference, similar 
to row (2) in Table 1. Row (2) is the best result we obtained 
with HEQ on AURORA 2 using a progressive window with 
length l=98 frames, which is significantly better than 
CMVN. Row (3) is then HEQ followed by MRE, which 
offered a  11.07% relative error rate reduction with respect 
to HEQ (here we used cut-off frequency kc=5 Hz and p=0.3 
for MRE; these numbers were optimized empirically). Row 
(4) is the best result of HOCMN with AURORA 2 for 
integer order moments with the first, third, and 100-th order 
moments normalized [15], which is also significantly better 
than CMVN. Row (5) is HOCMN followed by MRE. A 
relative error rate reduction of 8.12% with respect to 
HOCMN was achieved (here we used cut-off frequency 
kc=6 Hz and p=0.3 for MRE, also optimized empirically).  
Also listed in row (6) is the result for the advanced front-
end (AFE) feature extraction algorithm recommended by 
ETSI [16], here used  as a reference. We can see that the 
relatively simple HEQ+MRE or HOCMN+MRE are 
actually very close to, and in some cases higher than, the 
relatively complicated AFE. Note that when MRE is 
integrated with HEQ or HOCMN, a cut-off frequency of 5 
Hz or 6 Hz turned out to be better than 4 Hz as used in 
section 4.1. This is reasonable because the noisy speech 
more closely resembles clean speech after performing HEQ 
or HOCMN, and thus higher cut-off frequencies should be 
used to preserve more information in the modulation 
spectrum. The results in Table 2 clearly show that the 
results of MRE when integrated with other feature 
normalization techniques are significantly better than those 
for CMVN alone, and similarly offer extra performance 
improvements. 
 

 
Table 2: Recognition results of MRE integrated with HEQ 
and HOCMN under AURORA 2 clean-condition training. 
 

5. CONCLUSION 
 

We proposed a new method for generating robust features 
using modulation spectrum equalization. The techniques of 
spectral histogram equalization (SHE) and magnitude ratio 
equalization (MRE) can offer significant improvements for 
different types of noise and different SNR values. We also 
showed that the proposed approach can be integrated with 
CMVN or other more advanced feature normalization 

techniques. These results indicate the effectiveness of 
equalization performed on the modulation spectrum in 
reducing the mismatch produced by additive and 
convolutional noise.  
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