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ABSTRACT

In this paper we investigate the application of a hierarchical

Bayesian language model (LM) based on the Pitman-Yor pro-

cess for automatic speech recognition (ASR) of multiparty

meetings. The hierarchical Pitman-Yor language model (HPY-

LM) provides a Bayesian interpretation of LM smoothing. An

approximation to the HPYLM recovers the exact formulation

of the interpolated Kneser-Ney smoothing method in n-gram

models. This paper focuses on the application and scalabil-

ity of HPYLM on a practical large vocabulary ASR system.

Experimental results on NIST RT06s evaluation meeting data

verify that HPYLM is a competitive and promising language

modeling technique, which consistently performs better than

interpolated Kneser-Ney and modified Kneser-Ney n-gram

LMs in terms of both perplexity and word error rate.

Index Terms— Language Model, Pitman-Yor Process,

Hierarchical Bayesian Model, Meetings

1. INTRODUCTION

A statistical language model (LM) is an essential component

of speech and language processing for human-computer in-

teraction, used in automatic speech recognition (ASR), statis-

tical machine translation, parsing, and information retrieval.

The goal of an LM is to provide a predictive probability dis-

tribution for the next word conditioned on the words seen so

far, approximated as the immediately preceding n − 1 words

in a conventional n-gram model.

There has been a considerable amount of research aimed

at improving n-gram language models. For example, a num-

ber of smoothing methods [1] have been introduced to over-

come the overfitting problem in the maximum-likelihood esti-

mated (MLE) n-gram models. New approaches for language

modeling, such as neural network LMs [2] and distributed

LMs [3], have also been proposed to provide smoother LM

probability estimates. In addition, much attention has been

paid to the incorporation of richer knowledge into LMs, e.g.,

using factored LMs [4] to exploit morphological information,

using structured LMs [5] for syntactic knowledge, and using

Bayesian models for semantic knowledge such as topic infor-

mation [6].

We are concerned with LMs for multiparty meetings. The

multimodal and interactive nature of group meetings demands

a more comprehensive modeling framework for LMs to ac-

commodate multimodal cues other than lexical information

in LMs. Conventional n-gram models can be considered as a

flat model since they rely on short-span lexical context. There

are additional cues available in multiparty meetings, such as

prosodic features, semantic context, participant roles and vi-

sual focus of attention. Our intuition is that these multimodal

cues may augment the lexical context in an n-gram LM, and

consequently be helpful for predicting the next word in an

LM. This leads to our proposal of a structured multimodal

language model for meetings. However, there are several dif-

ficulties to be overcome. Firstly, multimodal cues in meetings

are normally heterogeneous, with different types and different

scales. This makes the modeling problem difficult, because

directly using MLE-based n-gram models for this task tends

to overfit and make data sparsity more acute. Secondly, we

require unsupervised methods to automatically extract some

multimodal cues such as semantic context. These factors mo-

tivate us to investigate a novel approach based on a Bayesian

framework.

Hierarchical Bayesian models [7] offer several advantages

for our task. Additional knowledge sources can be expressed

as prior distributions in the Bayesian framework, which in

turn has internally coherent mechanisms for learning and in-

ference. Blei et al. [8] have successfully demonstrated that

Bayesian models can be used in an unsupervised way to learn

the latent structures that connect modalities of different scales

such as text and images. It is also straightforward to incor-

porate Bayesian models into larger models in a principled

manner. More specifically to language modeling, Bayesian

language models, which have comparable performance to the

state-of-the-art n-gram models [9], have been introduced re-

cently. These facts suggest that it is natural and promising for

us to investigate a Bayesian language model.

This paper reimplements the hierarchical Pitman-Yor lan-

guage model (HPYLM), a Bayesian language model based on
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the Pitman-Yor process, which was initially proposed by Teh

[9]. We will emphasize its application and scalability to large

vocabulary ASR systems, trying to answer several questions

concerning it. First, the performance of HPYLM was tested

only in terms of perplexity (PPL). Will a reduction in PPL

lead to a reduction in the word error rate (WER) of a practical

ASR system? Second, we are interested in ASR applications

that normally need to deal with a large vocabulary size and a

large amount of training data. Will the HPYLM scale to large

training data sets?

2. RELATED WORK

The idea of placing a prior distribution over parameters of

LMs and learning point estimates of parameters from training

data was investigated by Nadas in 1984 [10]. However, this

was an “empirical Bayes” perspective in which parameters

of the prior were point estimates learned by maximizing the

likelihood on the training data rather than by full Bayesian

inference.

MacKay et al. [11] introduced a full Bayesian approach

for language modeling, which extended the empirical Bayes

framework of Nadas to a hierarchical Dirichlet LM. The pre-

dictions of hierarchical Dirichlet LMs are similar to those

of a traditionally smoothed LM. MacKay et al. in this way

demonstrated, on a small corpus, that a hierarchical Dirich-

let language model had comparable performance to a bigram

model smoothed by deleted interpolation with specific values

of interpolation weight.

Goldwater et al. argued in [12] that a Pitman-Yor pro-

cess is more suitable as a prior distribution than a Dirichlet

distribution to applications in natural language processing, as

the power-law distributions of word frequencies produced by

Pitman-Yor processes more closely resemble the heavy-tailed

distributions observed in natural language.

Another more recent work along the line of using Pitman-

Yor processes in hierarchical Bayesian models for language

modeling was independently proposed by Teh [9], which can

be considered as a natural generalization of the hierarchical

Dirichlet language model [11], using a Pitman-Yor process

rather than the Dirichlet distribution. Teh provided both hier-

archical and experimental extensions to the Pitman-Yor lan-

guage model of Goldwater et al. Experiments on an APNews

corpus showed that the novel hierarchical Pitman-Yor lan-

guage model produces results superior to hierarchical Dirich-

let language models and n-gram smoothed by interpolated

Kneser-Ney (IKN), and comparable to those smoothed by mo-

dified Kneser-Ney (MKN) [1].

On other hand, latent Dirichlet allocation (LDA) [8] is

an unsupervised model to discover the latent structures in a

large amount of data. Extensions of LDA have also been used

for multimodal combination. Wallach proposed a hierarchi-

cal generative model that incorporates both n-gram statistics

of a hierarchical Dirichlet bigram language model [11] and

latent topics of a LDA [6]. This integration is totally within

the hierarchical Bayesian framework. Both these extensions

to LDA imply that it is possible for the marriage of language

models, and topic models that go beyond the “bag-of-words”

assumption, either by placing a Markov chain constrain over

word sequences, or by full Bayesian ways.

3. HIERARCHICAL PITMAN-YOR LM

We introduce a Bayesian language model based on the Pitman-

Yor process using a hierarchical framework. This section

briefly summarizes the original work on HPYLM. For de-

tailed information we refer to [9, 12].

3.1. Pitman-Yor Process

The Pitman-Yor process [13] PY(d, θ, G0) is a three-parame-

tric distribution over distributions, where d is a discount pa-

rameter, θ a strength parameter, and G0 a base distribution

that can be understood as a mean of draws from PY(d, θ, G0).
When d = 0, the Pitman-Yor process reverts to the Dirichlet

process Dir(θG0). In this sense, the Pitman-Yor process is a

generalization of the Dirichlet process.

The procedure for generating draws G ∼ PY(d, θ, G0)
from a Pitman-Yor process can be described using the Chi-

nese restaurant metaphor. Imagine a Chinese restaurant con-

taining an infinite number of tables, each with infinite seating

capacity. Customers enter the restaurant and seat themselves.

The first customer sits at the first available table, while each of

the subsequent customers sits at an occupied table with proba-

bility proportional to the number of customers already sitting

there ck − d, or at a new unoccupied table with probability

proportional to θ + dt.. That is, if zi is the index of the table

chosen by the ith customer, then the ith customer sits at table

k given the seating arrangement of previously i−1 customers

z−i = {z1, . . . , zi−1} with probability

P (zi = k|z−i) =

{
ck−d
θ+c.

1 ≤ k ≤ t.
θ+dt.

θ+c.
k = t. + 1

(1)

where t. is the current number of occupied tables, ck the num-

ber of customers sitting at table k, and c. =
∑

k ck the total

number of customers. The Pitman-Yor process produces a

power-law distribution over the number of customers seated

at each table. The power-law distribution — a few outcomes

have very high probability and most outcomes occur with low

probability — has been found to be one of the most striking

statistical properties of word frequencies in natural language.

3.2. Language Model based on Pitman-Yor Process

The Pitman-Yor process can be used to create a power-law

distribution over integers, but to create a distribution over

words for language modeling we need to combine it with a
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lexicon generator to make a full two-stage modeling frame-

work [12] with a generator and an adaptor. The two-stage

model can be viewed as a restaurant in which each table has

a label with a word w generated by G0(w). Each customer

represents a word token, so that the number of customers at

a table corresponds to the frequency of the lexical word la-

belling that table. A customer may only be assigned to a ta-

ble whose label matches that word token. The adaptor then

‘adapts’ the word frequencies produced by the generator to

follow a power-law distribution.

Consider a vocabulary W with V word types. Let G(w)
be the unigram probability of w, and G = [G(w)]w∈W =
[G(w1), G(w2), G(w3), . . . , G(wV )] represent the vector of

word probability estimates for unigrams. A Pitman-Yor prior

is placed over G ∼ PY(d, θ, G0) with uninformative mean

distribution G0(w) = 1/V for all w ∈ W . According to the

Chinese restaurant metaphor, customers enter the restaurant

and seat themselves at tables. Given the seating arrangement

S of customers, the predictive probability of a new word is

given by (2).

P (w|S) =
cw − dtw

θ + c.
+

θ + dtw
θ + c.

G0(w) (2)

Averaging over the posterior probability over seating arrange-

ments, we can get the actual prediction probability P (w) for

unigram LMs.

Similarly we can generalize the above unigram example

to the n-gram case. An n-gram LM defines a probability dis-

tribution over the current word given a context u consisting

of n − 1 words. Let Gu(w) be the probability of the current

word w and G = [Gu(w)]w∈W be the target probability dis-

tribution for n-gram. A Pitman-Yor process is served as the

prior over Gu, with discounting parameter d|u| and strength

parameter θ|u| specific to the length of the context. The mean

distribution is Gπ(u), the lower order model of probabilities

of the current word given all but the earliest word in the con-

text. That is,

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (3)

Since Gπ(u) is still an unknown probability distribution, a

Pitman-Yor process is recursively placed over it with parame-

ters specific to π(u), Gπ(u) ∼ PY(d|π(u)|, θ|π(u)|, Gπ(π(u))).
This is repeated until we reach G∅ for a unigram model dis-

cussed above. This results in a hierarchical prior (Fig. 1).

Using this hierarchical prior setup, we generalize from the

unigram model to the n-gram case. By using the hierarchical

framework of Pitman-Yor priors, different orders of n-gram

can thus share information with each other, similar to the tra-

ditional interpolation of higher order n-grams with lower or-

der n-grams.

Based on this high-level framework for an HPYLM, one

central task is the inference of seating arrangements in each

restaurant and the estimation of the context-specific parame-

ters from the training data. Given training data D, we know

Fig. 1. The hierarchy of Pitman-Yor priors for n-gram LMs.

the number of co-occurrences cuw of a word w after a con-

text u of length n − 1. Actually this is the only information

we need to train an HPYLM. A Markov chain Monte Carlo

sampling based scheme can be used to infer the posterior of

seating arrangements. In this paper Gibbs sampling is used to

keep track of which table each customer sits at, by iterating

over all customers present in each restaurant — first remov-

ing a customer from the restaurant, and then resampling the

table at which that customer sits. After a sufficient number

of iterations, the states of variables of interest in the seating

arrangements will converge to the required samples from the

posterior distribution. In the HPYLM the more frequent a

word token, the more likely it is there are more tables corre-

sponding to that word token.

For a n-gram LM, there are 2n parameters Θ = {dm, θm :
0 ≤ m ≤ n−1} to be estimated in total. In this paper, we use

the auxiliary variable sampling method [9], which assumes

that each discount parameter dm has a Beta prior distribution

dm ∼ Beta(am, bm) while each concentration parameter θm

has a Gamma prior distribution θm ∼ Gamma(αm, βm).
Under a particular setting of seating arrangements S and

parameters Θ, the predictive probability P (w|u,S, Θ) is:

P (w|u,S, Θ) =
cuw. − d|u|tuw

θ|u| + cu..

+
θ|u| + d|u|tu.

θ|u| + cu..
P (w|π(u),S, Θ) (4)

The overall predictive probability can be approximately ob-

tained by collecting I samples from the posterior over S and

Θ, and then averaging (4) to approximate the integral with

samples, as shown in (5).

P (w|u) ≈
I∑

i=1

P (w|u,S(i), Θ(i))/I (5)

If we assume that the strength parameters θ|u| = 0 for all

u, and restrict tuw to be at most 1 (i.e., all customers repre-

senting the same word token should only sit on the same table

together), then the predictive probability in (4) directly re-

duces to the predictive probability given by the IKN LM. We

can thus interpret IKN as an approximate inference scheme

for the hierarchical Pitman-Yor language model.
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3.3. Implementation

We implemented the hierarchical Pitman-Yor language model

within the SRILM toolkit [14], as an extended tool for Bayes-

ian language models. We highlight four characteristics of this

implementation. Firstly, it is consistent and coherent with the

SRILM toolkit. We inherited the HPYLM classes from the

base SRILM classes, and provided the same interfaces (i.e.,

WordProb() function) for language modeling. Secondly,

it has efficient memory management and computational per-

formance by directly using the data structures available in

SRILM. Thirdly, it is a flexible framework for Bayesian lan-

guage modeling. We can, for example, train a language model

with Kneser-Ney smoothing for unigrams, modified Kneser-

Ney smoothing for bigrams, and Pitman-Yor process smooth-

ing for trigrams. Finally, this implementation is extensible for

future developments: e.g., taking into accounts the combina-

tion with topic models like LDA.

A standard ARPA-format LM is output, with the exact

format of a conventional n-gram LM. This makes it easy to

test the HPYLM in a typical ASR system.

4. EXPERIMENTS ON ASR FOR MEETINGS

4.1. Data

The experiments reported in this paper were performed us-

ing the U.S. National Institute of Standard and Technology

(NIST) rich transcription (RT) 2006 spring meeting recog-

nition evaluations (RT06s). We tested only on those audio

data recorded from individual head microphones (IHM), con-

sisting of meeting data collecting by the AMI project, CMU,

NIST, and VT (Virginia Tech).

The training data sets for language models used in this

paper are listed in Table 1.

Table 1. The statistics of the training data sets for language

models used throughout the experiments.

No. LM Data Set #Sentences #Words
1 AMI data from rt05s 68,806 801,710

2 ICSI meeting corpus 79,307 650,171

3 ISL meeting corpus 17,854 119,093

4 NIST meeting corpus-2 21,840 156,238

5 NIST meeting corpus-a 18,007 119,989

6 Fisher (fisher-03-p1) 1,076,063 10,593,403

7 webdata (meetings) 3,218,066 36,073,718

All the following experiments were using a common vo-

cabulary with 50, 000 word types, unless it is explicitly indi-

cated otherwise.

4.2. PPL Experiments

We took the LM data sets from No.1 to No.5 in Table 1 as

a core training set, which consists of 205,814 sentences and

1,847,201 words. We trained trigram IKN, MKN, and HPY

LMs using this training data. For the HPYLM, we ran 200

iterations for inference, and collected 100 samples from the

posterior over seating arrangements and parameters.

The test data for PPL estimation was extracted from the

reference transcriptions for rt06seval. The final test data con-

sisted of 3,597 sentences and 31,810 words. Four different

experimental conditions were considered and are shown in

Table 2: the combination of whether or not a closed vocabu-

lary was used (-vobab) and/or mapping unknown words to a

special symbol ‘unk’ (-unk) during training.

Table 2 shows the PPL results. We can see that in all the

four experiment conditions, HPYLM has a lower PPL than

both IKNLM and MKNLM.

Table 2. The PPL results on rt06seval testing data.

-vocab -unk IKNLM MKNLM HPYLM
EC1 no no 95.7 93.5 88.6
EC2 no yes 122.0 119.2 111.9
EC3 yes no 110.1 106.5 101.2
EC4 yes yes 110.5 106.8 102.6

4.3. WER Experiments

We used the AMI-ASR system [15] as the baseline platform

for our ASR experiments. The feature stream comprised of

12 MF-PLP features and raw log energy and first and second

order derivatives are added. Cepstral mean and variance nor-

malisation was performed on a per channel basis. The acous-

tic models were taken from the second pass of AMI-ASR sys-

tem, which were trained on 108 hours speech data from ICSI,

ISL, NIST, and AMI, using vocal tract length normalisation,

heteroscedastic linear discrimant analysis, speaker adaptive

training and minimum phone error. They are adapted using

the transcripts of the first pass and a single constrained max-

imum likelihood regression transform. We only tested LMs

trained under the EC3 in Table 2, that is, we used a 50k vocab-

ulary but without setting -unk during training. For HPYLM,

we output an ARPA-format LM. Different LMs were then

used in the first pass decoding using HDecode.

Table 3 shows the WER results. The HPYLM also results

in a lower WER than both IKNLM and MKNLM, although

this is not statistically significant. However, this is an encour-

aging result, since it is the first time that the HPYLM has been

tested using a state-of-the-art large vocabulary ASR system

on standard NIST evaluation data.
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Table 3. The WER results on rt06seval testing data.

LMS SUB DEL INS TOT
IKNLM 15.7 9.9 2.9 28.5

MKNLM 15.6 10.0 2.8 28.4

HPYLM 15.3 10.1 2.7 28.1

4.4. Scalability

To investigate the scalability of the HPYLM, we gradually

increased the size of training data for the HPYLM, ranging

from DS1 to DS3 as shown in Table 4. DS1 includes the

training data sets No.1–5. DS2 consists of DS1 and the data

set No.6. Finally further adding the data set No.7 to DS2 we

get DS3. The following experiments were carried out on a

machine with dual quad-core Intel Xeon 2.8GHz processors

and 12GB of memory. Table 4 shows the different computa-

tional time per iteration and memory requirements when we

change the size of training data, or vary the size of vocabu-

lary. From the results in Table 4, we can see that the training

time for each iteration scales linearly with the size of training

data when having a common vocabulary. The vocabulary size

is another factor that also affects the computational time and

memory requirement. The smaller the size of the vocabulary,

the quicker each iteration and the lower the memory require-

ment. For IKNLM and MKNLM trained on DS3, the memory

requirement is around 1GB.

Table 4. The comparison of computational time and memory

requirement of the HPYLM on different training data sets.

Data #Words Vocab Time/Iter Memory
DS1 1,847,201 50k ∼10sec ∼150MB

DS2 12,440,604 50k ∼120sec ∼600MB

50k ∼600sec ∼2400MB

DS3 48,514,322 18k ∼300sec ∼2000MB

8k ∼200sec ∼1400MB

We also evaluated PPL performance over these three data

sets to investigate the scalability of PPL. As we found in PPL

results on Table 5, the HPYLM generalizes well to larger

training data. We obtained a consistent reduction in PPL over

both IKNLM and MKNLM. This further strengthens the PPL

results of Section 4.2.

Finally we trained three ARPA-format trigram LMs —

IKNLM, MKNLM, and HPYLM — all on the DS3 training

data set, which is a corpus of around 50 millions of words.

The lower discounting cutoff of trigram counts is set to 2 in

these LMs (-gt3min 2 in SRILM). Table 6 shows the WER

results of these three different LMs in the first decoding using

HDecode. Again we see the HPYLM performs slightly bet-

ter than IKNLM and MKNLM. It should be noted, however,

Table 5. The PPL results on rt06seval using different scale

sizes of training data.

Data IKNLM MKNLM HPYLM
DS1 110.1 106.5 101.2
DS2 106.7 103.6 97.6
DS3 102.9 100.8 95.1

that the WER reductions are even smaller than those in Table

3, suggesting that the HPYLM estimates a better smoothed

LM on smaller training data, while it tends to converge to

the MLE-based n-gram LMs and produce similar results as

IKNLM and MKNLM with a sufficiently larger amount of

training data.

Table 6. The WER results on rt06seval using different scale

sizes of training data.

LMS SUB DEL INS TOT
IKNLM 14.6 10.0 2.6 27.3

MKNLM 14.6 9.9 2.5 27.0

HPYLM 14.4 10.0 2.6 26.9

5. ANALYSIS AND DISCUSSION

In this paper we carried out a set of experiments to verify

the use and scalability of the HPYLM on ASR for multiparty

meetings. The PPL and WER results seem very promising.

We discuss further the behaviour of the HPYLM, such as ef-

fects of parameters, and its convergence.

The HPYLM can be considered as a novel smoothing me-

thod for language modeling. Even though each Pitman-Yor

process Gu for each context only has one shared discount pa-

rameter 0 ≤ d|u| < 1 (4), different words w have different

discount values d|u|tuw, since tuw can take on different val-

ues. Discounts in the HPYLM grow gradually as a function

of n-gram counts. In this sense, we say that the HPYLM

estimates a better smoothed model than than IKNLM and

MKNLM. This partly explains why HPYLM performs better

in PPL and WER than IKNLM and MKNLM.

It is sometimes expensive to train an HPYLM, especially

when working with large training data as demonstrated in Ta-

ble 4. Therefore the convergence of HPYLM is an important

factor. We trained a special HPYLM, which takes only 10 it-

erations for burning in to infer the seating arrangements, and

then collects 300 samples from the posterior and at each it-

eration evaluates the PPL on the rt06seval test data. Fig. 2

shows the convergence of PPL. From this we can see that af-

ter several tens of iterations, the PPL has quickly converged
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Fig. 2. The convergence of PPL on rt06seval test data using

the HPYLM.

to a lower PPL value. On the other hand, although it is slow

to train an HPYLM on large data, we only need to train the

model once and output an ARPA-format LM, then apply it in

a ASR system as a standard n-gram LM.

We are pleased to observe that the HPYLM has better per-

formance in terms of both PPL and WER compared with IKN

and MKN smoothing. This encourages us to incorporate the

HPYLM and other probabilistic topic models such as LDA

within a hierarchical Bayesian framework. As a future work,

we plan to further investigate the approach of combining the

HPYLM and LDA to incorporate multimodal cues into LMs

for meetings.

The main contribution of this work is the introduction of

a novel Bayesian language modeling technique in ASR, ex-

perimentally verified on the task of large vocabulary ASR for

meetings. To conclude, the HPYLM is a promising approach

to language modeling, which deserves further investigation.
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