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ABSTRACT
In this paper we analytically compare the two widely accepted ap-
proaches of spoken document indexing, Position Specific Posterior
Lattices (PSPL) and Confusion Network (CN), in terms of retrieval
accuracy and index size. The fundamental distinctions between these
two approaches in terms of construction units, posterior probabilities,
number of clusters, indexing coverage and space requirements are
discussed in detail. A new approach to approximate subword poste-
rior probability in a word lattice is also incorporated in PSPL/CN to
handle OOV/rare word problems, which were unaddressed in original
PSPL and CN approaches. Extensive experimental results on Chinese
broadcast news segments indicate that PSPL offers higher accuracy
than CN but requiring much larger disk space, while subword-based
PSPL turns out to be very attractive because it lowers the storage cost
while offers even higher accuracies.

Index Terms— PSPL, S-PSPL, Spoken Document Retrieval

1. INTRODUCTION

With the rapid increase of multimedia data on the Internet, it will be
more and more important to retrieve spoken documents. Multimedia
content usually carries speech, which usually tells the core infor-
mation of the content and can be the key for retrieving multimedia
content. In the last decade in the TREC (Text REtrieval Conference)
Spoken Document Retrieval track [1], very good retrieval perfor-
mances bared on ASR one-best results was obtained as compared to
that on human reference transcripts, although using relatively long
queries and target stories [2]. It was then realized that we have to
utilize ASR alternates, such as lattices, for very short queries, short
story segments or very bad recognition accuracies, which are more
realistic [3, 4, 5]. In this paper, we thus focus on the problem of
spotting short queries from short spoken segments based on lattices.

An efficient way for indexing the user query string Q given the
lattice L generated by each spoken segment d in the archive was first
proposed [6]. This approach can be considered as a direct inversion
of the whole lattice and may produce the posterior probability of Q in
a precise way, but costs huge storage space. Some other approaches
were then developed to use the lattice information but in an approxi-
mate while space-economic way. An efficient approach was proposed
to cluster the word arcs in a lattice according to their positions and
then generate Position Specific Posterior Lattices (PSPL) [3]. PSPL
is regarded as a form of clustering in this paper, as will be clear later
on, and the words in the kth cluster are those words in the kth posi-
tion of the PSPL structure. Such position knowledge is very useful
for the proximity information and P (Q = W1, ..., Wn|d) (where
W1...Wn are words) can be easily approximated by each composi-
tional substrings in Q with appropriate positions. Approaches based

on Confusion Networks (CN) were also proposed for efficient lattice
information utilization but at much less space requirement compared
with a direct lattice inversion [4, 7]. The basic idea of using CN is
quite similar to that of PSPL, and they both consider the position
information for each word arc in the lattice. However, the position
information in the two approaches are obtained quite differently. In
PSPL, the position information of each word is acquired by the po-
sition of that word arc (i.e., the kth word arc) in each possible path
in the lattice. As a comparison, in CN, the position information is
acquired by a clustering process in which we consider all word arcs in
the lattice as a whole. We thus may say that the position information
in PSPL is obtained more locally, while that in CN more globally.

In this paper we perform analytical comparison for these two
methods. In addition, to cover the OOV/rare word problems, we use
the approach proposed recently [8] to incorporate subword posterior
probabilities in both PSPL and CN to produce subword-based PSPL
(S-PSPL) and CN (S-CN).

In the following, we first give a brief summary about PSPL and
CN in Sec. 2, followed by the fundamental distinctions between
them in Sec. 3. The approach for incorporating subword units in
PSPL/CN is then presented in Sec. 4, followed by a summary of
ranking algorithm for all these approaches in Sec. 5. Experiments are
discussed in Sec. 6, with concluding remarks in Sec. 7.

2. WORD-BASED INDEXING APPROACHES

In this section, we briefly describe PSPL and CN [3, 4, 7, 9], which
similarly group the word arcs in the lattice into several strictly linear
clusters, but in different ways. Each cluster includes several word arcs
along with the corresponding posterior probabilities. Both approaches
may produce proper soft-hit indices for each word in all spoken
segments as (segment id, cluster number, posterior probability).

2.1. Position-Specific Posterior Lattices (PSPL)

The basic idea of PSPL is to calculate the posterior probability prob
of a word W at a specific position pos in a lattice for a spoken
segment d as a tuple (W, d, pos, prob). Such information is actually
hidden in the lattice L of d since in each path of L we clearly know
each word’s position. Since it is very likely that more than one path
includes the same word in the same position, we need to aggregate
over all possible paths in a lattice that include a given word at a given
position.

A variation of the standard forward-backward algorithm can be
employed for this computation. The forward probability mass α(W, t)
accumulated up to a given time t at the last word W needs to be split
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according to the length l measured in the number of words:

α(W, t, l)
.
=

X
π: π ends at time t, has the
last word W , and includes l
words

P (π),

where π is a partial path in the lattice. The backward probability
β(W, t) retains the original definition [10].

The elementary forward step in the forward pass can now be
carried out as follows:

α(W, t, l′ + 1) =P
W ′

P
t′:∃ arc e start-
ing at time t′,
ending at time
t, and with
word(e) = W

[α(W ′, t′, l′) · PAM (W ) · PLM (W )] , (1)

where PAM (W ) and PLM (W ) denote the acoustic and language
model scores of W respectively; e is a word arc in the lattice and
word(e) means the word entity of arc e.

The position specific posterior probability for the word W being
the lth word in the lattice is then:

P (W, l|L) =X
t

α(W, t, l) · β(W, t)

βstart
· Adj(W, t), (2)

where βstart is the sum of all path scores in the lattice, and Adj(W, t)
consists of some necessary terms for probability adjustment, such as
the removal of the duplicated acoustic model scores on W and the
addition of missing language model scores around W [10]. In this
paper, we regard the tuples (W, d, pos, prob) for a specific spoken
segment d and position pos as a cluster, which in turn includes several
words along with their posterior probabilities.

2.2. Confusion Network (CN)

Another approach was proposed to cluster the word arcs in a word
lattice into several strictly linear and simple lists of word alternatives,
or the Confusion Network (CN) [9]. We refer to these lists as clusters
in this paper. In each cluster, posterior probabilities for the word
alternatives are also obtained. The original goal of CN was focused
on the WER minimization for ASR, since it was shown that this
structure gives better expected word accuracy [9, 11]. In SDR tasks,
however, we may consider CN as a compact structure representing
the original lattice, and it can also give us the proximity information
of each word arc [4, 7].

This approach includes a bottom-up clustering algorithm to con-
struct a CN from a lattice. We follow the standard forward-backward
algorithm to compute the posterior probability of each word arc as
preprocessing before clustering. Each word arc is then regarded as
a cluster at the beginning of clustering. Then we run two steps of
clustering to produce the final strictly linear clusters, the intra-word
clustering and inter-word clustering. After clustering, the posterior
probabilities of those word arcs in the same cluster representing the
same word W are summed up to be a single posterior probability for
a single W in that cluster [9].

3. FUNDAMENTAL DISTINCTIONS BETWEEN PSPL AND
CN

From Secs. 2.1 and 2.2 we may induce several fundamental distinc-
tions between PSPL and CN in terms of the basic principles and
structures. They are summarized in this section.

3.1. Basic Construction Units

The construction of PSPL is based on paths in a lattice. This is clear
in Fig. 1(a)(b)(c). We first enumerate all the paths in the lattice, each
with its own length (counted in words) and path weights as combined
language and acoustic model scores. The posterior probability of
a given word at a given position is then computed by aggregating
all the path weights, where the paths include the given word at the
given position, as the numerator and then divided by the sum of all
the path weights in the lattice. The algorithm presented in Sec. 2.1 is
an efficient way to accomplish this. We thus regard the words in each
position as a cluster as in Fig.‘1(c). It is clear that the reason for the
words being in the kth cluster is that there exist some paths carrying
those words as the kth word in the paths.

In CN, on the contrary, the construction unit is based on word
arcs instead of paths in the lattice. All word arcs that overlap in
time will be clustered together in one or several clusters (while non-
overlapped arcs are never in the same cluster). The basic procedures
of intra/inter-word clustering in Sec. 2.2 provide a means to ensure
that arcs with higher probabilities, more similar pronunciations and/or
more overlaps in time will be clustered first. The reason for a word to
be in the kth cluster, as in Fig.1(d), is not as straightforward as that
for PSPL. By following the priorities as constrained by the clustering
algorithm, those words having similar time spans and usually similar
pronunciations are finally clustered together. All the clusters are then
sorted by time, and a specific cluster appears to be the kth one.

3.2. Posterior Probabilities

In PSPL we assign a posterior probability prob to a word W in the
kth cluster as the ratio of the sum of weights of those paths carrying
W as the kth word to the sum of all path weights in the lattice. In
CN, the posterior probability prob assigned to a word W in the kth

cluster represents not only the paths carrying W as the kth word, but
also possibly those as the (k−1)th, (k +1)th word and so on, due to
the clustering approach of CN. The clustering algorithm tries its best
to cluster the word arcs together as long as their time spans overlap,
regardless of the exact positions of these word arcs in their respective
paths, though sometimes those word arcs appearing in similar time
spans also occur in similar positions in their respective paths.

3.3. Number of Clusters

The result of CN gives a rough idea about the number of words in
a reasonable recognition result at a global view. For example, if the
final CN has K clusters, very possibly the utterance has around K
words. This is quite different for PSPL. If we have K clusters in the
PSPL structure, all we can say is that the longest paths (counted in
words) in the lattice have K words, thus usually K is much larger
than the real number of words.

3.4. Coverage and Space Requirement

All word n-grams appearing in the lattice also appear in some n
consecutive clusters of PSPL. But this is not necessarily true for
CN. As depicted in Fig. 1, while the trigram W3W4W5 appearing in
the lattice also appears in the PSPL’s first to third clusters, we can’t
find consecutive clusters for it in the CN structure, since W5 is in
the 4th cluster while W3, W4 in the first two clusters. This is very
possible for CN and implies CN is slightly less complete in covering
all possible word sequences for indexing than PSPL.

On the other hand, the same word arc usually duplicate many
times in different clusters in PSPL, because the word lengths of
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different paths usually differ. A word W may appear as several arcs
with similar time spans in more than one paths, and in some paths it
is the kth word while in others it is the (k + 1)thor (k + 2)th. So the
word W may simultaneously appear in the k,(k + 1)th, (k + 2)th

clusters of PSPL. But this rarely happens for CN since the first step
in constructing CN is to cluster the word arcs representing the same
word and with similar time spans together. This also implies for
PSPL we need much more space to store the indices than CN. Note
that both PSPL and CN generate extra paths than the original lattices
[3, 7]. For example in Fig.1 the word sequences W1W4W5 in PSPL
and W3W8W9 in CN (both from the first to the third cluster) do not
appear in the original lattice.

W8

W10: prob

W7

W9W8

W4
W3

W6

W3: prob

W1 W2

W5

W10

Start node End node

Time index

PSPL structure:

W1: prob

W6: prob
W7: prob

cluster 1

W2: prob
W4: prob

W8: prob

cluster 2

W5: prob
W9: prob

cluster 4

CN structure:

W1: prob
W3: prob

W6: prob
W7: prob

W4: prob
W8: prob

W9: prob W2: prob

W5: prob

W10: prob

(a)

(c)

(d)

cluster 3

cluster 1 cluster 2 cluster 4cluster 3

All paths:
W1W2, W3W4W5, W6W8W9W10, W7W8W9W10

(b)

Lattice:

Fig. 1. (a) The ASR lattice, (b) all paths in (a), (c) the constructed
PSPL structure, (d) the constructed CN structure, where W1, W2, . . .
are words and by W1 : prob we mean W1 and its posterior probability
in a specific cluster.

4. SUBWORD-BASED INDEXING APPROACHES

Subword-based indexing approaches have been shown to be very
helpful in SDR, specially for OOV and rare words [12]. In this section
we introduce a new approach to incorporate subword information
in both PSPL and CN structures. We first summarize our approach
to approximate subword posterior probabilities in a word lattice [8],
which saves the need of ASR on the subword level. We then present
the ways of incorporating this method into PSPL and CN to construct
subword-based PSPL (S-PSPL) and CN (S-CN).

4.1. Subword Posterior Probability

w1 w2 w3

W

t` tt1 t2
e1 e2 e3

e

Fig. 2. Word edge W with subword units w1w2w3 starts at time t′

and ends at time t.

Consider a word W with subword units w1w2w3 corresponding
to an edge e starting at time t′ and ending at time t in a word lattice
as shown in Fig.2. During ASR we may record the boundaries be-
tween w1,w2, and w3, which are t1 and t2. Following the previously
proposed approach [10], we may calculate the posterior probability
of the edge e given the ASR lattice L, P (e|L), as:

P (e|L) =
α(t′) · P (xt

t′ |W ) · PLM (W ) · β(t)

βstart
, (3)

where α(t′) and β(t) denotes the forward and backward probability
mass accumulation up to time t′ and t as in the standard forward-
backward algorithm. βstart is the same as in Eq. (2). To extend the
same approach to compute the posterior probability of a subword of
W , say w1, we may write P (e1|L) as:

P (e1|L) =
α(t) · P (xt1

t′ |w1) · PLM (w1) · β(t1)

βstart
. (4)

Here we have two new values to be estimated, PLM (w1) and β(t1).
It may be possible to train a new language model which mix words
and subwords for estimating PLM (w1). However, it was shown in
[13] that subword-based language model has less predicting ability
than word-based one, and the way to use subwords and words in a
single language model is not clear. The value of β(t1) is even more
difficult to estimate. We simply don’t have the node corresponding to
t1 in the word lattice, and even if we especially generate a node for
t1, the transitions at this new node is not as free as the other nodes
due to the lexicon constraints.

Here we made some simplifications and assumptions to have
effective and easy estimations of PLM (w1) and β(t1). First, we
assume PLM (W ) ≈ PLM (w1). Of course this is a very rough
assumption and we know that PLM (W ) ≤ PLM (w1) since the
event of w1 for some history includes the event of W for the history.
Secondly, we assume that w1 has only one path to go from t1, via w2

and w3, to time t. Of course the path to go from t1 is at least one but
by making it “one” we may rewrite β(t1) as β(t1) = P (xt

t1 |w1w2) ·
β(t). We can now substitute PLM (W ) and P (xt

t1 |w1w2) · β(t) for
PLM (w1) and β(t1) in Eq.(4). Now the result is very simple and we
have P (e1|L) ≈ P (e|L). Similar assumptions can be made on the
subword edges e2 and e3 and we can have P (e2|L) ≈ P (e3|L) ≈
P (e|L).

4.2. Subword-based Position Specific Posterior Lattices (S-PSPL)

Similar to PSPL, we begin with the computation for the position
specific probabilities for words, except here the position is based on
subword units. Similar to those in Sec. 2.1, with a variation of the
standard forward-backward algorithm, the forward probability mass
α(W, t) accumulated up to a given time t with the last word being
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W needs to be split according to the length l, measured in number of
subword units instead of words:

α(W, t, l)
.
=

X
π: a partial path ends at time t,
has last word W , and includes
l subword units

P (π).

The backward probability β(W, t) retains the original definition [10].
The elementary forward step is very similar to Eq. (1)

α(W, t, l) =P
W ′

P
t′:∃ edge e
starting at
time t′, end-
ing at time
t, and with
word(e) = W

[α(W ′, t′, l′) · PAM (W ) · PLM (W )] , (5)

where l = l′ + Sub(W ); Sub(W ) is the number of subword units
in W . PAM (W ) and PLM (W ) are the same as in Eq. (1).

On the other hand, the position specific posterior probability for
the word W being the bth to the (b + Sub(W )− 1)th subword units
in the lattice is very similar to Eq. (2):

P (W, b, b + Sub(W ) − 1|L) =X
t

α(W, t, b + Sub(W ) − 1) · β(W, t)

βstart
· Adj(W, t), (6)

where Adj(W, t) and βstart are the same as Eq. (2). Following the
assumptions made in section 4.1, the probability of a subword w
being the kth subword unit in the lattice is then simply the sum of the
position specific posterior probabilities for the appropriate words W :

P (w, k|L) =
X

W, b: w is the rth

subword in W and
b + r − 1 = k

P (W, b, b + Sub(W ) − 1|L). (7)

4.3. Subword-based Confusion Network (S-CN)

It is straightforward to construct a subword-based CN (S-CN) given
the approximations in Sec. 4.1. During ASR, we may record the
start and end time for the subword units in each word arc. We then
follow Sec. 4.1 to assign the posterior probabilities for subword units.
We then regard these subword units as subword arcs and run the
clustering algorithm as we do for original CN to construct S-CN. In
each cluster of S-CN, we also sum up the posterior probabilities of
subword arcs representing the same subword unit, as we do for CN.

5. RELEVANCE RANKING OF SPOKEN SEGMENTS
GIVEN PSPL/S-PSPL OR CN/S-CN

Given the strictly linear clusters in word-based PSPL or CN structures
as in Sec. 2 for all the spoken segments, we may use them to evaluate
the relevance scores between the segments and a query Q, which is
a sequence of words, {Wj , j = 1, 2.., Q} [3]. We first calculate the
expected tapered-count for each N-gram {Wi...Wi+N−1} within the
query in a spoken segment d, S(d, Wi...Wi+N−1), and aggregate
the results to produce a score SN-gram(d,Q) for each order N [3]:

S(d, Wi...Wi+N−1) = log

"
1 +

X
k

N−1Y
l=0

P (Wi+l, k + l|L)

#
, (8)

SN-gram(d,Q) =

Q−N+1X
i=1

S(d, Wi...Wi+N−1), (9)

where L is the lattice obtained from d and k is the cluster number in
PSPL or CN structures. The different proximity types, one for each
N-gram order allowed by the query length Q, are finally combined
by a weighted sum to give the final relevance score S(d,Q),

S(d,Q) =

PQ
N=1 tN · SN-gram(d,Q)PQ

N=1 tN

, (10)

where we assign the weights tN exponentially with the N -gram order
in this research. Better weight assignments may be possible.

For S-PSPL and S-CN, the above procedures remain unchanged
except we decompose Q into a sequence of subword units instead
and the allowed N-gram of Q is also based on subword units.

6. EXPERIMENTS

6.1. Experimental Setup

The corpora used in the experiments to be retrieved are Mandarin
broadcast news stories collected daily from local radio stations in Tai-
wan from August to September 2001. We manually segmented these
stories into 5034 segments, each with one to three utterances. We
used the TTK decoder [14] developed at National Taiwan University
to generate the bigram lattices for these segments. From the bigram
lattices, we generated the corresponding PSPL/CN and S-PSPL/S-CN
structures, with which we recorded the tuple (segment id, position,
posterior probability) for each word (subword) unit in the respective
segment’s lattice.

By altering the beam width in generating the bigram lattice, we
obtained different lattice depths and sizes and in turn different sizes
of PSPL/CN and S-PSPL/S-CN were generated. Four lattices — L1,
L2, L3 and L4 — were generated, each with averaged 19.89, 30.27
46.75, and 72.77 edges per spoken word respectively. The disk size
needed to store the four lattices for the approach [6] was 19.2, 29.1,
44.5, 69.3 MB respectively.

A trigram language model estimated from a 40M news corpus
collected in 1999 was used. The lexicon of the decoder consisted
of 62K words selected automatically from the above training data
based on the PAT tree algorithm [15]. The acoustic models included
a total of 151 right-context-dependent intra-syllable Initial-Final (I-
F) models, trained using 8 hrs of broadcast news stories collected
in 2000. The recognition character accuracy obtained for the 5034
segments was 75.27% (under trigram one-pass decoding). As the
corpus was in Mandarin Chinese, the subword units used in S-PSPL
and S-CN were characters and syllables.

159 text test queries were generated by manual selection from
a set of automatically generated candidates, each including 1 to 3
words. The candidates were high-frequency n-grams with length
1–3 which appeared at least 8 times in the 5034 segments. 39 of the
159 queries included OOV words and were thus categorized as OOV
queries (1.36 words long in average), while the remaining 120 were
in-vocabulary (IV) queries (1.34 words long in average).

PSPL/CN and S-PSPL/S-CN, along with the 1-best ASR result
baseline, result in a total of 7 experiments using the conditions: (a)
word-based 1-best hypotheses; (b)(c) word-based PSPL and CN;
(d)(e) character-based S-PSPL and S-CN; and (f)(g) syllable-based
S-PSPL and S-CN.

6.2. Indexing Coverage Analysis

We first took the manual transcription of each of the 5034 segments
as the query and computed the relevance score with respect to the
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Experimental word-based character-based syllable-based
Conditions

Lattice Edges per spoken word (b) PSPL (c) CN (d) PSPL (e) CN (f) PSPL (g) CN

L1 19.89 0.11 0.06 0.33 0.19 0.40 0.21
L2 30.27 0.12 0.05 0.36 0.17 0.43 0.19
L3 46.75 0.12 0.04 0.38 0.14 0.46 0.15
L4 72.77 0.13 0.04 0.41 0.12 0.48 0.13

Table 1. Indexing coverage for the six experimental conditions (b)-(g).

spoken document itself as described in Sec. 5. The results averaged
over the 5034 segments are listed in Table. 1. This number indicates
how completely the partial and full sequences of the spoken words
are covered when a lattice is produced by ASR uncertainly, which
is in turn approximated by a reduced structure such as PSPL or CN.
Larger values imply better coverage. We may observe that as far
as indexing coverage goes, PSPL outperforms CN and S-PSPL/S-
CN outperforms PSPL/CN. This is consistent with the discussion in
Sec. 3.

6.3. Comparison by Retrieval Accuracy

All retrieval results presented here are in terms of Mean Average
Precision (MAP) and Recall-Precision average (R-P), both evaluated
by the standard trec eval package used by the TREC evaluations. The
results for in-vocabulary (IV), OOV and all queries are respectively
shown in Table 2. The results for (a) was from a trigram one-pass
decoding procedure (character accuracy 75.27%). The results of (b)-
(g) were produced from the bigram lattice L3 (average 46.75 edges
per spoken word).

From these results we have some observations. First, word-based
PSPL/CN ((b) and (c)) improved significantly from that for 1-best
((a)). This verified that lattice information is quite beneficial for the
task of spotting short queries from short spoken segments. However,
the weakness for word-based approaches in handling OOV queries is
also clear.

By incorporating subword information, acquired from word lat-
tices, we see significant improvements for S-PSPL/S-CN as compared
to PSPL/CN((d)-(g) vs (b)(c)), not only for OOV queries but for IV
queries as well. This is quite reasonable due to the fact that the con-
cept of the language model training data used here was not very well
matched with the 5034 spoken segments. Some new popular terms in
the spoken segments may thus be very hard to be recognized due to
very low language model scores, even if they existed in the lexicon.
Subword information therefore helped.

The use of syllables deserves some discussions. Syllables carry
more confusing information in Chinese (a syllable is shared by many
homonym characters with different meanings), but with recognition
accuracy significantly higher than that for words or characters. As
a result, conditions (f)/(g) offered great advantages over (b)/(c) for
all cases and even (d)/(e) for some cases on OOV queries, because it
is difficult (or even impossible) to recognize OOV words as correct
words or characters, but relatively easier to recognize them as cor-
rect syllables. On the other hand, for IV queries, the improvements
brought by (f)/(g) were less than (d)/(e) due to the confusing infor-
mation of syllables. However, when comparing conditions (f)/(g)
with (b)/(c), we see considerable improvements in all cases. This also
demonstrates the superiority of S-PSPL/S-CN.

Comparing PSPL and CN directly, we see that under all cases
PSPL/S-PSPL gave significantly better performance over CN/S-CN.
This is consistent with our discussions in Sec. 3 and the indexing

coverage analysis in Sec. 6.2. But behind the higher accuracies,
PSPL/S-PSPL requires more storage capacity than CN/S-CN, as also
mentioned in Sec. 3 and this will be analyzed in the next section.

6.4. Comparison by Storage and Accuracy

In Table 3 we demonstrate clear tradeoffs (for structures from lattices
L1 to L4) between index size and retrieval accuracies (MAP for all
queries, IV+OOV). Generally larger lattices offered higher accuracies.
An important point is that PSPL/S-PSPL takes much more space than
CN/S-CN, while both of them take much less space than the original
lattices [6]. It is also interesting to note that the index size gap
between S-PSPL and S-CN for subword units ((f) vs (g), (d) vs (e)) is
much less than that between PSPL and CN for words ((b) vs (c)). We
also note the size shrinking from word-based PSPL to character-based
S-PSPL ((b) to (d)) and the slight size expansion from word-based CN
to character-based CN. This can be explained as follows. A word may
be duplicated many times in different PSPL clusters, but a character
is duplicated much less times in different S-PSPL clusters. This
explains the decrease of index size from (b) to (d). But the situation is
different for CN since it has much fewer duplicated words in different
clusters, as discussed in Sec. 3. Decomposing the word arcs into
character arcs thus expand the size. On the other hand, the size of
syllable-based S-PSPL/S-CN is much less than character-based S-
PSPL/S-CN ((f)(g) vs (d)(e)) since different characters are simply
combined and represented by the same syllable.

The results in Table 3 are plotted in Fig. 3 where size and MAP
are the two dimensions. We have six curves for the six approaches
(b)-(g) considered to show the tradeoff between size and MAP. In
general those approaches at the upper left corner of Fig. 3 are more
attractive, because higher MAP is obtained at smaller index size.
So S-PSPL looks quite attractive. The MAP degradation of S-CN
for larger lattices can be also observed in Fig. 3, which is somehow
consistent with the results in Table. 1. In larger lattices many arcs with
very low posterior probabilities are included, which may introduce
problems for the clustering approaches used by S-CN, for example
discontinuities among connected arcs may be produced just as shown
in Fig. 1 ( W3W4W5 are connected in the lattice but not in the CN,
except here subword units instead of words are considered). Pruning
techniques [9] will play important roles in such situations.

7. CONCLUSION

In this paper we perform analytical comparison including extensive
experiments on PSPL and CN, as well their subword-based versions,
S-PSPL and S-CN. It was found that PSPL/S-PSPL always gives
better performance than CN/S-CN, but takes more space for the
indices. Also, the gap in the index size between S-PSPL and S-CN is
much smaller than that between PSPL and CN. Moreover, S-PSPL/S-
CN always performs better than word-based PSPL/CN for both IV
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word-based character-based syllable-based
Experimental
Conditions (a) 1-best (b) PSPL (c) CN (d) S-PSPL (e) S-CN (f) S-PSPL (g) S-CN

MAP 0.5853 0.7445 0.7369 0.8846 0.8369 0.8419 0.8104
IV queries R-P 0.6005 0.7228 0.6952 0.8540 0.8010 0.8164 0.7815

MAP 0.0747 0.1046 0.1020 0.7077 0.6759 0.7124 0.6938
OOV queries R-P 0.0732 0.0938 0.0938 0.6938 0.6583 0.6649 0.6662

MAP 0.4577 0.5906 0.5766 0.8420 0.7982 0.8107 0.7823
IV+OOV (all queries)

R-P 0.4314 0.5715 0.5505 0.8155 0.7667 0.7799 0.7538

Table 2. Mean Average Precision (MAP) and Recall-Precision average (R-P) for in-vocabulary (IV), out-of-vocabulary (OOV) and all
(IV+OOV) queries, from lattice L3 with average 46.75 arcs per spoken word.

word-based character-based syllable-based
Experimental
Conditions (b) PSPL (c) CN (d) PSPL (e) CN (f) PSPL (g) CN

Lattice Lattice Size Size MAP Size MAP Size MAP Size MAP Size MAP Size MAP
L1 19.2 5.9 0.5643 2.1 0.5542 3.5 0.8125 2.4 0.7920 2.1 0.8015 1.5 0.7887
L2 29.1 8.8 0.5768 2.8 0.5639 4.8 0.8309 3.0 0.7983 2.6 0.8072 1.7 0.7860
L3 44.5 12.9 0.5906 3.6 0.5766 6.6 0.8420 3.8 0.7982 3.2 0.8107 2.0 0.7823
L4 69.3 18.7 0.5984 4.7 0.5820 9.0 0.8492 4.7 0.7942 4.0 0.8059 2.3 0.7721

Table 3. The MAP results (for all queries, IV+OOV) with their corresponding index size (in MB) for different lattices with different sizes.
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Fig. 3. The tradeoff between MAP and index size for the different
approaches considered.

and OOV queries. S-PSPL turns out to be very attractive considering
both accuracy and the index size.
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