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Abstract—Using discriminative classifiers, such as Support of speech to be handled, there is an additional problem. The
Vector Machines (SVMs) in combination with, or as an alter- score-spaces associated with generative kernels arerdeser
native to, Hidden Markov Models (HMMs) has a number of .y the generative models of the classes to be classified. Thus

advantages for difficult speech recognition tasks. For exapie, f lti-cl SVM. wh th t
the models can make use of additional dependencies in the or a mufti-class » where the same score-space mus

observation sequences than HMMs provided the appropriate e used for all classes, either a very large composite score-
form of kernel is used. However standard SVMs are binary space derived from all class generatives must be used, or a

classifiers, and speech is a multi-class problem. Furtherme, single global generative must be used, effectivelfFisher
to train SVMs to distinguish word pairs requires that each arne|[10]. The alternative approach, and the one examined

word appears in the training data. This paper examines both . thi . ducti vl h ) t b d
of these limitations. Tree-based reduction approaches fomulti- In this paper IS a reduction style scheme using tree-base

class classification are described, as well as some of theuiss in  classifiers [11], [12], [13]. This requires no changes to the
applying them to dynamic data, such as speech. To address thetraining, and classifiers may be trained in parallel. Thipgra

training data issues, a simplified version of HMM-based syrttesis  describes three forms of tree-based classifier: baseliree®d
can be used, which allows data for any Word-pqlrto be gener&ﬂ.. _Acyclic Graphs (DAGs); Filter-Trees; and Adaptive DAG
These approaches are evaluated on two noise corrupted digit . .
sequence tasks: AURORA 2.0; and actual in-car collected dat (ADAG) approaCheS'.These SCheme? differ in terms of the
style/number of classifiers and decoding cost.
|. INTRODUCTION The second issue addressed in this paper is how to train

For difficult speech classification tasks, such as classifyiword-pair classifiers where there is limited, or no, exarple
speech in low Signal-to-Noise Ratio (SNR) conditions, stanf the words in the training data. This is a known limi-
dard approaches based on Hidden Markov Models (HMM#&tion of schemes such as acoustic code-breaking [1] and
may not achieve acceptable levels of performance. To asldreseans the schemes cannot be applied to tasks such as city-
this problem schemes such agoustic code-breakingl] name recognition. One option to address this would be to
may be used. Here a second classifier, for example basdigr the level at which the classifiers operate, for example
on Support Vector Machines (SVMs) [2], is used to resolveaining phone-based classifiers. However this dramétical
highly confusable data that the standard recogniser ishilet acomplicates the issue of how to specify the phone-bounslarie
to handle. One of the issues with using kernel-based classifi required for these forms of classifier. The approach adopted
such as SVMs, in varying noise conditions is that the classifi in this work is to artificially generate training data. This i
need to be adapted to the test data acoustic condition. Titectively a simplified version of speech synthesis wherg o
simplest approach to do this is to adapt the kernel to thlee parameterised speech data is required, not the waveform
noise condition [3]. For generative kernels [4], [5], stardl Recently HMM Statistical Speech Synthesis (HTS) [14] has
model-based noise robustness schemes such as Vector Tdygmome increasingly popular. These model-based appreache
Series (VTS) [6] can be used. Though performance gains were suited for the task in-hand as the models themselves can
obtained over standard VTS compensation [3] on a continudus compensated for a particular noise condition and used to
digit recognition task, there are still a number of issuest thgenerate “noise-corrupted” speech data. This is not plessib
need to be addressed to allow this form of classification to béth concatenative approaches (however noise can be lgirect
more generally applied. This paper describes initial wank cadded to the waveform).
two of these problems: efficient multi-class classificatiand
training SVMs where no examples of the word are available
in the training data. Support Vector Machines (SVMs) [2] are an approximate

The standard SVM implementation is a binary classifier [2lnplementation of structural risk minimisation. They have
To modify SVMs to handle multi-class problems there areeen found to yield good performance on a wide range of
two basic approaches. SVM training and classification can tasks. The theory behind SVMs has been extensively describe
modified to directly support multi-class problems [7], [B]. in many papers and is not discussed here. This section con-
The issue with this approach is that the training algoritheentrates on how SVMs can be applied to tasks where there
is made more complicated and scales poorly as the numesequence data, for example speech recognition.
of training examples and classes increases. When using ger®ne of the issues with applying SVMs to sequence data,
erative kernels [4], [5], which allow the time varying nagur such as speech, is that the SVM is inherently static; “obser-

Il. ADAPTING SVMs TONOISE



vations” (or sequences) are all required to be of the sambere matrix A above is the partial derivative)y®/0x®,
dimension. A range oflynamic kerneldhave been proposedevaluated ait® = pu — us — p,,. This yields

that handle this problem. Of particular interest in this kvare s s 1
those kernels that are based on generative models [4],{5]. | A =0y*/0a" = CFC 6)

these approaches a generative model is used to determinesRereF is a diagonal matrix with elements given by (1 +
feature-space for the kernel. An example first-order f«ﬁaturexp(gc-l(ﬁs», andC is the DCT matrix. Similar expressions
space for a generative kernel with observation sequéficecan be found for the dynamic parameter compensation using
may be written as the continuous time approximatiorThe VTS compensated
A parameters will bg referred to as. _
1 log (W) The compensation schemes described above have assumed
d(Y;A) = = v ) ’ v Al (1) that the noise model parameters,, X, and p,, are known.
T aen log p(Y5 (w )) In practice these are seldom known in advance so must be
Vawo) log p(Y; %) estimated from the test data. In this work the noise estonati

is based on the Maximum Likelihood (ML) noise estimation

.\ (w1) .\ (w2) ikali
whereng,A ) a.ndp(Y,A ) are the I'k?“hOOd of the scheme described in [16]. In addition, the Hessian approach
data using generative models associated with classesnd . i ) ) .
for the noise variance in [15] was implemented. This has no

respectively. HMMs are used as the generative model i o : :
w2 P Y 9 effect on recognition performance, but improves the edtona

this paper and only the derivatives with respect to the means

are used, though it is possible to use other, and higherr-,orcf eed as there are fewer back-offs to ensure that the ayxilia

derivatives. As SVM training is a distance based IearninanCtlon INCTeases.

scheme it is necessary to define an appropriate metric for
the distance between two points. In common with other work

n th_|s_ a:ea [4]'. [5]. the t"?et”]f‘fh 'Sts‘?t _to tgetdlagonahsed binary SVM classifier to handle multi-class problems. Thet fir
empirical covariance matrix ot tne training data. category is to modify the SVM training and classification to

Classification using this form of generative kernel Wiﬂﬁandle multi-classes [7], [8], [9]. Though various optidos

I"l.
There are a number of options to extend the standard

M ULTI-CLASS SVM CLASSIFICATION

observation sequence and training datdy’s, ..., Yy, is then this exist, they involve additional complexity in the traig
based on the SVM scorg(Y) algorithm. This paper only considers the second option khic
n is to usereduction style approaches to reduce multi-class
S(Y) = Zafv‘“ziK(Yi,Y;A) +b (2) classification to a set of binary classification problemsoTw

i=1 forms of classifier will be examined: multiple 1-v-1 classif;

whereas"™ is the Lagrange multiplier for observation sequenc@d tree-based classifiers.

Y, obtained from the SVM maximum margin training abd
is the bias (these are trained for each word-pajrg {1, —1}
indicates whether the sequence was a positivg ¢r negative
(w2) example, ands (Y, Y;;A) = o(Yi; A\)TGLo(Y 5 N).

For all the forms of classifier investigated the following
initial stages are run to segment the continuous data:

1) Compensate the acoustic models for the test condition

2) Recognise the test utteran® to obtain 1-best hy-

To adapt the SVM classifiers it is necessary to modify the ~ pothesish = hi,...,hx and align to give the word-
SVM classification rule. There are two options. The Lagrange ~ segmented data sequente, ..., Y x
multipliers, {a$™, ..., a5}, may be modified. However with The task is then to classify each of the word segmafits
very limited data in the target domain, in these experimants »
single utterance, this is not possible. Here the paramagers A 1-V-1 Classifiers
sociated with the generative kernelare modified instead [3]. There are a range of options available for using simple
This can be achieved using any model-based compensatoting schemes with SVMs for multi-class classificationeTh
scheme. The Lagrange multipliers are then noise-indepeendsimplest is to use a one-versus-the rest claskifiére alterna-
VTS model-based compensation is a popular approaliye, and the baseline approach adopted here, is the oseasrer
for model-based compensation [15], [16], [6]. There are ene (1-v-1). The application of 1-v-1 voting for continuous
number of possible forms that have been examined. In tisigeech task uses the following process during recognition:
work the first-order VTS scheme described in [16] is used. 1) For each segmefY:
A brief summary of the scheme is given here. The static a) for each word paifw;,w;} setA = {Al(fwz))\s(,wj)}
mismatch functionmean,us, and covariance matrix3;, of

the corrupted speech distribution are given by [6] . wi, if S(Y;) +elog (w) >0
W = ’ p(YsA) ) =0 (7)
y; = xf+h+Clog(l+exp(C(nf—zf—h))) wj;  otherwise
= x4+ h+f(nd—x$—h) () count[w] = count[w] + 1
S — S S _ S _ 4
Hy H.X AR AU Y () 1This form of classifier was not investigated as the groupihglasses for
2; = diag (AE)S(AT +I-A)X(I- A)T) (5) speech recognition was not found to yield good results [17].



b) classification/;, is given by: select a subset of these for classification. This is the a@mbro
1) if no ties in voting:h; = argmax,, {counfw]} adopted here. In the same fashion, the log-likelihood ratio
2) if only two words (u,w;) tie then h; determined term, the first score-space element has flexibility, needseto
using the result from that pair in equation 7 defined. Here the following form is used
3) if more than two words tié,; = h; - .
. o . . _ 1 max {p(Y;)\(wl)),p(Y;)\(“’z))}
€ iIs an empirically set scaling value, as the log-likelihoatia $1(Y: A) = — log v y
is expected to be the most discriminatory dimension. ' T max {p(Y; A8y pey; )\(w4))}
As an alternative approach which does not require SVMs to v Y
be trained for all possible pairs is@scadeapproach. Here By selecting the first element in this fashion @s» oo the

a subset of SVMs are applied in order to the segmented ddt@rformance of the tree-based classifier is the same asfthat o
Thus the procedure is: the HMM-based classification scheme. Classification with th

1) For each segmerk;, initialise & = h;: form of tree is performed by start_ing at the firs_,t _classiﬁer
a) for each word paifw;,w;} setA = {Agwl)7A§wj)}: if a_nd proceed down the tree followmg_each decision.

& = w, or & = w; apply classification rule (7) Filter-Tree (FT_): if lower level cla_ss!fle_rs in the tree do not
b) classificationi; -0 correctly classify the data, then it is irrelevant whethiee t

This cascade approach enables a subset of all word- hlgher-level classifiers classify the data correctly or. ibis is

o . . . 'the basic concept behind filter-trees [£1]Training proceeds
classifiers to be trained, allowing the number of cla55|f|er . o
: . . . “from the bottom up. Only data that is correctly classifiedhmsy t
(and decoding operations) to be determined by the deS|gn(fr. i, . 7 .
ower level classifiersgy andcs, is used for training the higher
B. Tree-Based Classifiers level classifier,c;. This allows the higher level classifiers to
concentrate on data that can be correctly classified. The sam
score-spaces as the DAG scheme above are used. Classificatio
is top-down in the same fashion as the DAG approach.
c Adaptive DAG (ADAG): for the top-down classification

schemes most of the mistakes result from errors in the higher

E @ level classifiers, e.gc; [17]. To address this problem the

(8)

@ @ ADAG approach [12] can be used. This follows the rules of
a tennis tournament. Classification proceeds from the tmtto
Fig. 1. Example tree-based classifier structure up. Thusc, andcg are used to initially classify the data. The

results from these classification tasks, for examplendwy,

Tree-based reduction techniques are common in the genesr@ passed to the higher level classifier. Rather than having
pattern processing literature [18], [11], [12], [13]. Thesit a fixed classifier at this stage, i.e., the classifier changes
process is to convert the multi-class classification proa#® according to the lower level results. Thus in this example
a sequence of binary classification processes. A binary trgewould use the classifiew;-v-w,. It is also possible to
(used in this work) for a 4-class problem is shown in figure 1rain the higher-level classifiers using the filter-tree rapgh
There are a number of options for both training and classifyi above [11]. This is then referred to as filter-tree decoding.
with these forms of tree-based approaches. An interestng Blowever for the tasks considered here there were very few
pect when applying these approaches with generative kernélaining data classification errors, so the performancehef t
which differs from the previous applications of these tredilter-tree decoding was theameas the ADAG approach.
based approaches, is that the score-spaces associatetthavith
tree are functions of the classes being classified (the HMMS | user oF CLASSIFIERS ISEEEC'ODES FOR AK -CLASS TASK
change). This allows additional flexibility.

For the bottom layer of classifiers in figure dy and cs,

[ Scheme]| # Classifiers| # Decode |
1v-I [ K(K-1)/2 [ K(K-1)/2

the training and classification does not depend on the form of DAG K1 log, (K)
tree training and classification. The differences betwden t ET K—1 log, (K)
schemes is in the form of training and classification with ADAG || K(K —1)/2 K-1

For this work three forms of classifier were investigated.

Divide-By-Two DAG (DAG): here the classifiet; is trained For the three tree-based approaches discussed above there
to classify {wy,ws}-v-{ws,w,s} [18]. This classifier uses all are differences in the number of classifiers that need to be
the training data associated with these classes to train tfined, as well as the number of classifications to get the
SVM. There is a choice in the form of the score-space that céinal result. Table | contrasts the approaches foKalass

be used. The simplest option is to train composite HMMs f@lassification problem. For the smallest number of classifie
each of the set§w;,w»} and {ws,ws} and then construct and smallest number of classifications, the top-down DAG and

the space as usual. However this was found to yield poo
P y P 5The general filter-tree training process is more generalallg costs for

performance (See [17] for deta'ls): The alternative is te UShisclassification to be incorporated in the process. Forsthegple uniform
the score-spaces derived from the individual class HMMs anebt scheme considered here this is unnecessary.



FT approaches should be used. 1-v-1 and ADAG have thes then possible to express the observed sequ¥niteterms
same number of classifiers, but differ in the decode cost. Alf the underlying static sequence Wy= AY. The likelihood
these approaches scale dsncreases. The cascade approacbhf a static sequence can be expressed in terms of the HMM
described earlier, does not. features as

IV. EXTENDED ACoUsTIC CODE-BREAKING lp(AYS|q; A) = %N(YLT;Nq, q) = N (Y% 15, 23)

For the SVM schemes described above it is necessary t(? ) - ) ) )
have sufficient acoustic training data for each of the waati-p WhereZ is a normalisation term. Thg following relationships
SVMs to be trained. Though this is possible for some tasks, fgXiSt between the standard and static model parameters
others, such as city name recognition, it is unlikely thairé¢h Ezl — ATE;A; EZINZ - ATE;Hq (12)
will be sufficient data. One option to address this would be
to use SVM phone classifiers. However this is complicated a8is Yields the distribution of the cepstra given a partcul
the phone boundaries will be significantly harder to estimagomponent/state sequence. “Synthesis” involves dravang s
than the word boundaries, and even more sensitive to s from the complete distribution
precise phone sequence being considered. Alternatively da 8y _ s. sy
can be artificially generated. This is the approach adopted (Y )—g;P(w)P(qw)N(Y ey Ba) (13)
in this work. Effectively this is a restricted form of speech ] B o ]
synthesis. Rather than needing to generate waveforms, onfyMPling from this distribution can be done efficiently gsin
the parameterised speech sequences need to be generated. it @PProaches described in [19]. Once the static sequersce h

many of the issues associated with speech synthesis, sucR&& 9enerated the complete observation sequensaimply
excitation and prosody, are not relevant to this task. Gulye obtained using the standard delta and delta-delta expressi

there are two main forms of speech synthesis: concatenative V. RESULTS
and HMM-based. For this work as there will be interest in

adapting to a particular noise-condition the parametrienfo
of HMM-based synthesis will be examined.

Two continuous digit recognition tasks were used to evaluat
the forms of multi-class classification and synthesisedh dat
SVM training. The first AURORA 2 is a database where noise
A. HMM Synthesis has been artificially added to clean data. The second tagsk use

The simplest approach to synthesis with HMMs is t#1-car data recorded by Toshiba Research Europe Ltd. Far bot
directly use them to generate data. Samples are drawn frofasks the HTK front-end was used to derive 39 dimensional

feature vectors consisting of 12 MFCCs appended with the
p(Y) = ZP("")P(q|°’)N(Y;Nq’ Zq) (®)  zeroth cepstrum, delta and delta-delta coefficients. Th& VT
“w.a compensation adopted was similar to the procedure in [155]. A
whereY is the complete sequence of static, delta and deltaitial hypothesis was generated using a noise model etiina
delta MFCCs, and the meap,,, and covariancesq, are  from the first and last 20 frames of each utterance. This
hypothesis was used to estimate a per-utterance noise model

(1) »a) . 0 _ . . . ;
Hy y in an ML-fashion. The final recognition output used this ML-
By = : , g = : : (10) estimated noise model for VTS compensation. For all SVM
M§QT) 0 (ar) rescoring experiments the SVMs were built using the top 1500
y

) dimensions of¢(Y;; A) ranked using the Fisher ratio and

q is the state/component sequence, anthe word sequence. yas set to 2 unless otherwise stated. For the tree-strustre
This is a simple generative process, but the generated-ob$@issifier-order see [20] for details.

vations will be based on the same conditionally indepenelenc For poth of these continuous digit tasks there was sufficient
assumptions as the underlying HMMs. data to train all classifiers. However, the use of these thsks

B. HMM Statistical Speech Synthesis the synthesis experiments allows an upper-bound on perfor-

To overcome the conditional independence assumptions {ignee to be obtained. The performance of *real-data” system
are often cited as an issue with the standard HMM synthes‘fé‘,n be com_pared_tq synthe5|sqd approaghes. VTS compensated
HTS-based synthesis can be used [14]. Here acoustic modg%dels (usw:g t_ralr"nng data estlmqted noise models) wase us
with static and dynamic parameters are used to obtain‘t‘oa]genef?te noise” corrupted training data for a.‘” wordsal
distribution for the underlying static sequence. Consither silence” data was used as this is always available.
sequence (static observations with simple differences) A. AURORA 2

0 1 0 0 O < AURORA 2 is a small vocabulary digit string recognition
—% 0 % 0 0 y§*2 task [21]. The utterances in this task are one to seven digits

Y ] 0 0o I 00 ytgl 11 long based on the TIDIGITS database with noise artificially
Ye - 0 —% 0 % 0 Zs/t (11) added. The clean training data was used to train the acoustic
Yt 0O 0 0O I o y§+1 models. This comprises 8440 utterances from 55 male and 55
0 0 —% 0 % Yito female speakers. The acoustic models were 16 emittingsstate



whole word digit models, with 3 mixtures per state and siéiengossible to the “real” SVM training scheme the same word-
and inter-word pause models. All three test sets, A, B and §gquence as seen in training was used.
were used for evaluating the schemes. For sets A and B, there . ‘ ‘ ‘ ‘
were a total of 8 noise conditions (4 in each) at 5 different os | \\//:FI_SS-:S;?:I\E ey
SNRs, 0dB to 20dB. For test set C there were two additional o
noise conditions at the same range of SNRs. In addition to
background additive noise convolutional distortion wadetl _ sy
to test set C. Test set A was used as the development set for % ol
tuning parameters. =

For the SVM rescoring experiments, the SVMs were trained
on a subset of the multi-style training data available fa th

10

noise conditions and SNRs in test set A. For each of the (&
noise/SNR conditions there are 422 sentences (a subset of 75 - - : - .
all the training data). For the SVMs training only three of ) epsilon '

the four available noise conditions (N2-N4) and three of the

: ; ig. 2. WER (%) averaged over 0-20dB for Test Set Ac amries for actual
five SNRs 10dB, 15dB and 20dB were used. This allows ﬂg%&SVM) e synthesised (YTS-SYN) data

generalisation of the SVM to unseen noise conditions to be

evaluated on test set A as well as the test sets B and C. Th&Igureé 2 shows the performance of the ‘real” SVM
performance of the baseline system using 1-v-1 classificatil’@ined system (VTS+SVM) and the HTS synthesised one
is given in more detail in [3]. (VTS+SYN) on Test Set A as the value ef varies. As

expected the value of that yields the minimum error is

TABLE I higher for the synthesised system than the real systemh&not

WER (%)AVERAGED OVER0-200B FORTESTSET A (12-CLASSTASK)  jnteresting observation is that when= 0 the performance

System Cost WER of the synthesised system is worse than the VTS system.
# Class.| # Dec. || (%) Thus using only the SVM trained on synthesised data is not
[ vis | — [ — [ 984] good, but the approach does yield additional discriminator
1-v-1 66 66 7.52 information for the VTS-compensated HMM system.
Cas (6) 6 1.0 | 8.66
Cas (17)|| 17 4.0 7.73 TABLE III
DAG 11 3.6 3.72 CLEAN, VTS, SVMAND SYNTHESIS(SYN) RESCORING AVERAGED
ET 11 3.6 8.29 0-20pB, 1-v-1 MULTI-CLASS CLASSIFICATION
ADAG 66 11 7.54 SYN Test Set WER (%)[| Avg
SYSM| seheme| € A T B T C || %)

Table Il shows the performance of the standard 1-v-1 | VTS — — |1 9.841 9.11] 9.53 ][ 9.49
classification approach from [3] as well as the cascade | +SVM — 2 || 752] 7.35] 811 | 7.66
approacl?. As expected the cascade schemes did not perform | ,gyyn | HMM | 30 [l 9.20 | 8.51 [ 9.34 |} 9.02
as well as the full 1-v-1 SVM rescoring scheme, however HTS 51 841]803]870]) 838

the computational cost, both in terms of training classfier :
and decoding, was less. Using 17 pairs, about 24% of theThe real and synthesised data SVM systems were then run

. ; . on all the test sets. As an additional contrast data was syn-
total number of pairs, 92% of the WER improvement usin esised using the HMM-based approach to examine whether
the 1-v-1 system over the VTS baseline was achieved. 9 PP

r . :
the tree-based approaches Filter-Trees (FT) out-peribtie Rere was any gain from the more complicated HTS approach.

oo : . L .~ The synthesised system, using= 5 optimised on Test
DAG training, illustrating the gains from training the high Set Aygave 60% ())lf the gain ?rom usir?g the real data. In
level classifiers only on data that can be correctly clasisifiecontra’st the HMM-based svnthesised svstem. with a Iér e
However neither scheme achieved the same performance a5 y ystem, arg
value of e = 30, gave about 25% of the gain. The gains
ADAG. Overall for small number of classes, as used herﬁ m the HMM synthesised data (where the HMM will be
ADAG appears to be the best form of classifier achieving abo%? - y . e )
the same performance as the 1-v-1 aporoach the minimum Bayes’ classifier) is possibly to be due to the
ame pe ; - anp i addition robustness of the maximum margin training in the
To initially investigate the synthesis approaches for eoézl large score-space
acoustic code-breaking, the whole word acoustic modelg wer 9 pace.

used with HMM and HTS synthesis. Here, the acoustic moddds Toshiba In-Car Data

were adapted to each of the training example noise condition The schemes were also evaluated on a task with real

and used to generate a single static MFCC sequence for eagtbrded noise: the Toshiba in-car database. This is a sorpu

example to train the SVM. To make the training as close @gllected by Toshiba Research Europe Limited’s Cambridge
3 _ _ o _ Research Laboratory. It is a small/medium sized task with
The pairs were selected in terms of individual performanaia gn Test . h I di hicl drivi . di

Set A. There is thus a slight bias introduced, however smplkrformance q0|sy Sp?ec collected In vehicles driving at Var|0_u$ Con_ '.

was obtained on Test Sets B and C. tions. This work used three of the test sets containing digit



sequences (phone numbers). The ENON set, which consstheme. Using an adaptive directed acyclic graph approach
of 835 utterances, was recorded with the engine idle, agdve the same performance as 1-v-1 classification, but with
has a 35dB average SNR. The CITY set, which consistsduced run-time computational cost. For larger tasksappr

of 862 utterances, was recorded driving in cities, and hpsately selected SVMs run in a cascade approach may be
a 25dB average SNR. The HWY set, which consists af sensible alternative, as the number of classifiers redjuire
887 utterances, was recorded on the highway, and has a 1&k®s not scale with the number of classes. The second issue
average SNR. Noise compensation was applied to a speaddressed was how to build word-based SVM classifiers when
recogniser trained on clean data from the Wall Street Jourtlae words do not appear in the training data. An HMM-
(WSJ) corpus. The total number of states was about 6BAsed synthesis approach was found to yield gains over the
with 12 Gaussian components per state. This system is mbeseline. However compared to using real data, it is clear
compact than the usual form of system built on the WSJ dathat further improvements are still possible. The resuiisrgy

but is felt to be more realistic for an embedded applicatidn this paper are preliminary. Though phone-based syrghesi
whilst maintaining the flexibility to be applicable to a wide has been examined, performance on tasks such as city-names
range of tasks. For the initial decoding the acoustic model&ssification still needs to be examined.

were decision tree clustered state, cross-word triphomigs,
three emitting states per HMM, twelve components per GMM
and diagonal covariance matrices. Noise corrupted data SVMIhe authors would like to thank Dr. Heiga Zen for helpful
training and noise models for synthesis were trained ugirg tdiscussions about HTS. Anton Ragni is jointly funded by the
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