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Abstract—We consider how to optimize the acoustic features
used by hidden Markov models (HMMs) for automatic speech
recognition (ASR). We investigate a mistake-driven algorithm
that discriminatively reweights the acoustic features in order to
separate the log-likelihoods of correct and incorrect transcrip-
tions by a large margin. The algorithm simultaneously optimizes
the HMM parameters in the back end by adapting them to the
reweighted features computed by the front end. Using an online
approach, we incrementally update feature weights and model
parameters after the decoding of each training utterance. To
mitigate the strongly biased gradients from individual training
utterances, we train several different recognizers in parallel while
tying the feature transformations in their front ends. We show
that this parameter-tying across different recognizers leads to
more stable updates and generally fewer recognition errors.

I. INTRODUCTION

Modern systems for automatic speech recognition (ASR)
consist of two interrelated components: a front end for signal
processing and feature extraction, and a back end for statistical
inference and pattern recognition. In most systems, the front
end computes mel-frequency cepstral coefficients (MFCCs)
and higher-order derivatives of MFCCs that capture changes
over time [1]. The back end then analyzes and interprets these
MFCCs using continuous-density hidden Markov models (CD-
HMMs). While the parameters of CD-HMMs are estimated
from large amounts of speech, the parameters in the front end
are typically fixed a priori and determined by heuristics.

Recent work, however, is blurring the distinction between
front and back ends in ASR. In particular, adaptive methods
are increasingly being applied at all stages of pattern recogni-
tion, from the lowest levels of feature extraction to the highest
levels of decision-making. In ASR, these methods include:
(i) heteroscedastic linear discriminant analysis (LDA) [2] and
neighborhood component analysis [3] to learn informative low
dimensional projections of high dimensional acoustic feature
vectors; (ii) stochastic gradient and second-order methods to
tune parameters related to frequency warping and mel-scale
filterbanks ([4], [5]); (iii) maximum likelihood methods for
speaker and environment adaptation ([6], [7]) that perform
linear transformations of the acoustic feature space at test time;
and (iv) extensions of popular frameworks for discriminative
training, such as minimum phone error [8] and maximum

mutual information [9], to learn accuracy-improving transfor-
mations and projections of the acoustic feature space.

Our work in this paper continues this general line of
research in end-to-end training of speech recognizers. Specif-
ically, we focus on methods for large-margin training of CD-
HMMs. Large-margin methods for ASR have been studied
by many researchers in recent years ([10], [11], [12]). Our
work considers how to apply large-margin methods to jointly
optimize the acoustic features computed by the front end along
with the CD-HMM parameters estimated by the back end.

We build on an online algorithm for large-margin training
of CD-HMMs proposed earlier this year [13]. In particular, we
extend the previous framework to jointly optimize the acoustic
features computed by the front end. Essentially, we show
how to learn a highly discriminative low dimensional linear
projections of MFCCs concatenated from several adjacent
analysis windows. The parameters of the linear projection are
the elements of a rectangular matrix which must be jointly
estimated along with the usual Gaussian mixture parameters
for acoustic models. We describe an online algorithm that
alternately updates the acoustic-model and projection-matrix
parameters. The online algorithm attempts to eliminate the
most egregious recognition errors as identified by the worst
violations of large-margin constraints.

Optimizing the acoustic features in the front end raises new
issues that did not arise in our previous work [13]. First, the
optimization landscape becomes considerably more complex.
Second, the projection matrix appears to be especially sensitive
to the choice of learning rates.

To stabilize the online learning algorithm, we further inte-
grate the idea of parameter-tying. Parameter-tying has been
widely used in ASR ([14], [15]) to reduce model footprints
and to learn from limited training data. In this work, we train
several recognizers in parallel while tying the projection matrix
used to compute acoustic features in their front ends. Our
experiments show that this form of parameter-tying across
different recognizers yields consistent improvement beyond the
already significant gains of large-margin training.

Our work is distinguished from previous schemes for feature
adaptation in three ways. First, we consider how to jointly
optimize the parameters in the front end along with the acous-
tic models in the back end. Second, the feature reweighting



is driven by an objective function for large-margin training,
which seeks to separate the log-likelihoods of correct and
incorrect transcriptions by an amount proportional to their
Hamming distance. Third, we explore parameter-tying not
across different mixture components or hidden states in the
same CD-HMM, but across altogether different recognizers
that we train in parallel.

II. BACKGROUND

In this section, we introduce basic notation and provide
necessary background for our work. We begin by reviewing a
recently proposed framework for large-margin training of CD-
HMMs. We then review previous approaches for combining,
adapting, and optimizing the acoustic features computed by
standard front ends for ASR.

A. Large margin HMMs
In ASR, we seek to model joint distributions P(s,x) over

sequences of hidden (phonetic) states s = {s1, s2,· · ·, sT } and
acoustic observations or feature vectors y = {y1, y2,· · ·, yT }.
In HMMs, the joint distribution is parameterized by an
initial state distribution P(s1), state transition probabilities
P(st+1|st), and emission densities P(yt|st). Concretely,

P(y, s) = P(s1)
T−1∏
t=1

P(st+1|st)
T∏

t=1

P(yt|st). (1)

In CD-HMMs, the emission densities are typically parameter-
ized by Gaussian mixture models (GMMs):

P(y|s) =
∑

c
P(c|s)P(y|s, c) (2)

where c indexes the mixture components. The individual
component distributions are given by:

P(y|s, c) = (2π)−d/2|Σsc|−1/2e−
1
2 (y−µsc)

>Σ−1
sc (y−µsc).

(3)
The problem of learning in CD-HMM is to estimate the
Gaussian means µsc, covariance matrices Σsc, and mix-
ture weights P(c|s), as well as the transition probabilities
P(st+1|st). In this paper, we focus on learning the GMM
parameters which play the dominant role in acoustic modeling.

Modern ASR increasingly relies on error-driven methods
for discriminative training of acoustic models ([16], [17], [18],
[19], [11]). Here we briefly review a particular reparameteri-
zation of CD-HMMs that has proven useful in recent studies
of discriminative training ([10], [20]). Let

γsc = logP(c|s)− log[(2π)d/2|Σsc|1/2] (4)

denote the log of the scalar prefactor that normalizes each
Gaussian distribution in eq. (2). For each Gaussian mixture
component, consider the matrix:

Φsc =
[

Σ−1
sc −Σ−1

sc µsc

−µ>scΣ
−1
sc µ>scΣ

−1
sc µsc + γsc

]
. (5)

Note that in terms of this matrix, we can write the Gaussian
distribution in state s as:

P(y|s) =
∑

c

e−
1
2 z>Φscz where z =

[
y
1

]
. (6)

In our work, we will directly optimize the matrices Φsc, as
opposed to the original Gaussian means µsc and covariance
matrices Σsc.

The parameterization in eq. (6) was developed for large-
margin training ([10], [13]) of CD-HMMs. In large-margin
training for ASR, we seek not only to minimize the empirical
error rate, but also to separate the scores of correct and
incorrect transcriptions by a large amount. To formalize this
notion, we define the discriminant function:

D(y, s) = logP(s1) +
T−1∑
t=1

logP(st+1|st) +
T∑

t=1

logP(yt|st).

(7)
The discriminant function computes the logarithm of the joint
probability in eq. (1) for a particular sequence of acoustic
feature vectors y and hidden states s. Let r denote the ground
truth transcription of the utterance with these acoustic feature
vectors. For correct recognition by a large margin, we seek
parameters for which:

∀s 6= r, D(y, r) > D(y, s) + ρH(s, r), (8)

where H(s, r) is the Hamming distance between two hidden
state sequences and ρ > 0 is a constant margin scaling
factor. In other words, for large-margin training, the score
of the correct transcription should exceed the score of any
incorrect transcription by an amount that grows in proportion
to the number of recognition errors. Proportional margin-
based constraints of this form have been shown to yield im-
provements even beyond other popular forms of discriminative
training ([12], [10]).

B. Feature reweighting

In most modern systems for ASR, the front end computes
acoustic feature vectors from mel-frequency cepstral coeffi-
cients (MFCCs). Typically, the first d0 =13 MFCCs are used
in this analysis. Due to co-articulation and other temporal
effects, the MFCCs computed in one analysis window may
contain information about the phonetic content in neighboring
windows. To capture this information, most front ends also
incorporate MFCCs from neighboring windows into their
acoustic feature vectors. In particular, they compute derivative
features, such as delta and delta-delta MFCCs, and augment
the feature vector to include them.

The derivative features are computed by linearly combining
MFCCs from neighboring analysis windows. The weights
used to combine adjacent MFCCs are fixed and determined
heuristically. Unlike most other parameters in modern speech
recognizers, these weights in the front end are not typically
adapted to optimize performance. However, feature adaptation
has been studied more generally to improve different stages of
ASR, from acoustic modeling to decoding-based transcription.
Related work in this area has investigated how to optimize
and/or adapt acoustic features when they are used in conjunc-
tion with CD-HMMs in the back end ([6], [7]).

In this paper, we consider how to optimize the weights used
to compute derivative features in conjunction with the back end



for large-margin CD-HMMs (reviewed in section II-A). The
standard derivative features are computed from a linear trans-
formation of the raw MFCCs in nearby frames. Let ut denote
the d0 =13 MFCCs computed at time t, and let vt denote the
“stacked” MFCCs obtained by concatenating 4K+1 consecu-
tive frames ut−2K , ut−2K+1, ..., ut, ..., ut+2K for some small
value of K. (Here we follow the standard convention that if K
frames are used on either side of t to estimate the first-order
derivatives, then 2K frames are used on either side of t to
estimate the second-order derivatives.) Finally, let yt denote
the acoustic feature vector derived from the MFCCs at time
t and their first and second-order derivatives. Then yt and vt

are related by the linear transformation:

yt = H0vt, (9)

where H0 is the projection matrix whose entries approximate
derivatives by finite differencing operations on nearby frames.

The matrix H0 is only one of many possible projection
matrices that can be used to compute acoustic feature vectors
from MFCCs in adjacent frames of speech. In this paper, we
explore different feature reweighting strategies for ASR. In
particular, we consider how to learn more general projection
matrices in the context of large-margin training for CD-
HMMs.

III. MODEL AND TRAINING

In this section, we extend our previous framework [13]
for large-margin training of CD-HMMs to incorporate the
reweighting of acoustic features in the front end. We begin
by expressing a cost function for learning in terms of the
CD-HMM parameter matrices Φsc from section II-A and
the feature projection matrix H0 from section II-B. We can
use an online algorithm to update the elements of these
matrices after the decoding of each training utterance. In
practice, however, we find that the projection matrix is very
sensitive to the fluctuations that arise in online training. To
mitigate the strongly biased gradients from individual training
utterances, we train several different recognizers in parallel
while tying the feature projection matrices in their front ends.
The goal of parameter-tying is to stabilize the optimization by
accumulating gradients across different recognizers.

A. Large margin cost function

Our approach builds on the large-margin CD-HMMs de-
scribed in section II-A. Let x denote a stacked feature vector
of MFCCs from 4K + 1 adjacent windows, as described in
section II-B, and let z denote the lower dimensional acoustic
feature vector that appears in eq. (5). We seek a projection
matrix H ∈ <D×d that maps the high-dimensional vector x
of stacked MFCCs to the low-dimensional acoustic feature
vector z; then for each window, we can compute:

z = Hx, where x =
[

v
1

]
. (10)

Note that H has one extra row and column than the projection
matrix H0 in eq. (9) due to the augmented feature vector z that

appears in eq. (5) for large-margin CD-HMMs. In particular,
we have d = 3d0 +1 and D = (4K+1)d0 +1, where d0 = 13
is the number of MFCCs computed per window.

For large-margin training, we adapt the projection matrix H
and the parameter matrices Φsc so that the constraints in eq. (8)
are satisfied for as many training utterances as possible. Let
{(xn, rn)}Nn=1 denote the N labeled feature-state sequences
in the training corpus. For online learning, we examine one
utterance at a time and compute the hidden state sequence:

s∗n = argmaxs [D(xn, s) + ρH(s, rn)] , (11)

where H(s, r) is the Hamming distance between two hidden
state sequences and ρ > 0 is the margin scaling factor.
(In principle, the value of ρ should be tuned on held-out
utterances; for the experiments in this paper, however, we
simply set ρ = 1, which we knew to have performed well in
previous, related work [13].) Eq. (11) returns either the target
state sequence s∗n = rn if Viterbi decoding yields the correct
transcription; otherwise, it returns the hidden state sequence
that most egregiously violates the large-margin constraint.
Note that s∗n can be computed by a simple variant of the
dynamic programming procedure for Viterbi decoding. The
computation is tractable because the Hamming distance can
be written as a sum of costs at individual time steps.

In general, it is not possible for a model to satisfy all the
large-margin constraints in eq. (8). We use the following loss
function [10] to measure the total constraint violation across
the entire training corpus:

L(H,Φ) =
∑

n

[D(xn, s∗n)−D(xn, rn)]+ , (12)

where [z]+ = max(z, 0) denotes the hinge function. The
right hand side of eq. (12) computes a weighted count of the
training utterances that do not satisfy the margin constraints in
eq. (8). In particular, each utterance is weighted by the margin
violation of its worst offending state sequence, as determined
by eq. (11).

The margin-based loss function in eq. (12) depends on the
matrices Φsc and H through eqs. (6-7) and (10). Specifically,
we can write the discriminant function as:

D(y, s) = logP(s1) +
T−1∑
t=1

logP(st+1|st)

+
T∑

t=1

log
∑

c

e−
1
2 x>t H>ΦscHxt . (13)

Note that while eq. (13) depends on the high dimensional
(stacked) cepstral feature vectors xt ∈ <D, the computation
can be performed entirely in terms of the low dimensional
features zt = Hxt. In fact, we can view H>ΦscH as storing
a low-rank factorization of an inverse covariance matrix in the
high dimensional space of unprojected cepstral features.

B. Parameter-tying

The loss function in eq. (12) can be minimized by alter-
nately updating H and Φsc. To minimize eq. (12) in this way,



we will extend a recently proposed online algorithm [13] for
large-margin training of CD-HMMs. We will give more details
of the online algorithm in the next section. However, in this
section, we introduce a form of parameter-tying that helps to
mitigate the strongly biased gradients from individual training
utterances.

We have noticed that small changes in the projection
matrix H can drastically change the decoding results. This
sensitivity is to be expected since the projection matrix H is
used to calculate acoustic features in every frame of speech.
One way to reduce this sensitivity is to perform some sort of
averaging. Batch training reduces this sensitivity by averaging
over multiple training utterances. However, batch training does
not scale well to very large data sets, nor does it exploit the fact
that many training utterances convey redundant information.
For online training, we need a different option. Thus we
investigate tying the projection matrix H across several dif-
ferent recognizers whose parameters are jointly updated after
decoding each training utterance. By averaging the gradients
across multiple recognizers, we hope to obtain more stable
online updates.

Parameter-tying in CD-HMMs has been widely adopted for
ASR ([14], [15]). Our scheme for parameter-tying is subtly
different than previous approaches. Typically, parameters are
tied across different hidden states or mixture components in
the same recognizer. In our scheme, however, we tie parame-
ters across multiple different recognizers that are trained in
parallel. These recognizers may have different model sizes
(i.e., different numbers of hidden states and/or mixture com-
ponents). By tying the projection matrix, however, we force
all the recognizers to use the same front end.

Our approach is based on a global cost function for parallel
training of multiple models or recognizers. Indexing each
available model by M, we write the global cost function as:

L(H,Φ) =
∑
M

∑
n

[DM(xn, s∗n)−DM(xn, rn)]+ , (14)

In our implementation, the available models are large-margin
CD-HMMs with one hidden state per phone but different
numbers of Gaussian mixture components per hidden state.
Eq. (14) differs from eq. (12) only in the accumulation of
information across models. In fact, the parameter-tying only
affects the gradients for optimizing the projection matrix H ,
but not the gradients for optimizing the individual (non-tied)
parameter matrices of each model.

C. Online algorithm

The objective function in eq. (14) lends itself to an alter-
nating minimization procedure. Such a procedure alternates
between two phases, one optimizing Φ while holding H fixed;
the other optimizing H while holding Φ fixed. We gain some
insight into our problem by considering the special case where
each hidden state only has one Gaussian mixture component.
In this case, for fixed H , the objective function over Φ
is piecewise linear and convex; however, for fixed Φ, the
objective function over H is piecewise (indefinite) quadratic

and no longer convex. Thus the optimization is susceptible to
spurious local minima, and we must consider carefully how to
initialize the projection and parameter matrices in this context.

We explore how to minimize the tied loss function in
eq. (14) using an online learning algorithm. The algorithm is
inspired by earlier work on perceptron-style updates for both
discrete [21] and continuous-density HMMs [13].

The online algorithm for alternating minimizations works
as follows. We choose an utterance (xn, rn) at random from
the training corpus. Then, for each individual model M, we
update its parameter matrix ΦM by:

ΦM ← ΦM + ηΦ
∂

∂ΦM
[DM(xn, rn)−DM(xn, s∗n)] ,

(15)
where the state sequence s∗n is computed from the margin-
based Viterbi decoding in eq. (11). The right hand side
of eq. (15) depends on the current value of the parameter
matrix ΦM and the projection matrix H; note that different
models are not coupled by this update. Following this update,
we choose another utterance (xn′ , rn′) at random from the
training corpus. We then update the projection matrix H by:

H ← H + ηH
∂

∂H

∑
M

[DM(xn′ , rn′)−DM(xn′ , s∗n′)] .

(16)
The right hand side of eq. (16) depends on the current value
of the projection matrix H and the parameter matrices Φ.
Note that unlike the update in eq. (15), all models contribute
to the optimization of the projection matrix H through the
summation in the gradient. We repeat these updates with
many training utterances, alternately updating the GMM and
projection matrix parameters. The scalar learning rates ηΦ

and ηH determine the step sizes; in practice, we tune them
independently to achieve the fastest convergence.

IV. EXPERIMENTS

We experimented on the TIMIT speech corpus [22] with the
algorithms described in the previous section. We first describe
the basic framework used to evaluate these algorithms, then
present and interpret our experimental results.

A. Evaluation

We used the same methodology as previous benchmarks
on the TIMIT speech corpus [10]. We followed the standard
partition of the TIMIT corpus for training, testing and vali-
dation. The data in the TIMIT corpus is manually segmented
and aligned with phonetic transcriptions. We built recognizers
using monophone CD-HMMs in which each of 48 states repre-
sented a context-independent phoneme. We experimented with
models of different sizes by varying the number of Gaussian
mixture components in each state. For the phone grammar,
we used a simple maximum-likelihood bigram model; in
addition, we used the validation data to tune a grammar weight
that multiplied the log-transition probabilities for Viterbi and
margin-based decoding. We evaluated the performance of
each CD-HMM by comparing the hidden state sequences



inferred by Viterbi decoding to the “ground-truth” phonetic
transcriptions provided by the TIMIT corpus. We report two
types of errors: the frame error rate (FER), computed simply as
the percentage of misclassified frames, and the phone error rate
(PER), computed from the edit distances between ground truth
and Viterbi decodings. In calculating the errors, we followed
the standard of mapping 48 phonetic classes down to 39
broader categories [23].

Our experiments had two main goals: first, to test whether
feature reweighting can improve phoneme recognition be-
yond the usual gains of discriminative training; second, to
investigate the potential benefits of parameter-tying in this
context. Our baseline systems were discriminatively trained
CD-HMMs with traditional cepstra, delta-cepstra, and delta-
delta-cepstra as features [13]. Our front end computed d0 = 13
mel-frequency cepstral coefficients (MFCCs) in each analysis
window; initial acoustic features were computed by linearly
combining the cepstra across 13 consecutive analysis windows
(i.e., including six windows on each side of the current
window); see eq. (9). To learn reweighted acoustic features,
we concatenate all 169 cepstral features from these 13 win-
dows, append a constant scalar feature of value one, and
then estimate a 40x170 projection matrix, as in eq. (10). We
experimented on CD-HMMs of different sizes, with 1, 2, 4,
or 8 Gaussian mixture components per hidden state.

We report results comparing several different models and
training procedures. First, we report the performance of base-
line CD-HMMs trained by maximum likelihood estimation.
Next, we report the performance of discriminatively trained
CD-HMMs without feature reweighting, using an online algo-
rithm for large-margin training [13]. Finally, we report the per-
formance using the alternating online updates in eqs. (15–16),
both with and without parameter-tying of the projection ma-
trix H across different models.

Since the optimization for acoustic feature reweighting
is non-convex, the results can be sensitive to how model
parameters are initialized and updated. We used the following
scheme to obtain the positive results in this paper. First, we
initialized all discriminatively trained models by their maxi-
mum likelihood counterparts. Second, we initialized all models
with feature reweighting by setting the upper left block of H
equal to H0; thus, the MFCCs from different windows were
initially combined by computing standard delta and delta-
delta features. Third, in some experiments, we constrained the
initially zero elements of the projection matrix H to remain
zero; in other words, though the features were reweighted, the
sparsity pattern of the projection matrix was not allowed to
change during learning. This constraint led to more reliable
convergence in the models without parameter-tying.

B. Effects of Feature Reweighting and Parameter-Tying

Table I compares the frame and phone error rates of CD-
HMMs trained in different ways: by maximum likelihood
(ML) estimation, by large-margin (LM) training [13], by large-
margin training with feature reweighting (LM+FR) but no
parameter-tying, and by large-margin training with feature

reweighting and parameter-tying across models of different
sizes (LM+FR+PT), using both sparse and full projection
matrices H . All discriminatively trained CD-HMMs were
initialized by ML estimation to ensure that they started from
the same baseline with exactly the same performance.

The results in Table I show three general trends: first, that
feature reweighting (LM+FR) improves performance beyond
the already significant gains from large-margin training (LM);
second, that feature reweighting works best in conjunction
with parameter-tying (LM+FR+PT) across different models;
third, that the most general scheme for feature reweighting
(without sparsity constraints on H) leads to the most improve-
ment, provided that the learning is regularized in other ways.
In particular, to obtain the results in the last column of Table I,
we not only tied the full matrix H across different models; we
also employed a parameter-averaging update for the full matrix
H , as described in eq. (7) of earlier work [13]. Without both
parameter-tying across models and parameter-averaging over
time, learning with full matrices H yielded worse results on
both the development and test sets.

The exceptions to these trends are also revealing. For exam-
ple, in the largest model with 8 Gaussian mixture components
per hidden state, the frame and phone error rates are not
improved by feature reweighting without parameter-tying; in
fact, they are slightly worse. The worse performance may
be due to overfitting and/or unreliable convergence. However,
the performance in this model is improved when the feature
reweighting in the front end is tied across different recognizers.
The parameter-tying appears to mitigate the challenges of
feature reweighting in large models. Specifically, it appears
to dampen the fluctuations that arise in online learning, when
updates are based on the decoding of individual training
utterances. By tying the projection matrix across different
model sizes, the larger model benefits from information that
is accumulated across different recognizers.

Finally, we comment on convergence issues. In general,
parameter-tying led to better results but not necessarily faster
training: that is, roughly the same number of passes through
the training data were required to converge (as measured by
performance on the validation set). However, while the update
rule in eq. (16) accumulates information across different mod-
els, we can always distribute the computation across multiple
nodes, summing up the gradients from individual models as
necessary. When implemented in this way, the total running
time for learning is essentially equal to the individual running
time of the largest model in the ensemble of recognizers.

V. DISCUSSION

In this paper we have explored how to optimize the acoustic
features computed by front ends for ASR. Extending a pre-
viously proposed framework for large-margin training of CD-
HMMs, we showed that standard acoustic features could be
discriminatively reweighted to improve performance. Our best
results were obtained by tying the feature reweighting param-
eters across multiple recognizers and training these different
recognizers in an integrated manner. The parameter-tying



TABLE I
FRAME AND PHONE ERROR RATES ON THE TIMIT TEST SET FOR

CD-HMMS OF VARYING SIZE, AS OBTAINED BY MAXIMUM LIKELIHOOD
(ML) ESTIMATION, LARGE-MARGIN TRAINING (LM), FEATURE

REWEIGHTING (FR), AND PARAMETER-TYING (PT). SEE TEXT FOR
DETAILS. THE BEST RESULTS IN EACH ROW ARE SHOWN IN BOLD.

# Frame Error Rate (%)
of H0 sparse H full H

mix ML LM LM+FR LM+FR+PT LM+FR+PT
1 39.7 30.5 30.4 29.2 29.2
2 36.2 29.4 28.1 28.1 27.8
4 33.1 28.3 27.4 27.4 27.5
8 30.7 27.3 27.4 26.6 26.4

# Phone Error Rate (%)
of H0 sparse H full H

mix ML LM LM+FR LM+FR+PT LM+FR+PT
1 41.5 32.8 32.2 31.9 31.5
2 38.0 31.4 29.6 30.3 29.5
4 34.9 30.3 29.3 29.2 29.1
8 32.3 28.6 28.8 27.8 27.7

across models was used to average the strongly biased gra-
dients from individual training utterances in online learning.

There are many interesting directions for future work. For
example, in this paper, when we trained several different rec-
ognizers in parallel, we weighted their loss functions equally;
in many applications, however, we may care more about
the performance of one recognizer than another. Suppose in
particular that we are deploying an application to a host with
limited resources. In this case, it may be more important to
optimize the performance of smaller models than larger ones.
More work is needed in this direction.

Another interesting direction for future work is to explore
different and more general sets of acoustic features. For
example, the cepstra themselves are computed from a linear
transformation of the log-magnitude spectra. We could use
these log-magnitude spectra as the high dimensional features
instead of the cepstra and still initialize our models with the
baseline performance of existing approaches. The projection
matrices in this case would not only be significantly larger, but
more or less completely dense. Presumably, larger training cor-
pora would be required to estimate discriminative projection
matrices in this case. However, this regime is precisely where
one expects the biggest pay-off from online methods, as we
have considered in this paper.
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