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Abstract—We investigate how to automatically align spoken
corrections with an initial speech recognition result. Such au-
tomatic alignment would enable one-step voice-only correction
in which users simply respeak their intended text. We present
three new models for automatically aligning corrections: a 1-best
model, a word confusion network model, and a revision model.
The revision model allows users to alter what they intended to
write even when the initial recognition was completely correct.
We evaluate our models with data gathered from two user
studies. We show that providing just a single correct word of
context dramatically improves alignment success from 65% to
84%. We find that a majority of users provide such context
without being explicitly instructed to do so. We find that the
revision model is superior when users modify words in their
initial recognition, improving alignment success from 73% to
83%. We show how our models can easily incorporate prior
information about correction location and we show that such
information aids alignment success. Last, we observe that users
speak their intended text faster and with fewer re-recordings
than if they are forced to speak misrecognized text.

I. INTRODUCTION

In speech recognition there are situations in which it is
necessary or desirable to correct misrecognitions by voice. For
example, users with a repetitive strain injury (RSI) may want
to avoid using the mouse and keyboard. Another example is
mobile speech recognition. We previously found that about
half of recognition errors made while dictating to a mobile
device needed to be corrected by typing out the intended words
[1]. Since precise motor actions are difficult while walking [2],
a hands-free voice-only correction interface may be beneficial.

A common method of voice-only correction uses a two-
step process. In the first step, users select a portion of the
recognized text by voice (e.g. “select the bat sat”). Next,
they speak their intended replacement text (e.g. “the cat sat”).
In this paper we investigate an alternative one-step method,
first proposed by McNair and Waibel [3]. Using this method,
the user only speaks the intended replacement text with the
location of the replacement being found automatically.

The one-step process promises to be faster and simpler for
users. In addition, it may be more comfortable for users as
it allows them to speak their intended text rather than text
containing recognition errors (which may be ungrammatical
or illogical). While our ultimate goal is to address the entire
error correction process, in this paper we focus on the problem
of correctly locating the error region. This is a critical first step
in a complete one-step voice correction technique.

We propose and evaluate three new models for automatically
aligning spoken corrections. We show that a model based on a
word confusion network outperforms a model using only the
1-best recognition result. Furthermore, we develop a model
that allows automatic alignment even if the user revises their
initial recognition result by adding, changing or removing
words. We validate our models in two user experiments. We
show that, without explicit instruction, users tend to speak
correctly recognized words surrounding an error. We also
demonstrate that providing such correct context improves
alignment success. In addition, we find that our users speak
the intended text faster and with fewer re-recordings than if
they are forced to speak the corresponding misrecognized text.

II. AUTOMATIC ALIGNMENT MODELS

We present three models for automatically aligning correc-
tions and revisions. Each model creates a finite state grammar
(FSG) based on the results from recognition on the full
sentence. This grammar is used to determine the starting and
ending indices of the correction or revision within the words
of the original 1-best recognition result.

The FSG used for alignment is a set of states and the edges
between those states (figure 1). An edge between two states
specifies the word that must be spoken to traverse that edge and
the probability for making that transition. We introduce a set of
pseudo-words to track the starting and ending index positions
found by recognition. These pseudo-words are denoted <0>,
<1>, etc. These words are placed in the recognizer’s dictionary
with a pronunciation of the silence phone. The start and
end index words are the main result of decoding using the
grammar – we ignore the actual words recognized.
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Fig. 1. A 1-best result (top) and the FSG (bottom) generated from it. The
1-best result has been annotated to show the location of the index pseudo-
words. If recognition using the grammar resulted in the state sequence 0, 2,
3, 5, the selection would be from <1> to <2>, “cat”.
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Fig. 2. A confusion network (top) and the FSG (bottom) generated from it.

All states in our grammars (except for the initial and final
states) have an end and a silence probability. The end prob-
ability controls exit to the final state. The silence probability
controls a self-loop that generates silence. After assigning
probabilities to the end and silence edges, all remaining
probability mass is used for word edges. The initial state has
outgoing edges to each state except the final state. For now, we
assume the edges from the initial state have equal probability.

A. 1-Best Model

Our simplest model for aligning corrections uses only the
initial 1-best recognition result (denoted 1-BEST). This model
allows alignment using any contiguous set of words in the 1-
best result. Figure 1 shows an example grammar. Such a model
was first suggested by McNair and Waibel [3] (although they
used a bigram language model, not an FSG).

B. Confusion Network Model

The confusion network model (denoted CN) is based on
a word confusion network [4] generated from the initial
recognition. This model takes into account competing word
alternatives for each word in the original recognition result.
Figure 2 shows an example confusion network and the gram-
mar generated from the network. This grammar has a state for
each cluster in the confusion network. Edges between states
in the grammar are added for each word hypothesis in the
confusion network cluster, with the edge probability set based
on a word’s posterior probability in the confusion network.

Note that a confusion network cluster’s most likely word
may be a special “delete” word (denoted as ε). Such delete
words do not have a corresponding word in the 1-best recog-
nition result. In such cases, we divide the probability from the
initial state to a particular starting index among the word at
that index and any delete cluster states that follow it (e.g. the
edges from state 0 to states 3 and 4 in figure 2).

The CN model also adds a word smoothing parameter. This
parameter smooths the word posterior probabilities from the
confusion network with a uniform distribution. The idea is
to allow some of the less probable words from the confusion
network to better compete with the original best words (since
we expect some of these best words to be wrong). A smoothing
value of zero uses the unaltered posterior probabilities. A
smoothing value of one uses a completely uniform distribution.

C. Confusion Network + Unknown Word Model

This model (denoted CN+UNK) extends the confusion net-
work model by allowing arbitrary word insertions, deletions,
and substitutions. This model gives users the flexibility to
change their mind, altering what was said in their initial utter-
ance. For example, a user may wish to change the correctly
recognized sentence “the cat sat” to “the very fat cat sat”.

The CN+UNK model uses a set of unknown words. The
pronunciation dictionary entry for each unknown word is a
sequence of one or more garbage phones (<unk1> has one
garbage phone, <unk2> has two garbage phones, and so on).
The garbage phone was trained by replacing 10% of the words
in our acoustic model training transcripts with an unknown
word with the same number of phones as in the original word.

An example grammar is shown in figure 3. To enable
arbitrary deletions, each state has an ε-transition added to the
next state and uses a fixed deletion probability. If there already
is an ε-transition, we add the probability to this transition.

To allow substitutions and insertions, we add a new substitu-
tion/insertion state for every cluster in the confusion network.
Edges to this new state are added for 12 unknown words
(having between 1–12 garbage phones). We set the probability
of each unknown word edge according to how frequently
pronunciations in the CMU dictionary had the corresponding
number of phones. After generating an unknown word, edges
go back to the original word state (an insertion) and to the next
word state (a substitution). This model has a substitution and
insertion probability. We assess these probabilities after the
substitution/insertion state to keep the grammar more compact.

D. Prior Location Information

In real-world usage, we might have information regarding
where the correction is likely to occur. For example, if the
user is hovering the mouse pointer at a certain location in
the recognition result, we might expect a correction near that
location. It is easy to incorporate such knowledge into our
model using the probabilities on the edges from the initial state
and on the edges to the final state. While in most of our results
we used an uninformative uniform prior, we also investigated
the effect of having information about the correction location.
In this work, we used a simple model that centered a Gaussian
at the known starting and ending positions (i.e. our model used
oracle knowledge).

E. Parameter Tuning

We tuned the model parameters using a set of utterances
collected from three speakers (including one of the authors).
Data collection followed the procedure to be described in
section III (with the exception that we only collected guided
corrections). Our development test set had 203 full sentences
and 401 corrections. Besides our model parameters, we also
tuned the language model scale factor that balances the impor-
tance of the grammar probabilities and the acoustic evidence.

We tuned each of the three models separately. We tuned
to maximize the alignment success, which we define as the
percentage of times our model exactly identified the correct
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Fig. 3. Example grammar for the CN+UNK model. For clarity, only a single unknown word is shown. The dotted edges allow revisions involving arbitrary
word insertions, substitutions, and deletions.

TABLE I
THE TUNED PARAMETERS USED FOR EACH MODEL.

Parameter 1-BEST CN CN+UNK

End 0.10 0.05 0.05
Silence 0.80 0.05 0.05
Word smoothing - 0.00 0.10
Insertion - - 0.01
Substitution - - 0.02
Deletion - - 0.01
LM scale factor 8.00 24.00 12.00

starting and ending locations. We changed one parameter
at a time, finding its optimum value, fixing its value, and
then proceeding to the next parameter. Table I gives the best
parameter values we found for each of the models.

III. USER EXPERIMENT 1
Our first user experiment had three goals. First, to inves-

tigate how (without explicit instruction) users would speak
corrections. Second, to collect data of users speaking sentences
and corrections using varying amounts of surrounding correct
context. Third, to collect data of users revising correctly
recognized sentences by changing the original text.

A. Recognition Setup

We used the CMU Sphinx recognizer and a US-English
acoustic model trained on 211 hours of WSJ data. We used
cross-word triphones and a 3-state left-to-right HMM topol-
ogy. We parameterized audio into a 39-dimensional feature
vector consisting of 13 Mel-frequency cepstral coefficients,
deltas and delta deltas. We used 8K tied-states with each state
having 16 continuous Gaussians with diagonal covariances.
We used the CMU phone set without stress markings (39
phones plus silence) and the CMU pronunciation dictionary.

We trained a trigram language model using text from the
CSR-III newswire corpus (222M words) and the most frequent
64K words. We trained the language model using interpolated
modified Knesser-Ney smoothing and entropy-pruning [5].

We streamed audio sampled at 16 kHz to the recognizer as
soon as the microphone was enabled. We performed cepstral

Fig. 4. The user has read the top sentence and the recognition is shown
below with word errors in red. During this unguided correction, the user must
decide what utterance(s) to provide to correct the 3 error regions in the result.

mean normalization based on a prior window of audio. The
recognizer was adapted to each participant’s voice using
maximum likelihood linear regression (MLLR). We adapted
the model means using 7 regression classes.

We used PocketSphinx [6] and tuned it to provide near real-
time recognition. During the user experiment, recognition took
2.7× real-time on a 2 GHz laptop. For the offline experiments
using FSGs, we used much wider decoding beam widths
and utterance-wide cepstral mean normalization. The offline
experiments took 0.3× real-time on a 3 GHz computer.

B. Materials and Participants

Eight speakers of North American English took part in the
first experiment which lasted one hour. The speakers were dif-
ferent from those used for parameter tuning. Each participant
recorded 40 sentences which we used for adaptation.

We presented users with sentences drawn equally from two
WSJ test sets (WSJ0 si et 05 and the SJM sentences from
WSJ1 si et s2). We chose sentences with 4–18 words (mean
13). Using the 64K trigram language model, the sentences had
a per-word perplexity of 270 and an OOV rate of 0.6%.

C. Procedure

Each participant was presented with a series of sentences.
After the participant pressed a MIC ON button, a beep signaled
recording was active. The participant then spoke the sentence
and pressed a MIC OFF button. After a small recognition
delay (11 s± 12 s), a beep signaled recognition was complete.
The recognition result was displayed below the reference
text with word errors highlighted in red (figure 4). If the
recognizer made a deletion error, the error was denoted by
a red underlined empty space (figure 5).
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Fig. 5. The user is providing a guided correction for the first error region
using one word of correct context on the right.

In part one, each participant received the same set of 10
sentences. For each sentence, the participant made zero or
more unguided corrections. In the unguided corrections, the
participant was told to provide utterances such that “an intel-
ligent software program” could correct any recognition errors.
The participant was not specifically instructed as to what
words to speak and was free to use as many separate correction
utterances as was deemed necessary. The participant could add
a correction by pressing a MAKE CORRECTION button. The
participant used the MIC ON and MIC OFF buttons to record
corrections. No recognition took place on the correction audio.
After completing any corrections, a DONE button brought the
participant to the next sentence.

In part two, the participant was told what words to speak for
each correction. The initial recognition proceeded as in part
one, but after displaying the recognition result, the desired
correction text was indicated by highlighting a portion of the
reference sentence in yellow (figure 5).

Each highlighted section contained an error region. An error
region is a contiguous number of words in a sentence that
encapsulates one or more recognition errors. Error regions
were created by first making a region for every word error.
Each region was then merged with any adjacent regions that
were separated by at most a single correct word.

For each error region, the participant was asked for 1–3
corrections. The correction used 0–2 words of correct left
context and 0–2 words of correct right context. The number of
corrections and the amount of context was chosen randomly,
with the exception that corrections with no correct context
were made twice as likely. The first two sentences in part two
were designated as practice sentences and were excluded from
analysis. Sentences were presented in random order.

In part two, if recognition was completely correct, the par-
ticipant was prompted to record 1–5 revisions. The revisions
made a substitution, insertion, or deletion of one or two words
in the original reference sentence (figure 6). The set of allowed
revisions were predetermined for each sentence to ensure the
revisions were syntactically and semantically plausible.

Fig. 6. A correct recognition (top) followed by a revision (bottom).

TABLE II
SUCCESS ON CORRECTIONS WITH DIFFERENT TYPES OF CONTEXT.

Correct context # utts 1-BEST CN CN+UNK

None 192 64.6% 67.2% 63.5%
Left 179 85.5% 85.5% 86.0%
Right 216 86.6% 89.4% 80.6%
Both 234 93.6% 93.2% 90.6%

Overall 821 83.2% 84.4% 80.6%

D. Unguided Correction Results

Participants provided unguided corrections for 80 sentences.
The word error rate (WER) on these sentences was 18%. 57 of
the sentences had at least one recognition error. In sentences
with errors, there were an average of 1.5 error regions per
sentence. Participants recorded on average 1.2 corrections per
sentence. This indicates that users preferred to correct using
longer utterances that contained several error regions.

We manually transcribed and annotated the utterances. We
found that over half (54%) of the words in the utterances were
correctly recognized words. Overall, 41% of the unguided
corrections used no left or right context, 21% used left context,
20% used right context, and 18% used left and right context.

Six participants consistently used correct left or right con-
text in their corrections. The remaining two participants con-
sistently spoke only the words that were incorrectly recog-
nized. It appears that even without instruction, users tend to
use correct context.

E. Guided Correction Results

Participants completed 376 sentences in the second part of
the study. Overall, the WER on these sentences was 17%.
Participants provided a total of 821 guided corrections.

Table II shows each model’s success at exactly determining
the correction location (both the start and end position).
Overall, the CN model without unknown words did the best.
Without any correct context, finding the location was difficult.
Providing either 1–2 words of left or right context helped
considerably and roughly the same. As might be expected,
using both left and right context was the most accurate.

Since these corrections matched a segment of the original
sentence, the flexibility offered by the unknown words in the
CN+UNK model was not necessary and we found it hurt
alignment accuracy. Note that while words in the correction
may not necessarily be in the original sentence’s 1-best or
confusion network result, the 1-BEST and CN models may
still provide accurate alignments by relying on the recognizer
preferring the same word errors during the alignment process.

As the number of context words was increased, alignment
success improved (figure 7). Providing just a single word
of context improved alignment success from 65% to 84%
(averaged over all models).

We found that the type of recognition error influenced
alignment success (table III). Corrections involving only sub-
stitution errors were the easiest to align. Corrections with one
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Fig. 7. Success of each model as the words of correct context was increased.

TABLE III
SUCCESS DEPENDING ON THE TYPE OF ERROR BEING CORRECTED.

Recognition error type 1-BEST CN CN+UNK

Substitution only 84.3% 84.8% 81.2%
≥ 1 ins/del 81.8% 84.0% 79.9%
≥ 1 ins/del, outside 77.6% 81.2% 75.8%

or more insertion or deletion errors were more difficult. Our
data included examples of correcting insertion and deletion
errors without context on the outside. For example, correcting
“the bat is sat” to “the cat sat” by only saying “the cat”. Such
corrections were understandably hard and in practice users
would likely provide additional context.

F. Revision Results

88 sentences were recognized completely correctly and
we collected 292 revisions of these sentences. The revisions
included the insertion, substitution or deletion of one or two
words as compared to the reference text. The revisions always
included at least one word of correct left and right context. The
1-BEST model identified 73% of the revision locations, the
CN identified 74%, and the CN+UNK identified 83%. Thus
it appears that the CN+UNK model was effective at modeling
the word changes present in the revisions.

G. Location Prior Results

We compared using a uniform distribution on the start
and end locations versus using prior information to inform
the alignment. We used knowledge of the actual start and
end location to center a Gaussian distribution. We varied the
variance and optionally randomly perturbed the mean one
word position to the left or right of the actual starting/ending
location. As shown in table IV, even a broad prior on the start-
ing/ending location was able to improve alignment success. At
least for broader variances, using a perturbed mean made little
difference to alignment success.

IV. USER EXPERIMENT 2

We conducted a second user experiment to quantify the
difference in alignment success between the status quo cor-

TABLE IV
SUCCESS OF THE CN MODEL VARYING THE PRIOR DISTRIBUTION.

Start prior End prior σ Success Success
(exact µ) (offset µ)

Uniform Uniform - 84.4% -
Gaussian Uniform 2 86.5% 86.1%
Uniform Gaussian 2 86.1% 86.2%
Gaussian Gaussian 2 86.9% 87.1%
Gaussian Gaussian 1 89.0% 88.7%
Gaussian Gaussian 0.5 93.4% 86.1%

rection approach based on speaking the erroneous text versus
a method that enabled speaking the intended text. We also
wanted to investigate the difference in human performance
between reading and speaking the two types of text.

A. Materials and Participants

Eight North American English speakers took part in a
second study which lasted one hour. Participants read segments
of 145 sentences (chosen at random) from the first study. These
segments were located where a recognition error had occurred
in the first study. The participants were only given the segment
to be spoken and not any surrounding context.

B. Procedure

At the start of the user experiment, each participant read
40 adaptation utterances. These utterances were later used
to create speaker-specific acoustic models for our offline
experiments. In the user experiment, no recognition took place.

Each participant completed two conditions. In the REF
condition, the sentence segments were from the reference text.
In the REC condition, the segments were from the recognition
result. For example, in the first study the sentence “the medical
society can refer you” was misrecognized as “the medical
society can re for you”. Users provided corrections to this
previous recognition by saying “can refer you” in the REF
condition and “can re for you” in the REC condition. The
order of the conditions was counterbalanced.

C. Alignment Success Results

We used the recognition results from the first study to
construct grammars for each full sentence. We then performed
recognition against the utterances collected in the second
study. We used an acoustic model adapted to each participant.

Over all utterances (1160 per condition), alignment success
was 97% in the REC condition and 87% in the REF condition
(table V). On utterances with one or more words of context
(888 per condition), alignment success was higher in both
conditions and the difference between conditions was reduced
(98% REC versus 93% REF). As in the first study, the CN
model was the best when users spoke the reference text. The
CN model also performed as well as the 1-BEST model when
users spoke the recognition text.
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TABLE V
SUCCESS WHEN USERS SPOKE THE REFERENCE TEXT (REF) VERSUS

THE RECOGNITION RESULT (REC).

Context Condition 1-BEST CN CN+UNK

Overall REF 85.6% 87.1% 85.3%
None REF 65.1% 69.5% 64.3%
≥ 1 word REF 92.3% 92.5% 91.8%

Overall REC 97.2% 97.2% 95.7%
None REC 95.6% 94.1% 90.4%
≥ 1 word REC 97.8% 98.1% 97.3%
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Fig. 8. Task completion time (left) and number of re-recordings (right) shown
as a function of participant number, ranked by performance. The participants
read either the reference text (REF) or the recognition result (REC).

D. Human Performance Results

A full investigation of the end-user benefits for this tech-
nique is out of scope for this paper. Nevertheless, here we
provide some early quantitative indicators based on our second
user experiment. Since we observed an asymmetrical skill-
transfer, we analyzed performance only in the first condition
encountered by each participant (as suggested by Poulton [7]).

We ranked each of the four participants in each condi-
tion using two measures of performance. The first was task
completion time, which was the duration between when the
reference text was first displayed and when the participant
went to the next task. The second measure was the number
of times a participant re-recorded a sentence segment. As
shown in figure 8, at each corresponding ranking position,
each participant who spoke the reference text had a lower task
completion time and a lower number of re-recordings than his
or her counterpart who spoke the recognition text.

These indicators show that our users found it easier to
speak the reference text than the recognition text. However,
we emphasize that these numbers are only indicators and a
full user study is required to generalize these findings to the
population. We also note that the full benefit of our technique
is not demonstrated here since we only identified the error
region and did not replace the misrecognized text. In an actual
real-world task, users who spoke the misrecognized text would
also have to respeak the intended text. With our automatic
alignment models this second step is eliminated.

V. DISCUSSION AND CONCLUSIONS

We presented several new models for automatically aligning
spoken corrections. The models were evaluated with data
gathered from two user experiments. Among our models, we
found that a model based on a confusion network performed
the best. We showed that just a single word of context
dramatically improved alignment success from 64% to 84%.
We found that a majority of our users provided such context
during corrections without being explicitly instructed to do so.

In addition, we presented an automatic alignment model
that handles revisions as well as corrections. We showed that
this model was superior to the other models when users added
or subtracted words from their original sentence. This model
improved revision alignment success from 73% to 83%.

We also provided some early indicators of human perfor-
mance using our technique. We showed that our users spoke
their intended text faster and with fewer re-recordings than
if they spoke misrecognized text. Our data strengthens the
hypothesis set forth by McNair and Waibel [3] that a voice-
only correction mechanism similar to what we use in human-
human communication is beneficial.

Last, we found that using a prior on the likely location of
the error region improved success. Such priors can be obtained
by letting users roughly indicate the error region by using a
pointing device, such as a mouse, stylus, index finger or an
eye-tracker. This may be especially important when a user’s
intended target sentence exists within a large body of text (as
might occur when dictating a document or email).

Our next step is to build a complete correction interface that
enables both automatic selection and subsequent correction
using a single utterance. This will allow us to investigate the
advantages offered by more natural voice-only correction.
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