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Abstract—In [1], we show that a novel class-based language where PRstand PRain denote test and training set perplexity;
model, Model M, and the method of regularized minimum dis- D is the number of words in the training datg; areregular-
crimination information (rMDI) models outperform comparable ized (i.e, smoothed) estimates of the model parameters; and

methods on moderate amounts of Wall Street Journal data. . . . L .
Both of these methods are motivated by the observation that 7 is & constant independent of domain, training set size, and

shrinking the sum of parameter magnitudes in an exponential model type [2], [3]. Thus, one can improve test performance
language model tends to improve performance [2]. In this paper, by shrinking the parameter sui, |\;|, and both Model M

we investigate whether these shrinkage-based techniques alscand rMDI models are designed to improve upon wargram
perform well on larger training sets and on other domains. First, models in this way. However, as training set size increases,

we explain why good performance on large data sets is uncertain, - .
by showing that gains relative to a baseline:-gram model tend to the last term in eq. (1) tends to grow smaller, which suggests

decrease as training set size increases. Next, we evaluate severdh€ gain to be had by shrinking parameter values will also
methods for data/model combination with Model M and rMDI  decrease. Thus, it is uncertain whether Model M and rMDI

models on limited-scale domains, to uncover which techniques models will retain their performance improvements over word
should work bes? on Iarge_domalns. Finally, we e}pply the_se n-gram models on larger training corpora.

methods on a variety of medium-to-large-scale domains covering . . . . .

several languages, and show that Model M consistently provides The _outllne of this paper is as follows: In .Sectlon I,
significant gains over existing language models for state-of-the-art We review Model M and rMDI models. In Section IIl, we
systems in both speech recognition and machine translation.  elaborate on why performance gains decrease as training sets

grow, and show how gains vary for some actual models. In

I. INTRODUCTION Section IV, we examine the task of model combination when

In [1], we proposed a novel class-based language mod&Fing Model M and rMDI models, as thls is a key issue when
nt‘ackllng large-scale domains. In Section V, we apply these

Model M, that outperforms a Katz-smoothed word trigral ; )
model by 28% in perplexity and 1.9% absolute in automat ethods to a variety of medium-to-large-scale tasks. For more
ails about this work, see [4].

speech recognition (ASR) word-error rate; these are among
best results ever reported for a class-based language model. In Il. BACKGROUND
addition, we showed that for the task of domain adaptation, the . . .

In this section, we review Model M and rMDI models as

method of regularized minimum discrimination information . .
well as the results for performance prediction for exponential

(rMDI) modeling outperforms linear interpolation by up t . . !
0.7% absolute in word-error rate (WER). However, theﬂgnguage models given in [2], [3]. An exponential model

experiments were restricted to Wall Street Journal data Wﬁﬁ@'x) 's a model with a set of featurd;(z, y)} and equal
- . ; number of parameterd = {\;} where

training sets less than 25 million words in length and were

conducted with a non-state-of-the-art acoustic model. While (ylz) = exp(d_; Aifi(z,y))

Wall Street Journal is the canonical test bed for language PAlYI®) = >y exp(X2; Aifi(z, "))

modeling (LM) research, it is not representative of the da[g kabl 1) holds f tial |
used in modern language modeling applications, many of markably, €q. (1) holds for many exponential language

which use languages other than English. models mcludmg Model M and rMDI models, thg relat|on23h|p
: . . . strongest if theA = {)\;} are estimated using, + ¢5
In this paper, we investigate whether the gains of Model S p L
. - o : regularization [5];i.e., parameters are chosen to optimize
and regularized minimum discrimination information models
. «a 1
scale to larger data sets, other domains and languages, an@ e (A) = log PRyain + = Z |+ s Z)‘? 3)

)

other applications, specifically, machine translation (MT). One
particular concern is that both Model M and rMDI model
were motivated as ways tehrink a word n-gram model.
That is, when training and test data are drawn from the sa
distribution, it has been found for many types of exponenti
language models that

?or somea and o. When using natural logs in eq. (1) and
IIr(fuging (e = 0.5,02 = 6), the constanty = 0.938 yields a
gyean error equivalent to a few percent in perplexity over the
models evaluated in [3]. These values@fand ¢ also yield
good test set performance over a wide variety of training sets.
log PRest &~ log pRrainJr%Z | 1) It follows that if one canshrink the “size” of a model

p (proportional to >, |\;|) while not damaging training set



"actual log PPy I
predictedllog PPiogt —%—

09 PPyain %
model size &

performance, test set performance should improve. In [1], we
use this reasoning to motivate Model M and rMDI models. 6F
Model M is a class-based-gram model that can be viewed
as the result of shrinking an exponential woreggram model

using word classes. If we assume each waerts mapped to ot
a single clasg(w), we can write g -
3r DX
I+1 e X
p(w1~-~wz)=Hp(cjlcl---cj—l,wl---wj—l)x N o ]
J=1 l o

[T ptwsler---cjowi---w;1)  (4)
j=1

12)k 1(;0k 1‘M 1(;M
where ¢; 1 is the end-of-sentence token. Lgy denote a training set size (words)
binary n-gram feature such thafy(x,y) = 1 iff zy “ends Fig. 1. Predicted and actudbgPRes; logPRygin, and model size

in the n-gram 0. Let png(y|¢) denote an eXponentiall" (3 3= IAs]) for word trigram models built on varying amounts of WSJ data.
gram model, where we have a featufg for each suffix

6’ of eachdy occurring in the training set. For example, 0.4 " odel W 4 =
the modelpng(w;|w;_1¢;) has a featuref, for eachn-gram oas L i eV
i ini MDI, 49 B
0 in the training set of the formu;, c;w;, or w;_icjwj. L7 o ——

Let png(y|6:1,62) denote a model containing all features in
Png(y]01) and png(y|62). Then, we can define (the trigram
version of) Model M as

025 -

0.2

gain in log PPy, (nats)

p(Cj|Cl i1, Wyt wj_l) = png(Cj‘Cj_QCj_l, wj_QUJj_l) 0.15
p(wjler -+ cj,wy - wj—1) = pg(wjlwj—2wj—1¢;)  (5) S
B )
Regularized minimum discrimination information (rMDI) 0.05 e
models can be viewed as the result of shrinking an exponential o i

. . .
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model using a prior distribution. Minimum discrimination

information (MDI) models [6] have the form

Fig. 2. Gains inlog PRest for Model M and rMDI models as compared
(ylz) = q(y\x)exp(zi Aifi(@,y)) 6) to a word n-gram baseline, for bigram, trigram, and 4-gram models built
PAYIT) = Zy/ q(y'|z) eXP(Zi Nifi(z,y')) on varying amounts of WSJ data. For rMDI, the out-of-domain corpus is

Broadcast News text and is the same length as the in-domain WSJ corpus.

for some prior distributiony(y|x). While regularization is not
used in [6], we found in [2] that when regularizing, (y|x)
in the way described earlier, eq. (1) holds for these modelsaigorithms in the literature have been shown not to scale
q(y|z) is ignored in computing model size (assuming@|z) Wwell. Here, we show how to explain this phenomenon for
is estimated on an independent training corpus). Regulariz@any types of models by using eq. (1), and study how this
MDI models are well-suited to the task of domain adaptatiogffect affects Model M and rMDI models by plotting relative
where one has a test set and small training set from operformances over a variety of training set size~s.
domain, and a large training set from a different domain. Onelf we define thesizeof a modelp, to be % >, [Ai], eq. (1)
can build a language model on the outside domain, and us#s us that test performance (in log PP) is approximately
this model as the prior when building a model on the irequal to the sum of training performance (in log PP) and
domain data. While exponential models of any form can bwodel size. In Figure 1, we graph these quantities over varying
used in eq. (6), [1] evaluated the use of exponential word amounts of training data (from 100 to 900k sentences) for an
gram modelsi.e., models of the formpng(w;|w,_ow;_1) (for ~exponential word trigram model built on Wall Street Journal
trigrams). In this paper, we also evaluate a variant of rMD(WSJ) data with a 21k word vocabulary. While the sum
cascaded rMD] that can be used to combine an arbitrary_, |A\;| grows with more data, it grows slower than, so
number of training corpora rather than just two. In this methothe overall model size tends to decrease as we go to the right.
one orders the available corpora from most “out-of-domain” to This is significant because Model M and rMDI models
most “in-domain” and applies the rMDI technique repeatedipchieve their performance improvements oregram models
by shrinking model size, and it seems likely thatnifgram
model sizes decrease, so will the shrinkage gain. In the

In this section, we discuss why it's important to study howmit of infinite data, we expect the size of a trigram model,
models scale with training set sides., why good performance say, to go to zero and hence expect no improvement from
on small data sets often does not carry over to large ondse corresponding Model M or rMDI models. These models
One obvious reason to worry about this issue is that maogndition their predictions on exactly two words of history, so

I1l. ANALYZING HOW MODELS SCALE



TABLE |

WORD-ERROR RATES FOR VARIOUS METHODS FOR DOMAIN ADAPTATION IMProve model combination performance. We use small and

in-domain (WSJ) training set (sents)) medium-sized data sets so we can evaluate a large number
1k 10k 100k 900k of methods under a large number of conditions, and attempt
word n-gram models to predict performance on large tasks via extrapolation. We
KN 2 50/WSJ3(())n4|1¥)/ 619  22.6% use these findings to inform which algorithms to assess in the
n-gram .o% 4% 1% .6% _ : : :
exp.n-gram | 34.6% 303% 257%  22.5% large-scale experiments in Section V. _
_ WSJ and BN, 1.1 ratio The best way to combine data or models will depend on
interp 34.3% 30.0% 25.4%  22.3% the relationship between the training and test corpora, so
merge 34.1% 29.6% 25.0% 22.1% . : : : : .
MDI 340% 296% 251% 22194 we |r_1vest|gate_two dlffer_ent scenarios. In Section IV-A, we
WSJ and BN and SWB, 1:3:10 rafio consider a typical dorngln adaptation task where we have a
interp 33.8% 29.7% 25.0% modest amount of training data from the same domain as the
0, 0, 0, .
A B o i S test data, and equal or larger amounts of out-of-domain data.
: - Model M - In Section IV-B, we consider a model combination task where
WSJ only we have many corpora from similar domains as the test data.
Model M | 35.3% 20.1% 24.2%  21.5% ) )
WSJ and BN, 1.1 ratio A. Domain Adaptation
interp 33.9% 28.3% 23.9% 21.2% : :
merge 33.9% 28.2% 239%  21.204 Thgse ASR _expenments are an expanded version of the
rMDI 34.8% 28.6% 23.8% 21.2% domain adaptation experiments in [1]; here, we consider more
TABLE Il corpora, larger data sets, and more algorithms. The acoustic
WORD-ERROR RATES FOR VARIOUS METHODS FOR MODEL comsinaTion Model is built from 50h of Broadcast News data and contains
2176 context-dependent states and 50k Gaussians. We evaluate
word n-gram models Model M . . . .

PP WER PP WER language models via lattice rescoring of lattices generated
interp+, rMDI | 180.8°  14.3%|[ interp+, rMDI | 169.3 13.7%| using a small trigram language model. We use a 47k-word
interp, rMDI | 181.2  14.4% | interp+ 169.4  136%|  \S] test set and in-domain WSJ training sets of various sizes
interp+, exp. | 184.9 14.4%|| interp, rMDI 170.1  13.7% . . 9 )
interp, KN 190.6 14.5%|| merge 1750 13.8%| For the out-of-domain data, we congder the cases where only
merge, KN 194.2 14.6%|| interp 1753 13.7%| Broadcast News (BN) data is available and where both BN
casc. IMDI_ | 210.1 14.8%]| casc. IMDI | 2033 14.2%]  gnd Switchboard (SWB) data are available.

We compare the techniques lfiear interpolation count

they can do no better than an “ideal” trigram model. Henceerging and rMDI modeling. In linear interpolation, sepa-

the issue is nowvhetherModel M and rMDI model gains will rate language models are built on each corpus and linearly
disappear as training set size grows, ien interpolated, with interpolation weights being optimized on
In Figure 2, we display gain ifogPRes relative to a a held-out set. In count merging, the component corpora are
word n-gram model for Model M and rMDI models for concatenated into a single corpus, and a single language model
n € {2,3,4}. As predicted, gains generally decrease as tigebuilt on the merged data set. Unlike in linear interpolation
training set expands. Similarly, gains are smaller for smallahere each model is assigned a fixed weight independent of
n sincen-gram model sizes shrink as shrinks. history for each word prediction, count merging can be viewed
At the right edge of the graph, the gains for most algorithes assigning a weight proportional to the history count of each
are 0.03 nats or less, where a nat is a “natural” bit, enodel. In contrast, rMDI modeling can be viewed as backing
log, e regular bits. Each 0.01 nat difference corresponds ¢df from the in-domain model to the out-of-domain model.
about 1% in PP. However, the gain for 4-gram Model M In Table I, we display a subset of our ASR WER results;
is 0.08 nats, which translates to a 1.4% absolute reductioomplete results can be found in [4]. The top part of the table
in word-error rate (22.2%-= 20.8%) using the ASR setupcorresponds to worgi-gram models, while the bottom part
described in Section IV-A. While gain is dropping as trainingorresponds to Model M. Each column represents a different
set size increases, Model M still appears promising for datadomain training set size. Each subsection of the table
sets substantially larger than 900k sentences. corresponds to using a different amount of out-of-domain data.
For example, th&/SJ and BN and SWB, 1:3:10 ratsection
corresponds to using a BN corpus three times larger than the
For large-scale domains, one typically has language modteldomain data and a SWB corpus ten times larger than the in-
training data from many different sources; for example, thdomain data. All of the wordi-gram models are exponential
IBM GALE Arabic ASR system uses 16 separate corpora-gram models except for the first row, which corresponds to
Furthermore, these corpora generally differ in relevance aadtonventional wore:-gram model with modified Kneser-Ney
amount, and aggregating the data into a single corpus nsgoothing [7]. We use the trigram versions of each model.
not work best. Thus, a central issue in handling large domainsUnlike in Section Ill, we induce word classes on the given
is how to best combine multiple data sets or models. In thisining set(s), rather than always using word classes from
section, we attempt to discover the best methods for combinitig largest training set. We note that it is straightforward to
Model M models and to characterize when rMDI modeling catombine rMDI domain adaptation with Model M; one can

IV. SCALING MODEL COMBINATION



TABLE Il

COMPARISON OF LANGUAGE MODELS ON THE VOICEMAIL One unappealing aspect of linear interpolation is that when
TRANSCRIPTION TASK one of the component models has no counts for a particular
word n-gram models Model M history (while the others do), it still gets its full prediction
WER WER weight. We can attempt to improve prediction in this situation
interp, KN n-gram | 16.9% rMDI 1 16.4% by combining each component model with a “general” model
rMDI, exp. n-gram | 16.7% merge | 16.3% built Il of the traini dat bined th t
merge, expn-gram | 16.6% interp | 16.3% uilt on all of the training data combined.e, the count-
interp, exp.n-gram | 16.6% merged model. We consider two different ways of combining
TABLE IV each corpus-specific model with the general model: linear
WORD-ERROR RATES FOR INTERPOLATEL M S ON SEVERALGALE interpolation and rMDI modeling. In linear interpolation, in-

ARABIC TEST SETS VARYING HOW MANY COMPONENT MODELS ARE terpolating each component model with the general model is
WORD n-GRAM MODELS AND HOW MANY ARE MODEL M. equivalent to just adding the general model into the overall

l _ [ DEVO7 DEVO8 EVALOB |  jnterpolation. In rMDI modeling, we use the general model as
_ Interpolation over all 16 corpora the prior when training each corpus-specific model.
Baseline: 16 KN LMs 95%  11.0%  9.4% In Table Il display devel t set PP and test set
5 Model M + 11 KN LMs 9.1%  10.6%  9.0% n Tadle ll, we display development set Fi= and test se
3 M (500c) + 2 M (150c) + 11 KN| 9.0%  10.4% 8.9% WER for a variety of model combination algorithms applied to
Interpolation over 5 of 16 corpora both wordn-gram models and Model M. The notatiorterp+

5 KN LMs 10.0%  113%  9.6% refers to doing interpolation where the general/count-merged
5 Model M LMs 9.4%  10.8%  9.0%

model is included in the mixexp.means exponential-gram
models wherea&XN refers to conventionah-gram models;
simply do rMDI domain adaptation separately for each of thgndrMDI (with interpolation) refers to training each corpus-
two component models given in eq. (5), as long as the sagjsecific model using the general model as a prior.
word classes are used everywhere. The most popular model combination techniques are linear
For word n-gram models, the rMDI methods generallyinterpolation and count merging with conventionalgram
perform best or near best in all conditions. While WER gainfodels, yielding a WER of 14.5% and 14.6%, respectively.
for rMDI over interpolation can be as large as 1% absolut®he algorithm vyielding the best performance on the devel-
the difference between techniques when using 900k sentengggent set isinterp+, rMDI, giving a WER of 14.3% for
of in-domain data is much smaller. Intuitively, the backoff-likevord n-gram models and 13.7% for Model M. However, a
behavior of rMDI should be well-suited to domain adaptation)yER of 13.7% can also be achieved through simple linear
as it seems reasonable that in-domain counts should tak@rpolation with Model M. In summary, we speculate that
priority over out-of-domain counts, when present. for large training sets when using wordgram models, small
Overall, Model M outperforms worch-gram models for gains over simple interpolation may be possible viitterp+,
all of the training sets except the smallest, and gains fromiDI. With Model M, simple linear interpolation is the easiest
domain adaptation are comparable to those for wegtam to implement and performs as well as any other method.
models. However, with Model M, rMDI does not perform
particularly well, and no one algorithm dominates the others. V. EXPERIMENTS
For the 900k-sentence in-domain training set, there is noln this section, we investigate whether Model M and rMDI
significant difference between algorithms. In summary, fenodeling can improve the performance of existing medium
larger training sets, we hypothesize that when combining woseld large-scale state-of-the-art systems. For each system, we
n-gram models for domain adaptation, rMDI may yield smatompare against the current best language model for that
gains over other methods; for Model M, we predict that aflystem trained on all available training data; except where
methods will perform about equally. noted, this is the system we refer to as the baseline. We
evaluate the best methods found in Section IV-B, but also
do contrast runs with other methods to attempt to confirm
In these experiments, we use the same data sets as inttigefindings in that section. While Model M gives consistent
English Broadcast News task described in Section V-B, excajgtins over wordn-gram models in Section IV-B, we verify
we subsample each training set bth its size and build whether these gains carry over to larger data sets.
trigram versions of each model instead of 4-gram models.All exponential models are trained with + ¢3 regulariza-
There are a total of six training corpora ranging in sizéon with (« = 0.5,02 = 6); conventionaln-gram models
from 170k words to 14.7M words after subsampling; eadire trained using modified Kneser-Ney (KN) smoothing [7].
contains Broadcast News data of some sort. Thus, this taslUisless otherwise noted, we use the 4-gram version of each
qualitatively different from our domain adaptation task, whenmodel; we induce 150 word classes using the algorithm of [8]
some corpora are clearly in-domain and others are not. \fde@ Model M; and interpolation weights are trained to optimize
evaluate the same algorithms as in the last section, as vih# perplexity of a held-out set. Experiments with Model M
as a few more. To order the training corpora for cascadade substantially more expensive in both time and memory
rMDI, we build n-gram models on each corpus and computban those withn-gram models, partially due to algorithmic
the perplexity of an in-domain held-out set to guide us.  considerations and partially because our exponential model

B. Model Combination



TABLE V : -
BLEU SCORES FOR VARIOUS LANGUAGE MODELS FORRAQI system is based on the 2007 IBM GALE speech transcription

ARABIC/ENGLISH AND SPANISH/ENGLISH TRANSLATION, USING N-BEST ~ system [9]. The discriminatively-trained acoustic model was
LIST RESCORING OFN-BEST LISTS OF VARIOUS SIZE FOR EACH MODEL,  trained on 430h of Broadcast News audio and contains 6000
WE REPORT(DEVELOPMENT SETTEST SET) RESULTS . .
context-dependent states and 250k Gaussians. The LM training
l | SObest  20-best  10-bes] text consists of a total of 400M words from the following six

S E”Q"S;oi/'zfgg‘ Afggi%lzg S sources: 1996 CSR Hub4 language model data; EARS BNO3
Mgde| M 31.0/303 31.1/304 31.1/30.p closed captions; G.A.LE Phase 2 Distillation GNG Evalugti_on
3-gram + Model M | 31.0/30.5 31.0/30.3 31.0/30.2 Supplemental Multilingual data; Hub4 acoustic model training

Iraqi Arabic = English transcripts; TDT4 closed captions; and TDT4 newswire. The
3-gram 25.4124.7  25.4/24.7 25.4/24.7 vocabulary is 80k words and the baseline language model is
Model M 24.9/26.0 25.1/25.8 25.3/25.9

a linear interpolation of word 4-gram models, one for each

3-gram + Model M| 25.5/26.1 25.4/26.0  25.5/26. . . ' .
corpus. Interpolation weights are chosen to optimize perplexity

=)

. Engzliih7/=2>185pani252 TS5 on a held-out set of 25k words, the rt03 evaluation set. The

_gram . . . . . . . . . . .

Model M 928230 227/230 22.8228 evaluation set is the 2.5h rtQ4 evaluatlon set containing 45k

4-gram + Model M | 22.6/22.9 22.5/22.8 22.8/22.8 words; the WER of the baseline LM on this data set is 13.0%.
Spanish=- English The experiments in Section IV-B use a scaled-down version

4-gram 18.1/17.6  18.3/17.6 18.0/17.6 of this task, and thus we expect the same methods will work

Model M 19.6/18.4 19.3/18.8 19.1/18.3

best. We build Model M on each source and interpolate them
using the same weights as in the baseline, yielding a WER of
2.3%, or a gain of 0.7% absolute. As far as we know, this is
e . X .
€ best single-system result for this data set, surpassing the
previous best of 12.6% [10]. On the held-out set, the perplexity
A. English Voicemail Transcription is reduced from 133 for the baseline to 121. As a contrast, we

We evaluate the performance of Model M and rMDI model@!so evaluated cascaded rMDI for model combination, ordering
on the task of English voicemail transcription. Recently, ASRiodels by their interpolation weight. This model performed
is increasingly being deployed in unified messaging systefiich worse as in Section IV-B, yielding a WER of 13.1%
to serve as an aid to human transcribers or as a standal@fé perplexity of 150.
service. Here, we report on an in-house voicemail transcription
task. The ASR system is based on the 2007 IBM GALE speeCh GALE Arabic Transcription
transcription system [9]. The discriminatively-trained acoustic i o
model was trained on 2000h of voicemail messages an rabic broadcast transcription is a core component of

contains 8000 context-dependent states and 300k GaussiaHs:RPAS Global Autonomous Language Exploitation (GALE)

We have two sources of language model data: the verbafipdram. In this section, we assess whether Model M can im-
transcripts of the acoustic training data (17M words), and 41RfoVe the performance of the best Arabic ASR system fielded
words of approximate voicemail transcripts cleaned up f4f the January 2009 GALE evaluation. The acoustic model is
readability. The first corpus is very well-matched to the te& discriminatively-trained Universal Background Model [11]
set; the second corpus less so. The baseline language mot&'é'lr,]ed on 1400h of tran_s<_:r|bed audio [1_2]' We ha_\/(_e 16 sources
built using a 40k-word lexicon, is the interpolation of twc?f language model training data totaling 1.3 billion words:
word 4-gram models, one trained on each of the LM trainidg@nScripts of the audio data; the Arabic Gigaword corpus;
corpora. The 5.5h test set consists of 900 messages and d8Wsgroup and weblog data; etc. The baseline language model
words; the perplexity of the baseline LM on this set is 43 arlgfS @ vocabulary of 774k words and is a linear interpolation
the WER is 16.9%. Language models are evaluated via Iattf&fe4'gram_ mgdels bu'_lt on each of j[he 16 sources.
rescoring on lattices generated using the baseline LM. In our initial experiment, we build Model M models on

To decide which model combination method should worl€ five corpora with the highest interpolation weights in the
best with Model M, the main issue is whether the two corpoR@Seline model, with a combined weight of 0.6. We replace
are similar enough to be considered a single corpus or nottl corresponding:-gram models with Model M for these
S0, we expect count merging to do best; if not, we expect lindiye sources and reoptimize mterpolapon welghts. In the first
interpolation to do as well as anything else. In Table I1I, wiVO rows of Table IV, we present lattice rescoring results for
display the results for various algorithms. Model M yields thi1e baseline LM and this new LM over a variety of test sets:
best performance; a WER of 16.3% is obtained both throu§§V07 (2.6h), DEVO8 (3h) andevAL08 (3h). We see that
count merging and interpolation (using the same weights agsignificant improvement of 0.4% absolute is achieved. To

4-gram + Model M | 19.4/18.,5 19.2/18.8 19.0/18.

I~

code has not yet been optimized much. This constrained
number of Model M experiments we were able to run.

the baseline model), a gain of 0.6% absolute. isolate the gains of Model M, we also display results when
) o interpolating only the five sources under consideration. In the
B. English Broadcast News Transcription last two rows of Table IV, we show results for interpolating

In this section, we examine whether Model M can improvenly conventionak-gram models and only Model M models;
performance on an English Broadcast News task. The ASR see 0.5-0.6% absolute gain from Model M.



Given that our Arabic vocabulary is much larger than the In Table V, we display the BLEU scores for each model
original WSJ vocabulary used to optimize the number of worfdr each different/V-best list size, for both the development
classes, we investigate whether using more than 150 wanad test sets. We see consistent gains in test set BLEU scores
classes can improve performance. On the corpus with theross all conditions for Model M as compared to the baseline,
highest interpolation weight in the baseline LM (Broadcastith gains ranging from 0.5 to 1.6 points. Interpolating Model
News audio transcripts, 5M words), we vary the number & with the baseline gives about the same performance as
word classes used with Model M and find that 500 worllodel M alone, indicating that Model M already encompasses
classes yield the best results. We rebuild three of the fimeost or all of the information included in amgram model.
Model M models in the 16-way interpolation from before V. DISCUSSION
using 500 classes instead of 150, and this yields additional )
improvement as seen from the third row in Table IV. For We show that Model M consistently outperforms the best
reference, our best previous LM included interpolation witBxisting language models over a variety of domains and
a 6-gram neural net LM and yielded WER's of 9.3%, 10.69@pplications. While our analysis shows that shrinkage-based

and 9.1% on our three test sets. gains will decrease as training sets increase in size, we still
_ _ find significant gains even on tasks where over a billion words
D. Machine Translation of training data are available. We achieve WER gains of 0.5-

In this section, we evaluate whether Model M performs wefl- 7% absolute for three large-scale ASR systems, including
on the task of machine translation. In addition, we evalua$éate-of-the-art systems on the highly competitive English
whether the performance of Model M can be improved bgroadcast News and GALE Arabic tasks. On the other hand,
linearly interpolating with a word:-gram model. We con- While rMDI models can give gains against other techniques
sider two different domains, Iragi Arabic/English and Sparfor domain adaptation on moderately-sized corpora, it does
ish/English bidirectional translation. For Iragi Arabic/Englishiot outperform smple linear mterpqlatlon on large dat_a sets.
the parallel training corpus consists of 430k utterance palfs summary, despite the advances in language modeling over
containing 98k unique Arabic words and 31k unique Englishe past decades, wordgram models remain the technology
words. The Arabic LM training data is composed of the 2.7Mf choice in systems both large and small. Here, we show
words of Arabic in the parallel training corpus. For Englishthat Model M is a compelling alternative for a wide range of
we use 6.4M words of text, of which the English data in thapplications and operating points.

MT training corpus is a subset. For English to Arabic, we have
a development set of 19k words to tune feature weights, and o _
a test set of about the same size. For Arabic to English, thél S & Chien. Sfiinking exponential language models.”Hroc. of
development and test sets are about 21k words. [2] —, “Performance prediction for exponential language models,” in

For Spanish/English, the target task is a travel application. Proc. NAACL-HLT 2009. _

The MT training data consists of conversational travel dat] , "Performance prediction for exponential language models,” IBM
; . T Research Division, Tech. Rep. RC 24671, October 2008.
as well as movie subtitles and TV show transcriptions, 2.1M4] s. F. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, and A. Sethy,
sentence pairs in all with 14.3M English tokens (137k unique) “Scaling shrinkage-based language models,” IBM Research Division,
and 13.5M Spanish tokens (176k unique). The MT training,, 1ech- Rep. In preparation, July 2009. . _
. o 5] J. Kazama and J. Tsujii, “Evaluation and extension of maximum entropy
data is also used for language model training. The test and de- models with inequality constraints,” iRroc. EMNLP 2003.
velopment sets consist of 711 sentence pairs each, with abdgit S. Della Pietra, V. Della Pietra, R. L. Mercer, and S. Roukos, "Adaptive
; ; ; _language modeling using minimum discriminant estimation,Pioc.
5.9k Engllsh and 5.6k Spanlsh_tokens in each. We use a phrase the Speech and Natural Language DARPA Workskepruary 1992
based multi-stack decoder using log-linear models similar t@] s. F. Chen and J. Goodman, “An empirical study of smoothing tech-
Pharaoh [13]. We include features for bidirectional translation niques for language modeling,” Harvard U., Tech. Rep. TR-10-98, 1998.
probabilities, bidirectional lexicon weights, language modef®! P F- Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mer-
. ) cer, “Class-based n-gram models of natural langua@erhputational
scores, distortion model scores, and sentence length penalty. Linguistics vol. 18, no. 4, pp. 467479, December 1992.
To evaluate Model M, we daV-best list rescoring and [9] S. dF- Chen, B. Kir&gsbury, L. ManguH D. Povey, G. Saon, H.dSoItahu,
; ; ; and G. Zweig, “Advances in speech transcription at IBM under the
measure translation performgnce using BL.EU score with one DARPA EARS program,1EEE Trans. on Audio, Speech and Language
reference for each hypothesis. The baseline language model processingpp. 1596-1608, 2006.
is a conventionaln-gram model, and this baseline modell0] M. J. F. Gales, D. Y. Kim, P. C. Woodland, H. Y. Chan, D. Mrva,
is used to generate translatiod-best lists of various size Eénsslgrril;k?r?ds yss'tfm}é?ée%raiggg?%”ditgfgp%gﬁ;’;gafgﬁstjggé"s
(N=10, 20, and 50). Feature weights (including the language processingvol. 14, no. 5, pp. 1513-1525, September 2006.
model weight) are optimized on the development data usitig] E- Pczjvey, S. hM Chu, and B-F)r/aradarajan, “Universal background model
; ; . ased speech recognition,” Rroc. ICASSP2008.
the _qownhlll S|mplex ,methOd to maximize BLEU score. | 12] H. Soltau, G. Saon, B. Kingsbury, J. Kuo, L. Mangu, D. Povey, and
addition to the baseline, we evaluate Model M as well 8s  G. zweig, “The IBM 2006 GALE Arabic ASR system,” ifProc. of
Model M interpolated with the baseline-gram model. For ] ICASSEZOOT b and Loh based |
: : : : P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-based transla-
Arabic/English, the trigram ve_rs_lons of each mode| are USE& tion,” in Proc. HLT-NAACL Morristown, NJ, USA: Association for
due to the small amount of training data, over morphemes for computational Linguistics, 2003, pp. 48-54.
Iragi Arabic and over words for English.
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