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Abstract—In [1], we show that a novel class-based language
model, Model M, and the method of regularized minimum dis-
crimination information (rMDI) models outperform comparable
methods on moderate amounts of Wall Street Journal data.
Both of these methods are motivated by the observation that
shrinking the sum of parameter magnitudes in an exponential
language model tends to improve performance [2]. In this paper,
we investigate whether these shrinkage-based techniques also
perform well on larger training sets and on other domains. First,
we explain why good performance on large data sets is uncertain,
by showing that gains relative to a baselinen-gram model tend to
decrease as training set size increases. Next, we evaluate several
methods for data/model combination with Model M and rMDI
models on limited-scale domains, to uncover which techniques
should work best on large domains. Finally, we apply these
methods on a variety of medium-to-large-scale domains covering
several languages, and show that Model M consistently provides
significant gains over existing language models for state-of-the-art
systems in both speech recognition and machine translation.

I. I NTRODUCTION

In [1], we proposed a novel class-based language model,
Model M, that outperforms a Katz-smoothed word trigram
model by 28% in perplexity and 1.9% absolute in automatic
speech recognition (ASR) word-error rate; these are among the
best results ever reported for a class-based language model. In
addition, we showed that for the task of domain adaptation, the
method of regularized minimum discrimination information
(rMDI) modeling outperforms linear interpolation by up to
0.7% absolute in word-error rate (WER). However, these
experiments were restricted to Wall Street Journal data with
training sets less than 25 million words in length and were
conducted with a non-state-of-the-art acoustic model. While
Wall Street Journal is the canonical test bed for language
modeling (LM) research, it is not representative of the data
used in modern language modeling applications, many of
which use languages other than English.

In this paper, we investigate whether the gains of Model M
and regularized minimum discrimination information models
scale to larger data sets, other domains and languages, and
other applications, specifically, machine translation (MT). One
particular concern is that both Model M and rMDI models
were motivated as ways toshrink a word n-gram model.
That is, when training and test data are drawn from the same
distribution, it has been found for many types of exponential
language models that

log PPtest≈ log PPtrain +
γ

D

∑
i

|λ̃i| (1)

where PPtest and PPtrain denote test and training set perplexity;
D is the number of words in the training data;λ̃i areregular-
ized (i.e., smoothed) estimates of the model parameters; and
γ is a constant independent of domain, training set size, and
model type [2], [3]. Thus, one can improve test performance
by shrinking the parameter sum

∑
i |λ̃i|, and both Model M

and rMDI models are designed to improve upon wordn-gram
models in this way. However, as training set size increases,
the last term in eq. (1) tends to grow smaller, which suggests
the gain to be had by shrinking parameter values will also
decrease. Thus, it is uncertain whether Model M and rMDI
models will retain their performance improvements over word
n-gram models on larger training corpora.

The outline of this paper is as follows: In Section II,
we review Model M and rMDI models. In Section III, we
elaborate on why performance gains decrease as training sets
grow, and show how gains vary for some actual models. In
Section IV, we examine the task of model combination when
using Model M and rMDI models, as this is a key issue when
tackling large-scale domains. In Section V, we apply these
methods to a variety of medium-to-large-scale tasks. For more
details about this work, see [4].

II. BACKGROUND

In this section, we review Model M and rMDI models as
well as the results for performance prediction for exponential
language models given in [2], [3]. An exponential model
pΛ(y|x) is a model with a set of features{fi(x, y)} and equal
number of parametersΛ = {λi} where

pΛ(y|x) =
exp(

∑
i λifi(x, y))∑

y′ exp(
∑

i λifi(x, y′))
(2)

Remarkably, eq. (1) holds for many exponential language
models including Model M and rMDI models; the relationship
is strongest if theΛ̃ = {λ̃i} are estimated using̀1 + `22
regularization [5];i.e., parameters are chosen to optimize

O`1+`22
(Λ) = log PPtrain +
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for someα and σ. When using natural logs in eq. (1) and
taking (α = 0.5, σ2 = 6), the constantγ = 0.938 yields a
mean error equivalent to a few percent in perplexity over the
models evaluated in [3]. These values ofα and σ also yield
good test set performance over a wide variety of training sets.

It follows that if one canshrink the “size” of a model
(proportional to

∑
i |λi|) while not damaging training set



performance, test set performance should improve. In [1], we
use this reasoning to motivate Model M and rMDI models.
Model M is a class-basedn-gram model that can be viewed
as the result of shrinking an exponential wordn-gram model
using word classes. If we assume each wordw is mapped to
a single classc(w), we can write

p(w1 · · ·wl) =
l+1∏
j=1

p(cj |c1 · · · cj−1, w1 · · ·wj−1)×
l∏

j=1

p(wj |c1 · · · cj , w1 · · ·wj−1) (4)

where cl+1 is the end-of-sentence token. Letfθ denote a
binary n-gram feature such thatfθ(x, y) = 1 iff xy “ends”
in the n-gram θ. Let png(y|θ) denote an exponentialn-
gram model, where we have a featurefθ′ for each suffix
θ′ of each θy occurring in the training set. For example,
the modelpng(wj |wj−1cj) has a featurefθ for eachn-gram
θ in the training set of the formwj , cjwj , or wj−1cjwj .
Let png(y|θ1, θ2) denote a model containing all features in
png(y|θ1) and png(y|θ2). Then, we can define (the trigram
version of) Model M as

p(cj |c1 · · · cj−1, w1 · · ·wj−1) ≡ png(cj |cj−2cj−1, wj−2wj−1)
p(wj |c1 · · · cj , w1 · · ·wj−1) ≡ png(wj |wj−2wj−1cj) (5)

Regularized minimum discrimination information (rMDI)
models can be viewed as the result of shrinking an exponential
model using a prior distribution. Minimum discrimination
information (MDI) models [6] have the form

pΛ(y|x) =
q(y|x) exp(

∑
i λifi(x, y))∑

y′ q(y′|x) exp(
∑

i λifi(x, y′))
(6)

for some prior distributionq(y|x). While regularization is not
used in [6], we found in [2] that when regularizingpΛ(y|x)
in the way described earlier, eq. (1) holds for these models if
q(y|x) is ignored in computing model size (assumingq(y|x)
is estimated on an independent training corpus). Regularized
MDI models are well-suited to the task of domain adaptation,
where one has a test set and small training set from one
domain, and a large training set from a different domain. One
can build a language model on the outside domain, and use
this model as the prior when building a model on the in-
domain data. While exponential models of any form can be
used in eq. (6), [1] evaluated the use of exponential wordn-
gram models,i.e., models of the formpng(wj |wj−2wj−1) (for
trigrams). In this paper, we also evaluate a variant of rMDI,
cascaded rMDI, that can be used to combine an arbitrary
number of training corpora rather than just two. In this method,
one orders the available corpora from most “out-of-domain” to
most “in-domain” and applies the rMDI technique repeatedly.

III. A NALYZING HOW MODELS SCALE

In this section, we discuss why it’s important to study how
models scale with training set size,i.e., why good performance
on small data sets often does not carry over to large ones.
One obvious reason to worry about this issue is that many
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Fig. 2. Gains inlog PPtest for Model M and rMDI models as compared
to a word n-gram baseline, for bigram, trigram, and 4-gram models built
on varying amounts of WSJ data. For rMDI, the out-of-domain corpus is
Broadcast News text and is the same length as the in-domain WSJ corpus.

algorithms in the literature have been shown not to scale
well. Here, we show how to explain this phenomenon for
many types of models by using eq. (1), and study how this
effect affects Model M and rMDI models by plotting relative
performances over a variety of training set sizes.

If we define thesizeof a modelpΛ to be γ
D

∑
i |λ̃i|, eq. (1)

tells us that test performance (in log PP) is approximately
equal to the sum of training performance (in log PP) and
model size. In Figure 1, we graph these quantities over varying
amounts of training data (from 100 to 900k sentences) for an
exponential word trigram model built on Wall Street Journal
(WSJ) data with a 21k word vocabulary. While the sum∑

i |λ̃i| grows with more data, it grows slower thanD, so
the overall model size tends to decrease as we go to the right.

This is significant because Model M and rMDI models
achieve their performance improvements overn-gram models
by shrinking model size, and it seems likely that ifn-gram
model sizes decrease, so will the shrinkage gain. In the
limit of infinite data, we expect the size of a trigram model,
say, to go to zero and hence expect no improvement from
the corresponding Model M or rMDI models. These models
condition their predictions on exactly two words of history, so



TABLE I
WORD-ERROR RATES FOR VARIOUS METHODS FOR DOMAIN ADAPTATION.

in-domain (WSJ) training set (sents.)
1k 10k 100k 900k

word n-gram models
WSJ only

KN n-gram 34.5% 30.4% 26.1% 22.6%
exp. n-gram 34.6% 30.3% 25.7% 22.5%

WSJ and BN, 1:1 ratio
interp 34.3% 30.0% 25.4% 22.3%
merge 34.1% 29.6% 25.0% 22.1%
rMDI 34.0% 29.6% 25.1% 22.1%

WSJ and BN and SWB, 1:3:10 ratio
interp 33.8% 29.7% 25.0%
merge 33.3% 29.3% 25.2%
casc. rMDI 33.1% 28.7% 24.6%

Model M
WSJ only

Model M 35.3% 29.1% 24.2% 21.5%
WSJ and BN, 1:1 ratio

interp 33.9% 28.3% 23.9% 21.2%
merge 33.9% 28.2% 23.9% 21.2%
rMDI 34.8% 28.6% 23.8% 21.2%

TABLE II
WORD-ERROR RATES FOR VARIOUS METHODS FOR MODEL COMBINATION.

word n-gram models
PP WER

interp+, rMDI 180.8 14.3%
interp, rMDI 181.2 14.4%
interp+, exp. 184.9 14.4%
interp, KN 190.6 14.5%
merge, KN 194.2 14.6%
casc. rMDI 210.1 14.8%

Model M
PP WER

interp+, rMDI 169.3 13.7%
interp+ 169.4 13.6%
interp, rMDI 170.1 13.7%
merge 175.0 13.8%
interp 175.3 13.7%
casc. rMDI 203.3 14.2%

they can do no better than an “ideal” trigram model. Hence,
the issue is notwhetherModel M and rMDI model gains will
disappear as training set size grows, butwhen.

In Figure 2, we display gain inlog PPtest relative to a
word n-gram model for Model M and rMDI models for
n ∈ {2, 3, 4}. As predicted, gains generally decrease as the
training set expands. Similarly, gains are smaller for smaller
n sincen-gram model sizes shrink asn shrinks.

At the right edge of the graph, the gains for most algorithms
are 0.03 nats or less, where a nat is a “natural” bit, or
log2 e regular bits. Each 0.01 nat difference corresponds to
about 1% in PP. However, the gain for 4-gram Model M
is 0.08 nats, which translates to a 1.4% absolute reduction
in word-error rate (22.2%⇒ 20.8%) using the ASR setup
described in Section IV-A. While gain is dropping as training
set size increases, Model M still appears promising for data
sets substantially larger than 900k sentences.

IV. SCALING MODEL COMBINATION

For large-scale domains, one typically has language model
training data from many different sources; for example, the
IBM GALE Arabic ASR system uses 16 separate corpora.
Furthermore, these corpora generally differ in relevance and
amount, and aggregating the data into a single corpus may
not work best. Thus, a central issue in handling large domains
is how to best combine multiple data sets or models. In this
section, we attempt to discover the best methods for combining
Model M models and to characterize when rMDI modeling can

improve model combination performance. We use small and
medium-sized data sets so we can evaluate a large number
of methods under a large number of conditions, and attempt
to predict performance on large tasks via extrapolation. We
use these findings to inform which algorithms to assess in the
large-scale experiments in Section V.

The best way to combine data or models will depend on
the relationship between the training and test corpora, so
we investigate two different scenarios. In Section IV-A, we
consider a typical domain adaptation task where we have a
modest amount of training data from the same domain as the
test data, and equal or larger amounts of out-of-domain data.
In Section IV-B, we consider a model combination task where
we have many corpora from similar domains as the test data.

A. Domain Adaptation

These ASR experiments are an expanded version of the
domain adaptation experiments in [1]; here, we consider more
corpora, larger data sets, and more algorithms. The acoustic
model is built from 50h of Broadcast News data and contains
2176 context-dependent states and 50k Gaussians. We evaluate
language models via lattice rescoring of lattices generated
using a small trigram language model. We use a 47k-word
WSJ test set and in-domain WSJ training sets of various sizes.
For the out-of-domain data, we consider the cases where only
Broadcast News (BN) data is available and where both BN
and Switchboard (SWB) data are available.

We compare the techniques oflinear interpolation, count
merging, and rMDI modeling. In linear interpolation, sepa-
rate language models are built on each corpus and linearly
interpolated, with interpolation weights being optimized on
a held-out set. In count merging, the component corpora are
concatenated into a single corpus, and a single language model
is built on the merged data set. Unlike in linear interpolation
where each model is assigned a fixed weight independent of
history for each word prediction, count merging can be viewed
as assigning a weight proportional to the history count of each
model. In contrast, rMDI modeling can be viewed as backing
off from the in-domain model to the out-of-domain model.

In Table I, we display a subset of our ASR WER results;
complete results can be found in [4]. The top part of the table
corresponds to wordn-gram models, while the bottom part
corresponds to Model M. Each column represents a different
in-domain training set size. Each subsection of the table
corresponds to using a different amount of out-of-domain data.
For example, theWSJ and BN and SWB, 1:3:10 ratiosection
corresponds to using a BN corpus three times larger than the
in-domain data and a SWB corpus ten times larger than the in-
domain data. All of the wordn-gram models are exponential
n-gram models except for the first row, which corresponds to
a conventional wordn-gram model with modified Kneser-Ney
smoothing [7]. We use the trigram versions of each model.

Unlike in Section III, we induce word classes on the given
training set(s), rather than always using word classes from
the largest training set. We note that it is straightforward to
combine rMDI domain adaptation with Model M; one can



TABLE III
COMPARISON OF LANGUAGE MODELS ON THE VOICEMAIL

TRANSCRIPTION TASK.

word n-gram models
WER

interp, KN n-gram 16.9%
rMDI, exp. n-gram 16.7%
merge, exp.n-gram 16.6%
interp, exp.n-gram 16.6%

Model M
WER

rMDI 16.4%
merge 16.3%
interp 16.3%

TABLE IV
WORD-ERROR RATES FOR INTERPOLATEDLM S ON SEVERALGALE
ARABIC TEST SETS, VARYING HOW MANY COMPONENT MODELS ARE

WORD n-GRAM MODELS AND HOW MANY ARE MODEL M.

DEV07 DEV08 EVAL 08

Interpolation over all 16 corpora
Baseline: 16 KN LMs 9.5% 11.0% 9.4%
5 Model M + 11 KN LMs 9.1% 10.6% 9.0%
3 M (500c) + 2 M (150c) + 11 KN 9.0% 10.4% 8.9%

Interpolation over 5 of 16 corpora
5 KN LMs 10.0% 11.3% 9.6%
5 Model M LMs 9.4% 10.8% 9.0%

simply do rMDI domain adaptation separately for each of the
two component models given in eq. (5), as long as the same
word classes are used everywhere.

For word n-gram models, the rMDI methods generally
perform best or near best in all conditions. While WER gains
for rMDI over interpolation can be as large as 1% absolute,
the difference between techniques when using 900k sentences
of in-domain data is much smaller. Intuitively, the backoff-like
behavior of rMDI should be well-suited to domain adaptation,
as it seems reasonable that in-domain counts should take
priority over out-of-domain counts, when present.

Overall, Model M outperforms wordn-gram models for
all of the training sets except the smallest, and gains from
domain adaptation are comparable to those for wordn-gram
models. However, with Model M, rMDI does not perform
particularly well, and no one algorithm dominates the others.
For the 900k-sentence in-domain training set, there is no
significant difference between algorithms. In summary, for
larger training sets, we hypothesize that when combining word
n-gram models for domain adaptation, rMDI may yield small
gains over other methods; for Model M, we predict that all
methods will perform about equally.

B. Model Combination

In these experiments, we use the same data sets as in the
English Broadcast News task described in Section V-B, except
we subsample each training set to110 th its size and build
trigram versions of each model instead of 4-gram models.
There are a total of six training corpora ranging in size
from 170k words to 14.7M words after subsampling; each
contains Broadcast News data of some sort. Thus, this task is
qualitatively different from our domain adaptation task, where
some corpora are clearly in-domain and others are not. We
evaluate the same algorithms as in the last section, as well
as a few more. To order the training corpora for cascaded
rMDI, we build n-gram models on each corpus and compute
the perplexity of an in-domain held-out set to guide us.

One unappealing aspect of linear interpolation is that when
one of the component models has no counts for a particular
history (while the others do), it still gets its full prediction
weight. We can attempt to improve prediction in this situation
by combining each component model with a “general” model
built on all of the training data combined,i.e., the count-
merged model. We consider two different ways of combining
each corpus-specific model with the general model: linear
interpolation and rMDI modeling. In linear interpolation, in-
terpolating each component model with the general model is
equivalent to just adding the general model into the overall
interpolation. In rMDI modeling, we use the general model as
the prior when training each corpus-specific model.

In Table II, we display development set PP and test set
WER for a variety of model combination algorithms applied to
both wordn-gram models and Model M. The notationinterp+
refers to doing interpolation where the general/count-merged
model is included in the mix;exp.means exponentialn-gram
models whereasKN refers to conventionaln-gram models;
and rMDI (with interpolation) refers to training each corpus-
specific model using the general model as a prior.

The most popular model combination techniques are linear
interpolation and count merging with conventionaln-gram
models, yielding a WER of 14.5% and 14.6%, respectively.
The algorithm yielding the best performance on the devel-
opment set isinterp+, rMDI, giving a WER of 14.3% for
word n-gram models and 13.7% for Model M. However, a
WER of 13.7% can also be achieved through simple linear
interpolation with Model M. In summary, we speculate that
for large training sets when using wordn-gram models, small
gains over simple interpolation may be possible withinterp+,
rMDI . With Model M, simple linear interpolation is the easiest
to implement and performs as well as any other method.

V. EXPERIMENTS

In this section, we investigate whether Model M and rMDI
modeling can improve the performance of existing medium
and large-scale state-of-the-art systems. For each system, we
compare against the current best language model for that
system trained on all available training data; except where
noted, this is the system we refer to as the baseline. We
evaluate the best methods found in Section IV-B, but also
do contrast runs with other methods to attempt to confirm
the findings in that section. While Model M gives consistent
gains over wordn-gram models in Section IV-B, we verify
whether these gains carry over to larger data sets.

All exponential models are trained with̀1 + `22 regulariza-
tion with (α = 0.5, σ2 = 6); conventionaln-gram models
are trained using modified Kneser-Ney (KN) smoothing [7].
Unless otherwise noted, we use the 4-gram version of each
model; we induce 150 word classes using the algorithm of [8]
for Model M; and interpolation weights are trained to optimize
the perplexity of a held-out set. Experiments with Model M
are substantially more expensive in both time and memory
than those withn-gram models, partially due to algorithmic
considerations and partially because our exponential model



TABLE V
BLEU SCORES FOR VARIOUS LANGUAGE MODELS FORIRAQI

ARABIC/ENGLISH AND SPANISH/ENGLISH TRANSLATION, USING N -BEST

LIST RESCORING OFN -BEST LISTS OF VARIOUS SIZE. FOR EACH MODEL,
WE REPORT(DEVELOPMENT SET/TEST SET) RESULTS.

50-best 20-best 10-best

English⇒ Iraqi Arabic
3-gram 30.6/29.7 30.6/29.7 30.6/29.7
Model M 31.0/30.3 31.1/30.4 31.1/30.2
3-gram + Model M 31.0/30.5 31.0/30.3 31.0/30.2

Iraqi Arabic ⇒ English
3-gram 25.4/24.7 25.4/24.7 25.4/24.7
Model M 24.9/26.0 25.1/25.8 25.3/25.9
3-gram + Model M 25.5/26.1 25.4/26.0 25.5/26.0

English⇒ Spanish
4-gram 21.7/21.5 21.7/21.5 21.7/21.2
Model M 22.8/23.0 22.7/23.0 22.8/22.8
4-gram + Model M 22.6/22.9 22.5/22.8 22.8/22.8

Spanish⇒ English
4-gram 18.1/17.6 18.3/17.6 18.0/17.6
Model M 19.6/18.4 19.3/18.8 19.1/18.3
4-gram + Model M 19.4/18.5 19.2/18.8 19.0/18.4

code has not yet been optimized much. This constrained the
number of Model M experiments we were able to run.

A. English Voicemail Transcription

We evaluate the performance of Model M and rMDI models
on the task of English voicemail transcription. Recently, ASR
is increasingly being deployed in unified messaging systems
to serve as an aid to human transcribers or as a standalone
service. Here, we report on an in-house voicemail transcription
task. The ASR system is based on the 2007 IBM GALE speech
transcription system [9]. The discriminatively-trained acoustic
model was trained on 2000h of voicemail messages and
contains 8000 context-dependent states and 300k Gaussians.

We have two sources of language model data: the verbatim
transcripts of the acoustic training data (17M words), and 41M
words of approximate voicemail transcripts cleaned up for
readability. The first corpus is very well-matched to the test
set; the second corpus less so. The baseline language model,
built using a 40k-word lexicon, is the interpolation of two
word 4-gram models, one trained on each of the LM training
corpora. The 5.5h test set consists of 900 messages and 62k
words; the perplexity of the baseline LM on this set is 43 and
the WER is 16.9%. Language models are evaluated via lattice
rescoring on lattices generated using the baseline LM.

To decide which model combination method should work
best with Model M, the main issue is whether the two corpora
are similar enough to be considered a single corpus or not. If
so, we expect count merging to do best; if not, we expect linear
interpolation to do as well as anything else. In Table III, we
display the results for various algorithms. Model M yields the
best performance; a WER of 16.3% is obtained both through
count merging and interpolation (using the same weights as
the baseline model), a gain of 0.6% absolute.

B. English Broadcast News Transcription

In this section, we examine whether Model M can improve
performance on an English Broadcast News task. The ASR

system is based on the 2007 IBM GALE speech transcription
system [9]. The discriminatively-trained acoustic model was
trained on 430h of Broadcast News audio and contains 6000
context-dependent states and 250k Gaussians. The LM training
text consists of a total of 400M words from the following six
sources: 1996 CSR Hub4 language model data; EARS BN03
closed captions; GALE Phase 2 Distillation GNG Evaluation
Supplemental Multilingual data; Hub4 acoustic model training
transcripts; TDT4 closed captions; and TDT4 newswire. The
vocabulary is 80k words and the baseline language model is
a linear interpolation of word 4-gram models, one for each
corpus. Interpolation weights are chosen to optimize perplexity
on a held-out set of 25k words, the rt03 evaluation set. The
evaluation set is the 2.5h rt04 evaluation set containing 45k
words; the WER of the baseline LM on this data set is 13.0%.

The experiments in Section IV-B use a scaled-down version
of this task, and thus we expect the same methods will work
best. We build Model M on each source and interpolate them
using the same weights as in the baseline, yielding a WER of
12.3%, or a gain of 0.7% absolute. As far as we know, this is
the best single-system result for this data set, surpassing the
previous best of 12.6% [10]. On the held-out set, the perplexity
is reduced from 133 for the baseline to 121. As a contrast, we
also evaluated cascaded rMDI for model combination, ordering
models by their interpolation weight. This model performed
much worse as in Section IV-B, yielding a WER of 13.1%
and perplexity of 150.

C. GALE Arabic Transcription

Arabic broadcast transcription is a core component of
DARPA’s Global Autonomous Language Exploitation (GALE)
program. In this section, we assess whether Model M can im-
prove the performance of the best Arabic ASR system fielded
in the January 2009 GALE evaluation. The acoustic model is
a discriminatively-trained Universal Background Model [11]
trained on 1400h of transcribed audio [12]. We have 16 sources
of language model training data totaling 1.3 billion words:
transcripts of the audio data; the Arabic Gigaword corpus;
newsgroup and weblog data; etc. The baseline language model
has a vocabulary of 774k words and is a linear interpolation
of 4-gram models built on each of the 16 sources.

In our initial experiment, we build Model M models on
the five corpora with the highest interpolation weights in the
baseline model, with a combined weight of 0.6. We replace
the correspondingn-gram models with Model M for these
five sources and reoptimize interpolation weights. In the first
two rows of Table IV, we present lattice rescoring results for
the baseline LM and this new LM over a variety of test sets:
DEV07 (2.6h), DEV08 (3h) andEVAL 08 (3h). We see that
a significant improvement of 0.4% absolute is achieved. To
isolate the gains of Model M, we also display results when
interpolating only the five sources under consideration. In the
last two rows of Table IV, we show results for interpolating
only conventionaln-gram models and only Model M models;
we see 0.5–0.6% absolute gain from Model M.



Given that our Arabic vocabulary is much larger than the
original WSJ vocabulary used to optimize the number of word
classes, we investigate whether using more than 150 word
classes can improve performance. On the corpus with the
highest interpolation weight in the baseline LM (Broadcast
News audio transcripts, 5M words), we vary the number of
word classes used with Model M and find that 500 word
classes yield the best results. We rebuild three of the five
Model M models in the 16-way interpolation from before
using 500 classes instead of 150, and this yields additional
improvement as seen from the third row in Table IV. For
reference, our best previous LM included interpolation with
a 6-gram neural net LM and yielded WER’s of 9.3%, 10.6%,
and 9.1% on our three test sets.

D. Machine Translation

In this section, we evaluate whether Model M performs well
on the task of machine translation. In addition, we evaluate
whether the performance of Model M can be improved by
linearly interpolating with a wordn-gram model. We con-
sider two different domains, Iraqi Arabic/English and Span-
ish/English bidirectional translation. For Iraqi Arabic/English,
the parallel training corpus consists of 430k utterance pairs
containing 98k unique Arabic words and 31k unique English
words. The Arabic LM training data is composed of the 2.7M
words of Arabic in the parallel training corpus. For English,
we use 6.4M words of text, of which the English data in the
MT training corpus is a subset. For English to Arabic, we have
a development set of 19k words to tune feature weights, and
a test set of about the same size. For Arabic to English, the
development and test sets are about 21k words.

For Spanish/English, the target task is a travel application.
The MT training data consists of conversational travel data
as well as movie subtitles and TV show transcriptions, 2.1M
sentence pairs in all with 14.3M English tokens (137k unique)
and 13.5M Spanish tokens (176k unique). The MT training
data is also used for language model training. The test and de-
velopment sets consist of 711 sentence pairs each, with about
5.9k English and 5.6k Spanish tokens in each. We use a phrase-
based multi-stack decoder using log-linear models similar to
Pharaoh [13]. We include features for bidirectional translation
probabilities, bidirectional lexicon weights, language model
scores, distortion model scores, and sentence length penalty.

To evaluate Model M, we doN -best list rescoring and
measure translation performance using BLEU score with one
reference for each hypothesis. The baseline language model
is a conventionaln-gram model, and this baseline model
is used to generate translationN -best lists of various size
(N=10, 20, and 50). Feature weights (including the language
model weight) are optimized on the development data using
the downhill simplex method to maximize BLEU score. In
addition to the baseline, we evaluate Model M as well as
Model M interpolated with the baselinen-gram model. For
Arabic/English, the trigram versions of each model are used
due to the small amount of training data, over morphemes for
Iraqi Arabic and over words for English.

In Table V, we display the BLEU scores for each model
for each differentN -best list size, for both the development
and test sets. We see consistent gains in test set BLEU scores
across all conditions for Model M as compared to the baseline,
with gains ranging from 0.5 to 1.6 points. Interpolating Model
M with the baseline gives about the same performance as
Model M alone, indicating that Model M already encompasses
most or all of the information included in ann-gram model.

VI. D ISCUSSION

We show that Model M consistently outperforms the best
existing language models over a variety of domains and
applications. While our analysis shows that shrinkage-based
gains will decrease as training sets increase in size, we still
find significant gains even on tasks where over a billion words
of training data are available. We achieve WER gains of 0.5–
0.7% absolute for three large-scale ASR systems, including
state-of-the-art systems on the highly competitive English
Broadcast News and GALE Arabic tasks. On the other hand,
while rMDI models can give gains against other techniques
for domain adaptation on moderately-sized corpora, it does
not outperform simple linear interpolation on large data sets.
In summary, despite the advances in language modeling over
the past decades, wordn-gram models remain the technology
of choice in systems both large and small. Here, we show
that Model M is a compelling alternative for a wide range of
applications and operating points.
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