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Abstract—A novel self-supervised discriminative training
method for estimating language models for automatic speech
recognition (ASR) is proposed. Unlike traditional discrimina-
tive training methods that require transcribed speech, only un-
transcribed speech and a large text corpus is required. An
exponential form is assumed for the language model, as done in
maximum entropy estimation, but the model is trained from the
text using a discriminative criterion that targets word confusions
actually witnessed in first-pass ASR output lattices. Specifically,
model parameters are estimated to maximize the likelihood
ratio between words w in the text corpus and w’s cohorts in
the test speech, i.e. other words that w competes with in the
test lattices. Empirical results are presented to demonstrate
statistically significant improvements over a 4-gram language
model on a large vocabulary ASR task.

I. INTRODUCTION

In language modeling, one is interested in computing a
probability distribution over word sequences, such that se-
quences which are well-formed (in terms of fluency or se-
mantic coherence, for instance) are given a higher likelihood
than those which are not. A typical application of language
modeling is automatic speech recognition (ASR), whose task
is to produce a verbatim transcription of a speech segment pre-
sented to it. In a typical ASR system, the recognizer employs
an acoustic model to measure the goodness of the stochastic
match P(s|w) of speech segment s with every candidate
word sequence w. Since many words and word sequences
may result in similar speech signal, it is conventional to use
language model P(w) for the a priori probability of w. The
language model is usually estimated via a maximum likelihood
criterion (in conjunction with some smoothing method) from a
large corpus of text in the target language, domain and genre.
Because of the nature of human language, data sparsity poses
a serious challenge in the estimation of language models; a
number of methods [1], [2] have been proposed to mitigate
this problem.

Discriminative methods for language modeling have been
recently proposed as an effective alternative to maximum like-
lihood methods [3], [4]. Given a development speech corpus
which has been manually transcribed, and a lattice output
of that corpus generated by a recognizer (with a baseline
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language model), the aim of these methods is to increase the
likelihood of paths in the lattice which are more faithful to the
manual transcription (in terms of WER), than the current most
likely path. This is typically done by extracting appropriate
features from the lattices, and then slightly changing the prob-
abilities assigned by the baseline language model whenever
these features are present. Interestingly, these methods are
effective even when they just employ commonly used features,
such as n-grams; there seems to be a gain in WER over n-
gram maximum-likelihood based language models which have
been trained on very large text corpora.

Despite the above gains, discriminative language modeling
techniques are limited by the fact that they require a separate
manually transcribed development corpus. The size of such
a corpus plays an important role in the effectiveness of the
discriminative model: as is well known, discriminative meth-
ods easily get overtrained on small corpora. Such development
data are usually set aside for other system tuning task, but
if they are used for discriminative training, they cannot be
used for such purposes. Therefore, the transcribed speech
for discriminative training is usually cannibalized from the
acoustic model training corpus, which may be a difficult
tradeoff to make, particularly in low resource situations.

This paper aims at overcoming the above limitation; we
propose a novel idea for carrying out discriminative training of
language models without manual transcriptions (self-training).
The crux of our method is in learning to resolve residual
confusions in the output of an ASR system: these are words
which tend to be acoustically confusable, tend to appear in
similar contexts, and are frequently in competition with each
other in the output ASR lattice'. Even in the absence of manual
transcriptions, we show that it is still possible to learn to
disambiguate between such confused words, using contextual
cues that are extracted from a text corpus. This line of work is
in the spirit of word sense disambiguation (WSD) [5]. In WSD
the goal is to classify ambiguous words into one of multiple
senses (e.g., the word “bank” can refer to a financial institution

INote that language model probabilities involving only such mutually
confusable words need to be carefully adjusted, as word errors are the result
of not being able to efficiently resolve these confusions.

ASRU 2009



or the bank of a river) using the surrounding context, and we
try to do something similar here: we treat each set of frequently
confused words as an entity with multiple “senses”, and then
we use a large text corpus (which contains the ground truth
by the mere fact that each “sense” coincides with the word
observed in the text) to learn to distinguish between them
based on the surrounding context.

We have chosen to train such self-supervised discriminative
language models within the exponential family of distribu-
tions?. As we show in a later section, learning can be done
much more efficiently than in the standard maximum likeli-
hood setting, despite the fact that the size of the training text
can be very large. The reason for the improved computational
complexity lies in the fact that the normalizing constant of
the exponential model (which is computationally expensive
to compute in standard maximum entropy because it involves
all words of the vocabulary) only involves the relatively few
words that appear to be confused with each other.

The remainder of the paper is organized as follows. In
section II, we present the concept of word cohorts and describe
methods for extracting them; the parameterization and training
of the proposed language model is described in Section III.
Experimental results are presented in Section IV along with
some analysis in Section V, followed by conclusions in Section
VI

II. WORD COHORTS IN ASR
A. The Concept of a Cohort Set

Central to our methodology is the concept of a cohort set
of words. These are words frequently in confusion with each
other in the ASR output. We define a cohort set associated
with a word w as all the words that are often in competition
with w, and we denote it by C'(w). Properties of these cohort
sets include: (i) Symmetry: if w € C(v), then v € C(w). (ii)
Non-transitivity in the inclusion relationship; if v € C'(w) and
w € C(z), it is not true in general that v € C(z). Example
cohorts from ASR are shown in Table I.

Note that, except in a few cases involving function words,
cohort sets are typically very small; this fact is of great
importance in the training of our models. Empirical statistics
involving cohort sets appear in Section IV.

This concept of cohorts is general enough to be applicable
to other fields such as machine translation, where a cohort set
can be thought of as different translations of the same source
word.

B. Determination of Cohort Sets C(w)

In the context of ASR, cohort sets can be obtained through
a variety of means, depending on the format of the automatic
recognition output:

2Exponemial models are also used in contrastive estimation [6], a technique
closely related to ours for learning discriminative models in an unsupervised
way. In contrastive estimation one has to define the “neighborhood” of a train-
ing instance to discriminate against, and [6] did this by randomly perturbing
the training instances. In our work, on the other hand, the “neighborhoods”
are obtained in a more informed way, by using the set of words that the
automatic recognizer is frequently confused about.

TABLE I

TYPICAL COHORT WORDS
w C'(w), which always includes w itself
weight weight wait wage wheat
venture venture adventure
remained remained remain remains means main maine
explanation | explanation explosion exploration

e Lattice: Each node in the lattice corresponds to a time
point and n-gram history in the ASR output; therefore,
the arcs that emanate from the same node are words in
competition, and can be considered as cohort words.

o Confusion Network[7]: Cohorts can be easily defined
in this setting, namely, words that appear in the same
confusion bin are cohorts of each other.

e N-best List: By aligning the hypotheses from the n-best
list using minimization of edit distance as a criterion,
similar to what is done in ROVER [8], a confusion net-
work can be generated; cohort sets can then be extracted
as mentioned above.

In a real-time recognition scenario, where the test data arrive
at a high speed and there is no time to extract cohort sets
from it and do the subsequent training, one would need to
use some pre-existing cohort sets extracted from some other
(untranscribed) speech data. The hope would then be that
the confusions seen in the test data fall into one of these
cohort sets, especially if the amount of untranscribed speech is
sufficiently large. We plan to report on this idea in subsequent
work.

III. MODEL PARAMETERIZATION AND TRAINING

One reason we chose the exponential family of language
models [9] for self-supervised learning is that these models
permit easy inclusion of a number of interesting features
within a unified framework, and have a satisfactory axiomatic
justification in the maximum entropy framework. Even though
only n-gram features are considered in this work, other fea-
tures (topic, syntactic, etc.) can be easily incorporated. Thus
for any words w following a word sequence h,

1 ifw=ua
h, = ’
Palh, w) 0 otherwise;
1 if hendsin ab and w = c,
¢abc(h7 ’LU) = .
0 otherwise;

are the features for the unigram a and the trigram abc
respectively. In our experiments, we only take features from
the test set N-best list; more details appear in the next section.

Under such a framework, the conditional probability of the
word w given context h can be expressed as,

J
1
Plwlh; ©) = == [[e%™ )

Z(©,h)
= ;ez‘ljjzl 9] (bj(hvw)
Z(©,h)

j=1
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where Z is the normalizer for the context h, J is the number of
features in the model, and © = (64, ..., 0 ;) are the parameters
to be estimated.

A. Estimation of Model Parameters

Consider the standard problem of estimating, from a training
corpus W = {wy,k =1,..., K} of K sentences covered by
a word-vocabulary V, the conditional probability P(w; | h;) of
the word in the ¢-th position of a sentence w given the context
h; = wy ... w;—1. The standard practice is to parameterize
this conditional probability and estimate the parameters via
maximum likelihood. Letting n; denote the length of the
sentence wy,

K ng

arg max H H P(w; | h;; ©) @)
k=11i=1
K nyg

= argmgxzzbgp(wi |hi; ©).

k=1 1i=1

@ =

On the other hand, the standard practice in discriminative
training, in essence, is to require (say) speech sy corresponding
to all the sentences wy in WV, to then run the best available
ASR system on this speech to produce a list of likely word
hypotheses Wy, and to adjust the parameters O to discriminate
between the correct words w; and the ASR output w; in the
context h;. In our case, the list of likely word hypotheses are
what we have defined as cohort sets. Note that herein lies an
important diffference from some of the previous work as in [3],
[4], [10], where the target function is the ratio of the likelihood
of the correct sentence and the likelihood of the alternative
sentences. Here we are only focusing on word confusions and
it is not necessary to know which word in the cohort set is
the correct word; the language model training text hopefully
contains enough occurrences of these words in order to learn
which contextual cues are good for disambiguating them. All
that is required is to identify C'(w), namely which words are
in frequent competition with w. With a well-specified cohort
set, the objective then becomes the maximization of the ratio
between the likelihood of each word and its competing words,
ie.,

K ng

~ P(w; | h;; ©)
0" = arg max 3)
]HH ZweC’(w (w|h’l’ @)
K ng
wz ‘ his 6)
= argmax log .
kZl; wGC( (w|h27 @)

The parameterization (1) significantly simplifies the estima-
tion of the language model under both maximum likelihood
criterion and our discriminative criterion. In particular, maxi-

mum likelihood estimation (2) reduces to
© = arg max L(e,W) 4)
I
= argmax ; O O (h;, w;)
log Z £ ®(hi,w)
weV

- AllelP,

where we have reindexed the word-positions in the training
text YW to go from 1 to I = ZkK:l nk, and X ||©]|? is a reg-
ularization term that helps prevent overfitting [11]. Similarly,
the likelihood ratio maximization (3) reduces to

~

e0F = arg max L*(e,W) (5)

1
= argmax Z O ®(h;,w;)

_ log Z e@ <I>(h1,w)

weC (w;)

= Ao

(4) differs from (5) only in the normalizer, where in the
discriminative case the sum is over the cohort instead of the
entire vocabulary. Remember that the complexity of training
exponential models mostly comes from the enormous amount
of time of computing the normalizer. In contrast, (5) makes
the training considerably more manageable, because the cohort
set size is much smaller than the vocabulary size.

The above criterion is a well studied maximization problem,
and several algorithms are available for the solution. It is
easy to see that the only difference about this problem is in
the model expectation calculation, where each history in the
training data can only be followed by a set of cohort words.
We use a variant of generalized iterative scaling [12] for the
optimization.

Obviously, the fact that (5) maximizes likelihood ratios
(instead of likelihoods) can result in a situation where, in
the presence of certain contexts, almost all of the probability
mass is concentrated on certain words only. Thus, to make
(5) return a reasonable probability for any plausible sequence
of words (as is the usual objective of language modeling),
maximum likelihood initialization can be used. In other words,
before applying our discriminative criterion, we can build a
standard maximum entropy language model, and then use
some kind of regularization to make sure our model does not
deviate too much from the maxmimum likelihood solution. Or
alternatively, do linear interpolation with a standard n-gram
model. We have experimented with both approaches in our
experiments and have found that linear interpolation gives the
best results.

To summarize, our methodology for self-supervised dis-
criminative language modeling boils down to the following:
(i) extract features and cohort sets from the test set (lattice
or n-best list); (i) apply the discriminative optimization (5),
and, finally, (iii) interpolate with a standard n-gram language
model.
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IV. EXPERIMENTS AND RESULTS

We evaluated our model with an n-best rescoring task using
100-best lists from the DARPA WSJ’92 and WSJ’93 20k open
vocabulary data sets. The acoustic model used to generate
the n-best list can be found in [13]. We used the sets 93et
and 93dt for evaluation, and 92et for development (parameter
tuning). The evaluation set contained 465 utterances, and the
development set contained 333 utterances. The development
experiment extracts features and cohort set from the develop-
ment n-best list, the evaluation experiment takes them from
the evaluation n-best list.

The baseline language model was a 4-gram modified
Kneser-Ney smoothed language model built from 37M words
in the NYT section of English Gigaword. We took the top
20k words from the corpus together with the words in the n-
best list as the vocabulary; all out-of-vocabulary words were
mapped to a special symbol <unk>.

The discriminative language model only used up to 4-gram
features extracted from the test set n-best list; this was done to
reduce computation, since no other features can “fire” during
rescoring anyway. This caused the number of features to be
significantly smaller than in the standard maximum likelihood
case; for example, our language model built on the evaluation
n-best list only contained 41577 features (among which only
17419 features are associated with words in the cohort set
vocabulary and therefore updated in training), instead of the
millions of features required in maximum likelihood. Further-
more, the cohort sets were also computed from the test set n-
best list, after aligning them together into confusion networks
(as mentioned in Section III). Function words (determined
by imposing a cutoff on unigram counts from the English
Gigaword) were excluded. The average size of the cohort sets
ended up being slightly above 4 words.

We also computed a standard maximum entropy language
model, using a speedup trick [14], and the same set of features
from the test set n-best list. Even with the speedup, training
took much longer than the training of the self-supervised
language model.

For the baseline 4-gram language model, as well as the
maximum entropy language model, we optimized the lan-
guage model scaling factor o on the development data. For
the self-supervised language model, we did a grid search
for the best combination of scaling factor «, regularization
contant A, and interpolation weight 5 on the development
data. The grid details are the following, o from 0 to 10,
with step size 0.5, 8 from O to 1 (weights for the standard
n-gram language model), with stepsize 0.05, A is taken from
{0.0001, 0.001,0.01,0.05,0.1,0.5,1,5}.

The best parameter setting for the standard n-gram language
model on the development data turned out to be @ = 6.5,
while for standard maximum entropy model it was o = 5.5.
For the self-supervised language model, the best parameters
were a = 5.5, 6 = 0.9, A = 0.1.

Table II shows the results in terms of word error rate.

As expected, the discriminative language model performs
poorly by itself. However, when combined with the standard n-

TABLE I
WORD ERROR RATE RESULTS

WER 92et (dev) | 93et and 93dt (eval)

ASR output 12.9 18.4
4-gram LM rescoring (baseline) 12.1 17.5
Standard Maxent rescoring 12.5 17.9
Standard Maxent + 4-gram 11.9 17.2
Self-supervised LM rescoring 17.4 23.0
*Self-supervised LM + 4-gram 11.5 16.9

[ Oracle [ 6.1 [ 9.5 ]

gram, as we are suggesting, there’s a 0.6% absolute improve-
ment over baseline on both development and evaluation data,
and the MAPSSWE test of the NIST sclite toolkit indicates
that the improvement is statistically significant (with a p-value
of 0.02 and 0.001 for the development and evaluation sets,
respectively). Notice the standard maximum entropy model
also gives extra gains when combined with the 4-gram (the
interpolation weight is optimized on development set).

V. DISCUSSION AND FUTURE WORK

In order to better understand where the WER improvement
of the interpolated self-supervised language model comes
from, we performed the following on the dev data. Align
the two hypotheses obtained by n-gram language model and
interpolated self-supervised language model. The resulting
confusion network is then aligned to the reference. Therefore,
all the changes in WER come from confusion bins where two
words differ and one of them is the correct one.

Among all these bins, close to one third involve insertions
or deletions, and most often, these are insertions or deletions
of short function words. Since our model training does not
involve function words, we excluded bins that contain function
words or epsilons in the analysis.

Table III lists all the correct confusion resolution, and
Table IV lists the incorrect ones. Also shown in the table
are the probabilities for the confusable words given by n-
gram language model (Py,) and interpolated self-supervised
language model (Ps). The last column shows how much our
method increases/decreases the n-gram probabilities. For all
the successful cases, our method boosts the correct words
probabilities by an average factor of 6.11, while the incorrect
words also get amplified by 1.95. For the unsuccessful cases,
the incorrect words probabilities are increased by an average
factor of 6.71, the correct words are boosted by only 1.44.
Probably what’s more interesting than the average number
is the fact that there are quite some cases where the word
probabilities are increased drastically, overall, the degree of
change to the word probabilities vary greatly. For example,
in Table III, the probability for ‘(no doubt with) diminished’
is increased by a factor a 31.61! A major reason for this
is that function words are excluded in our training, there
are no features that capture the fact that a function word
is probably the most likely word following ‘with’(with a,
with the, with that ...). Therefore, these words contribute very
little to the normalizer. The resulting distribution may put
too much probability mass to some words based on limited
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information in the context. Such overly confident decision can
be dangerous because it may affect the word choices in its
neighborhood, especially given the fact that the context is
often very noisy and the cues are spurious. This indicates
that regularizing the discriminative model parameters using
the maximum likelihood estimate is vital as already mentioned
in Section III-A. We achieve such smoothing by interpolating
with a standard n-gram language model.

Speaking of noisy context, they are most likely never seen in
the training text, it is very likely that our model could hardly
find any meaningful cues in its neighboring words, and the
decision relies solely upon some less informative features. For
example, in Table IV, ‘(to the zone) homeland’ vs.‘(to resolve
on) land’, the context is so confusing that it becomes very
hard to give a probability to ‘homeland’ or ‘land’ in either
context. Another example where ‘exploration’ and ‘explosion’
are in confusion following ‘eight six challenger’, without the
knowledge of this event, there’s probably no way to figure
out which one is the correct word by only lexical evidence
within the trigram context, we would probably have to search
for longer distance dependency, a trigger word such as ‘fire’
or ‘die’ could probably make the decision easier.

TABLE III
CASES OF SUCCESSFUL COHORT WORDS RESOLUTION. WORDS IN BOLD
ARE THE CORRECT WORDS AS CHOSEN BY OUR METHOD. BRACKETED

TABLE IV
CASES OF UNSUCCESSFUL COHORT WORDS RESOLUTION. WORDS IN
BOLD ARE THE CORRECT WORDS AS CHOSEN NOT BY OUR METHOD.

BRACKETED WORDS ARE THE TRIGRAM CONTEXT.

Competing hypotheses Png Psg 5;3 s
q
(<s>) fiat 6.54% 10 ° | 1.07+«10" T | 1.67
(<s>) five 3.94%10 % | 4.96%10 * | 1.26
(eighty six challenger) exploration 1.42%10°° 4.85 %10 ° 3.42
(eighty six challenger) explosion 9.01 %10 T 9.95 % 10 7 1.10
(the weak dollar) meaning 5.93% 10" ° 9.91 %10 % 16.71
(weak dollar may) mean 2.87% 103 2.71 %10~ 0.94
(years old mister) wayne 1.87%10°° | 4.47%10"° | 2.39
(years old mister) wang 1.43 %10 % 1.59 % 10~ % 1.11
(probably the largest) contributed 4.75% 107" 1.03 % 10 % 2.17
(probably the largest) contributor | 1.23 % 10~ ° 2.66 % 10 ° 2.16
(u. s. as) cooperation 1.94%10°° 1.87 %10~ ° 9.64
(s. as quite) operation 6.86 x 10~ ° 8.97 % 10 ° 1.31
(too small and) identified 215%10°° | 1.21%10" T | 5.63
(at two small) unidentified 552%10 ° | 9.78«10 ° | 1.77
(belgique ’s shares) appear 2.01%10°° 3.27 %10 7 16.27
(belgique ’s shares) appeared 2.97 %10 ° 6.83 % 10 ° 2.30
(to the zone) homeland 3.77%10°© 9.22% 10 © 2.45
(to resolve on) land 5.37+%10 % | 5.20« 10~ % | 0.97

WORDS ARE THE TRIGRAM CONTEXT.

Competing hypotheses Pnyg Ps, Iljfj ;
(were mixed with) beans 4.72%10°% | 2.49%10°° | 5.28
(were mixed with) gains 2.80 % 107 2.70 x 10~ 2 0.96
(no doubt with) diminished 1.49%10°° | 4.71 %10~ % | 31.61
(no doubt would) diminish 2.73% 10~ 7T 2.76 % 10 * 1.17
(<s> we) felt 2.95%10"° | 3.25%10"° | 1.10
(<s> we) thought 4.33%10°° | 4.75%10 ° 1.10
(bank holding companies) slated 3.40%107° | 3.11%10"% | 9.15
(bank holding companies) waited 9.37 %10 ° 6.79 * 10~ ° 7.25
(<s> when flights) arrive 1.17%10°° | 3.33%x10" % | 2.85
(<s> when flights) arrived 3.80 %10~ T 5.35% 10" T 1.41
(wait for a) gate 2.29 % 10~ ° 2.64%10°° 1.15
(wait for a) date 1.60%10~T | 1.59% 10~ | 0.99
(<s> his) m. 6.62%10°° | 9.75x 10" % | 1473
(<s> his) n. 2.89%10°F [ 87510 * | 3.03
(a few clearly) thoughts 1.95 %« 10~ ° 2.40 % 10~ ° 1.23
(no doubt would) thought 5.13% 10" 7T 4.79% 1012 0.93
(not at all) unhappy 4.31%10°% | 2.95%10"° | 6.84
(at all and) happy 8.44 %10~ ° | 1.16 10 * | 1.37
(slowdown because they) continue 2.81 %10 % 3.22 %10~ ° 11.46
(slowdown because they) continued 2.31%10° 7 6.42 % 10~ % 2.78
(’s continued group) rate 1.94 %10~ % 3.52 % 10 7 1.81
(employers continue to) pray 1.22% 10 * 1.48 % 10 7 1.21
(<s> the) worries 1.14%10°° 1.45 % 10 ° 1.27
(<s> the) warriors 1.54%10~T%T | 1.78 %« 10~ | 1.14
(at c. p.) pulled 5.23%107° | 5.40%10°° | 1.03
(or at sea) people 249 %10 7 4.14 % 10" % 1.66
(the employer ’s) continued 2.21 %10+ 1.40 % 10~° 6.33
(outside the employers) continue 7.90 % 10 7 1.27% 1073 1.61
(blue chip economists) expect 7.60 %10 ° 6.90 % 10~ ° 0.91
(blue chip economists) expected 1.63% 1072 | 1.48 %10~ 2 | 091
(that has ’nt) stopped 6.30 102 | 7.19% 102 | 1.14
(that has ’nt) stop 935+ 10" ° | 3.46%10 * | 3.70

VI. CONCLUSIONS

In this work, we make a first attempt to build a self-
supervised discriminative language model. The work differs
from previous research on discriminative language modeling in
that we do not need an extra amount of manual transcriptions
of speech, in addition of what is provided for training a
baseline ASR system. We propose the idea of word cohorts,
and design an optimization criterion that makes the language
model more discriminative among those words. Significant
improvement in WER is obtained on a n-best list rescoring
task from WSJ93.

ACKNOWLEDGMENT

The authors are grateful to Denis Filimonov and Mary
Harper for providing the n-best lists and for pre-processing the
language model training text used in the experiments reported
here. This work was partially supported by National Science
Foundation Grant No 0840112.

REFERENCES

[1]1 F. Jelinek, Statistical Methods for Speech Recognition. ~MIT Press,
1998.

[2] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” in Proceedings of the 34th Annual
Meeting of the ACL, 1996, pp. 310-318.

[3] B.Roark, M.Saraclar, and M.Colins, “Corrective language modeling for
large vocabulary asr with the perceptron algorithm,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Quebec, Canada, May 2004, pp. 749-752.

[4] B.Roark, M.Saraclar, M.Colins, and M.Johnson, “Discriminative lan-
guage modeling with conditional random fields and the perceptron
algorithm,” in Proc. the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), Barcelona, Spain, Jul. 2004, pp. 47—
54.

[5]1 D. Jurafsky and J. H. Martin, Speech and Language Processing. Pren-
tice Hall, 2000.

[6] N. A. Smith and J. Eisner, “Contrastive estimation: Training log-linear
models on unlabeled data,” in Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL), Ann Arbor,
Michigan, June 2005, pp. 354-362.

321



[7] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus among words:
Lattice-based word error minimization,” in Proc. Eurospeech, 1999, pp.
495-498.

[8] J. Fiscus, “A post-processing system to yield reduced word error rates:
Recogniser output voting error reduction (ROVER),” in Proc. 1997 IEEE
Workshop on Automatic Speech Recognition and Understanding, Santa
Barbara, CA, 1997, pp. 347-352.

[9] R.Rosenfeld, “A maximum entropy approach to adaptive statistical
language modeling,” Computer Speech and Language, vol. 10, pp. 187—
228, Mar. 1996.

[10] M.Colins, M.Saraclar, and B.Roark, “Discriminative syntactic language
modeling for speech recognition,” in Proc. the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL), Sydney, Australia,
Jun. 2005, pp. 507-514.

[11] S.F. Chen and R. Rosenfeld, “A Gaussian prior for smoothing maximum
entropy models,” Tech. Rep., 1999.

[12] J.Darroch and D.Ratcliff, “Generalized iterative scaling for log-linear
models,” The Annals of Mathematical Statistics, vol. 24, pp. 413—421,
1972.

[13] W. Wang and M. P. Harper, “The SuperARV language model: Investigat-
ing the effectiveness of tightly integrating multiple knowledge sources,”
in Proc. the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Philadelphia, Jul. 2002, pp. 238-247.

[14] J. Wu and S. Khudanpur, “Efficient training methods for maximum
entropy language modeling,” in Proc. the 6th International Conference
on Spoken Language Technologies (ICSLP-00, 2000, pp. 114-117.

322



