
UC Davis
IDAV Publications

Title
Three-Layer Optimizations for Fast GMM Computations on GPU-like Parallel Processors

Permalink
https://escholarship.org/uc/item/7z36z8wq

Authors
Gupta, Kshitij
Owens, John D.

Publication Date
2009

DOI
10.1109/ASRU.2009.5373410

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7z36z8wq
https://escholarship.org
http://www.cdlib.org/

Three-Layer Optimizations for Fast GMM
Computations on GPU-like Parallel Processors

Kshitij Gupta, John D. Owens
Department of Electrical & Computer Engineering, University of California, Davis

One Shields Avenue, Davis, California, USA
{kshgupta,jowens}@ucdavis.edu

Abstract—In this paper we focus on optimizing compute and

memory-bandwidth-intensive GMM computations for low-end,
small-form-factor devices running on GPU-like parallel
processors. With special emphasis on tackling the memory
bandwidth issue that is exacerbated by a lack of CPU-like caches
providing temporal locality on GPU-like parallel processors, we
propose modifications to three well-known GMM computation
reduction techniques. We find considerable locality at the frame,
CI-GMM, and mixture layers of GMM compute, and show how
it can be extracted by following a chunk-based technique of
processing multiple frames for every load of a GMM. On a 1,000-
word, command-and-control, continuous-speech task, we are
able to achieve compute and memory bandwidth savings of over
60% and 90% respectively, with some degradation in accuracy,
when compared to existing GPU-based fast GMM computation
techniques.

I. INTRODUCTION
Several challenges have hindered ubiquitous deployment of

Automatic Speech Recognition (ASR) as a means of HCI.
Apart from difficulty in achieving high accuracy under real-
world conditions, from an implementation stand-point, ASR
workloads prove challenging on three fronts: compute,
memory bandwidth, and irregular memory access patterns.
With a shift in the compute paradigm towards commodity
parallel processing architectures (IBM’s Cell, modern
graphics processors [GPU], Intel’s Larrabee), these processors
can be used for overcoming the abovementioned challenges,
ultimately leading to the implementation of fast ASR systems.

For optimally utilizing these new processor architectures,
either new techniques need to be invented, or traditional
techniques that have worked well on single-core (scalar) CPU
need to be revisited and altered to better suit the parallel
processing model. Since a major portion of silicon area on
modern parallel processors is reserved for compute resources,
the compute bottleneck is relatively easier to solve when
compared to memory issues (bandwidth and access patterns).
In contrast to most speech papers that entirely focus on
exploring techniques from a purely computation-reduction
perspective, and GPU implementation papers to-date that have
focused on obtaining the best possible speedup without
analyzing memory bandwidth-related issues, we primarily
focus on the memory bandwidth issue in this paper while
leveraging well-established computation-reduction techniques
that are known to simultaneously reduce the compute burden.

Among the various stages in HMM-based ASR recognizers,
Acoustic Modeling is known to be a dominant part of the
system, accounting for between 60-90% of all processing

cycles in most systems. Each state within a continuous-density
HMM is modeled by a mixture of multivariate Gaussians, also
referred to as the Gaussian Mixture Model (GMM). LVCSR
systems have thousands of GMMs, each with up to 128
mixtures, requiring several tens of GFLOPS of compute and
several hundreds of MB of memory bandwidth per second.

Recently, there has been a shift towards adopting GPUs,
which provide massive amounts of data and thread-level
parallelism, for general-purpose (GPGPU) compute:
implementing and accelerating non-graphics kernels and
applications [1]. All research efforts for implementing ASR
on GPUs to-date have focused on utilizing high-end desktop
processors with the primary goal of maximally utilizing the
underlying processor resources for obtaining the best possible
speedup [2]-[4]. Given the several orders of magnitude
difference between required versus available compute and
memory resources offered by these high-end platforms,
reasonable speedup could be obtained merely by focusing on
wisely laying out data and applying rudimentary optimizations.

Our approach to ASR on GPU-like processors is from a
different perspective. Since a majority of GPUs sold on the
market today are low-end (mostly integrated graphics
processors), and this trend is only likely to accelerate as
adoption of mobile and handheld devices increases, we
believe that for widespread adoption of ASR as a ubiquitous
form of HCI, it is critical to optimize ASR algorithms to map
efficiently onto these lower-end processors running on
mobile/smaller form-factor devices. Targeting low-end GPU-
like processors presents a very different set of constraints and
challenges – fewer compute units are available, memories are
smaller, memory bandwidth is significantly less, and power is
a major concern. Suffice to say that optimizations at every
level are required in order to achieve efficient implementation
on such platforms.

In this paper we focus on the compute intensive part of
ASR – GMM computations within Acoustic Modeling. We
focus on three of the four layers presented by Chan et al. [5]
for realizing fast GMM computations, and propose three
modifications for making these algorithms map well onto
GPU-like parallel programmable architectures, addressing
both compute, and memory bandwidth issues without
significantly impacting accuracy.

This is an implementation-agnostic paper where we focus
on three primary parameters: accuracy, memory bandwidth
consumed, and computation reduced. We show that a
considerable amount of temporal locality exists at various

levels of GMM computations, which, when exploited, can
help in achieving our stated goals, leading to a highly
optimized implementation on low-end GPU-like processors.
We focus on the modifications necessary and leave GPU-
specific implementation details and optimizations to be
presented in a future paper.

II. MOTIVATION: MEMORY EFFICIENCY IS CRITICAL
The goal of an ASR system is to pick the most likely

sequence of words that have the highest probability of
occurring for a given speech segment. While doing so, the
system has to maintain a set of hypotheses for every frame,
which if done in an unconstrained manner can grow the search
space to unmanageable proportions. Keeping the search space
to a manageable size is therefore an important aspect for any
practical system. Managing the search space is critical at
higher levels than it is at lower levels since every speech unit
at a lower level is shared by multiple units in the next higher
level.

The system can be constrained by keeping track of active
speech units (or states) throughout the knowledge-base
hierarchy, and computing scores for only the states that are
active. Conceptually, this process can be divided into two
phases as shown in Fig. 1(a). In the first phase, a set of active
lists corresponding to active states are generated and
propagated from higher-level models to corresponding speech
units at the next lower levels. In the second phase, scores of
these active states are computed and propagated to the next
higher level until the highest level is reached. This process is
repeated for every frame.

A typical ASR pipeline is shown in Fig. 1, from which it is
evident that ASR systems have heavy data-dependency
internally, making execution of each stage sequential in nature
by requiring active state information from the previous stage.
In order to simplify the system, the innermost computation
(Compute Acoustics in Fig. 1(a)) can be de-coupled from the
rest of the system, leading to a brute-force approach whereby
all GMMs in the Acoustic Model are scored. This approach is
used by Cardinal et al. [2], enabling them to map dense-linear
GMM computations with high SIMD (Single Instruction
Multiple Data) utilization on a GPU.

Since GMM data to be loaded from memory is fixed in a
brute-force approach and is irrespective of active word
hypotheses, frames could be batch-processed whereby
multiple speech frames are computed for every load of the
model as suggested by Mathew et al. [6], greatly helping
address the memory bandwidth issue. However, such an
approach comes at a huge overhead of computing inactive
state scores that would otherwise be ignored by higher layers,
doing little to enhance accuracy. Consequently, despite a 10x
difference in CPU v/s GPU compute capability, the speed-up
was limited to 5x for GMM computations [2]. Further, while a
brute-force approach is possible on high-end processors, it is
not practical on low-end processors with significantly less
compute resources and power consumption constraints.

Incorporating active lists to guide which GMMs get scored
every frame typically saves between 50–75% of computations

over the brute-force approach and is therefore a necessary
optimization. By using acoustic active lists, Chong et al.
report a speed-up of 19x over their reference CPU
implementation [3]. While incorporating active lists for GMM
reduces the compute load, it introduces a point of serialization
due to the dependency of next-frame computation on previous
frames’ active states, thereby constraining the memory sub-
system since computations can no longer be batch-processed.

Fig. 1. A conceptual two-phase data-flow diagram of a typical ASR pipeline

showing: (a) the traditional approach, and (b) the proposed chunk-based
processing of GMM likelihood computations on the GPU.

Parallel architectures tend to have smaller caches compared
to the large workloads they process. Modern GPU
architectures do have several different kinds of caches, albeit
extremely small in size and mostly special-purpose in nature
(targeted towards graphics workloads). GPUs using
NVIDIA’s CUDA programming model feature a user-
managed shared memory for sharing data across a SIMD lane
for non-graphics applications [7]. These memories, however,
are small (16 kB), and restrict data sharing to within a thread
block on each SIMD core, not providing CPU cache-like
temporal locality. Due to this nature of the architecture,
utilizing active lists introduces a level of non-determinism that
requires accessing active GMMs from main memory every
frame, exacerbating the memory bandwidth requirement.

Most importantly, as processors evolve towards a unified
memory architecture model similar to today’s integrated
GPUs or AMD Fusion-like processors (CPU & GPU on the
same chip die, sharing the same address space and main
memory), inefficient accesses to main memory can lead to
severe performance bottlenecks. Reducing and optimizing all
memory accesses is therefore an important aspect for
maximizing performance on these architectures, especially for
UI workloads that have the potential to be always-on.

From all these observations we were motivated to draw the
following conclusion: make use of active lists for reducing the
amount of compute while finding ways of reducing memory
bandwidth requirements for GPU-like parallel architectures by
exploring and subsequently exploiting temporal locality at

various levels within GMM computations, modifying the ASR
pipeline to the one shown in Fig. 1(b). In later sections we
show that considerable locality exists, and that it is possible to
batch-process several frames every time a model is loaded
from main memory without de-coupling the feedback
mechanism, thereby helping address all goals identified above
simultaneously.

III. DESIGN ATTRIBUTES FOR PARALLEL-FRIENDLY ASR
ALGORITHMS

We compiled a set of design attributes that would be
critical in achieving a highly optimized, parallel processor-
friendly, fast GMM implementation on low-end GPU-like
parallel processor architectures. Since well-established
computation reduction techniques exist, we compare and
contrast traditional approaches on scalar CPUs with those of
attributes suitable for many-core, wide-SIMD equipped
parallel architectures, and use these attributes as the driving
principle for our subsequent exploration.

A. Dynamism
• CPU: Scalar CPU processors are targeted for a wide

range of applications with a core focus on making the
common case(s) faster for irregular workloads, utilizing
typically less than 1% of the silicon area for compute
purposes. Optimizing every instruction to minimize the
number of compute operations at all costs is therefore
critical for achieving speedup in most cases, even if this
requires introducing significant irregularities in
compute or memory accesses (as is the case with most
GMM compute reduction techniques).

• GPU: GPU-like parallel processors are based on wide-
vector SIMD units which are well suited for throughput
applications that have considerable data-level and
thread-level parallelism. Algorithms that can maximally
benefit from these architectures have regular, well-
defined compute and memory access patterns. An
important design goal is therefore to regularize
algorithms as much as possible, even if such a
modification comes at the cost of system resource
utilization overhead.

B. Caches
• CPU: Since many applications have considerable

temporal locality, the goal of CPU-like scalar
processors is to reduce memory access latency by
storing reusable data in various levels of caches. Access
to memory staggered over time, like in the case of
processing several frames of speech, does not incur a
high memory access cost.

• GPU: As discussed in Section II, GPUs have small
caches, and the per-block shared memory available for
compute workloads does not provide temporal locality,
so GPUs require significantly more accesses to main
memory. Taking the CPU approach to optimization
does not conserve memory bandwidth, so optimizing
for cache-less architectures is therefore an important
aspect for future GPU-like processors.

C. Computational Complexity
• CPU: Computational complexity, or the number of

operations required for every load from memory, is not
as important a point for cache-based CPU architectures,
where data access cost is minimal if the workload can
achieve high cache-hit rates.

• GPU: Workloads with a low compute-to-memory ratio
make poor use of the GPU’s computational resources.
For example, GMM log-likelihood evaluations require
only two arithmetic operations per 4-byte word loaded
from memory, making these computations highly load-
intensive. Since data is invariably loaded from main
memory, it is vital to amortize the cost of every load by
processing multiple speech frames, indirectly increasing
the computational complexity.

D. Branch Support
• CPU: A significant amount of silicon area on CPUs is

devoted to providing support for branch prediction and
handling. Introducing irregularities for optimizing
algorithms to the lowest level possible for achieving
maximum computation reduction on such architectures
does not have an adverse impact.

• GPU: The modern GPU, at its core, is a SIMD
processor in which all threads are run in lockstep. The
more divergent the branches in SIMD execution, the
larger the runtime penalty to process such data. In the
worst case, all SIMD lanes diverge differently, leading
to serialization equal to the width of the SIMD lane. It
is therefore important to reduce branches in the
application as much as possible, to reduce the number
of times branch-able code is executed, and if branches
are necessary, to attempt to minimize the divergence in
those branches.

E. Compute-Memory Tradeoff
• CPU: CPUs tend to be compute-bound since a large

portion of the processor is devoted to various levels of
on-chip memories. The primary goal therefore is to
minimize compute operations to the fullest extent
possible.

• GPU: Conversely, GPUs have abundant compute
resources but limited on-chip memory. The goal
therefore should be to trade memory accesses for extra
compute if that can prove to be more efficient. In the
long-term, since computation costs decrease with every
new generation of hardware while communication costs
remain roughly constant, compute should be preferred
over communicate.

We hand-picked three techniques that, based on the nature

of GMM scoring in ASR, are known to provide the best
possible reduction in computation. By exploiting temporal
locality at various stages and modifying these techniques to fit
within the attributes discussed in this section, we are able to
achieve significant compute and memory bandwidth savings.

IV. OBSERVATIONS
In the following two sections we present our observations

and suggested modifications to three well-established GMM
computation reduction techniques at the frame, GMM and
mixture layers in order to make them parallel-friendly. All our
experiments were performed on CMU’s open-source Sphinx 3
recognizer [8] running the 1,000-word Resource Management
corpora task comprising of 1600 utterances in the continuous
speech, speaker-independent test-set [9]. Our knowledge-base
was derived from open-source Sphinx models consisting of a
trigram language model, continuous-density HMMs, with tied
states modeled by a set of 1935 GMMs having 8 mixtures
each [10].

Sphinx uses several layers of optimizations for fast GMM
compute primarily based on the work presented by Chan et al.
[5], [11]. We bypass all these optimizations for each of the
experiments described in the following sections, effectively
using our own GMM compute routines, performing un-
approximated full-precision scoring and incorporating
approximations from only the optimization layer being
discussed.

A. Frame-Layer
Frame-layer optimizations are the highest level of fast

GMM compute optimizations. Since for certain parts of
speech the input signal can vary slowly, two coarse-grain
approximation techniques which entirely depend on the input
data can be used. One approach is based on naively down-
sampling the frequency at which GMM scores are evaluated,
computing scores only every Nth frame. As N increases,
overhead in the search module and error rate increase rapidly
without a significant reduction in computations, limiting the
usefulness of this approach. The other, more accurate
approach is to find successive frames over which the input
signal has not changed significantly, and use GMM likelihood
scores from the first frame for all similar successive frames.
Chan et al. report only modest compute reduction savings
from this approach [5].

Our approach to frame-layer compute reduction is
somewhat different. As motivated in Section II, since active
lists are an important aspect for implementing a highly
optimized design, and as noted in Section III, with the need
for regularizing compute and memory access patterns on
GPU-like parallel processors, we focus on addressing these
aspects at the frame layer.

One of the biggest hurdles we found with incorporating the
GMM active list was a large variation in the number of active
GMMs over any speech segment, varying from very few to
almost the entire set. Although it seems logical to conclude
that there is little locality over time, we wanted to analyze the
true nature of the locality and ran a few tests focusing on the
lifetime of active GMMs, measured by the number of
successive frames for which a they are active. We ran this
experiment for three beam-setting combinations – relaxed,
medium, and very tight – directly impacting accuracy rates.
The Word Error Rate (WER) and active GMM lifetimes

averaged over the entire test-set for each of the three beam
settings are shown in Table I.

TABLE I
AVERAGE LIFETIME OF ACTIVE GMMS OVER THE RM1 TEST-SET

Beam WER Avg. Lifetime (# frames)
Relaxed 2.68 13.95
Medium 4.21 12.50

Tight 8.03 11.32

Surprisingly, despite the number of active states varying

over time, a state once activated remains active for on average
11–14 frames for each of the three beam settings. This shows
that significant temporal locality exists regardless of beam
pruning constraints, and if exploited, could lead to substantial
savings in memory bandwidth. In order to obtain the best
possible accuracy, we use relaxed beam settings for all
experiments discussed in this paper.

B. GMM-Layer
GMM-layer optimizations are the next lower level of fast

GMM optimizations that are possible. This approach is built
on the nature of ASR knowledge-bases, which relies heavily
on context-dependent models for handling co-articulation
effects in continuous speech. Since context-dependent (CD)
models are refined versions of context-independent (CI)
models, a two-pass approach can be employed whereby CD
states are scored only if their corresponding CI state score lies
within a certain threshold, and approximated with CI scores if
they fall beyond this threshold. It has been shown that
significant savings for a small decrease in accuracy is possible
by following this approach [5]. Similar to the previous
analysis, Table II shows the WER and lifetimes of CI GMM
that lie within beams averaged over the entire test-set.

TABLE II
AVERAGE LIFETIME OF ACTIVE CI-GMMS OVER THE RM1 TEST-SET

-ci_pbeam WER Avg. Lifetime (# frames)
1e-7 2.95 5.38
1e-5 3.09 3.75
1e-3 3.29 2.60

Unlike the analysis in Table I, CI-GMM lifetimes are much

smaller due to the narrower pruning threshold applied. This
might lead one to conclude that temporal locality is too small
to be practically beneficial. However, in the following section
we show that this information can still be useful and can aid in
a parallel-friendly approach with significant savings. For the
remainder of CI-GMM experiments, we use the medium
ci_pbeam (=1e-5) setting.

C. Mixture-Layer
The next layer of fast GMM optimizations are at the

within-GMM, mixture level. In order to more accurately
model data within continuous-density HMMs, weighted
mixtures of multivariate Gaussians are used. Since any input
can be close to only a small subset of mixtures, the GMM
score could be approximated by computing only mixtures that
are close to the input, while ignoring the others. A two-pass

coarse-grain/fine-grain approach is followed: the first-pass on
Vector Quantized (VQ) or Sub-Vector Quantized (SVQ)
version of the original GMM data results in the generation of
a list of high-scoring mixtures, and the second pass is used for
computing likelihood scores of these mixtures from the
original GMM model. In our experiments we observed that
the topmost mixtures in a frame remain amongst the top few
mixtures over successive frames, showing that some locality
over frames exists.

V. RESULTS
From these observations we conclude that considerable

locality exists at all layers of GMM compute. We propose
three modifications to the traditional CPU approach, one for
each of the three layers discussed in the previous section, to
make them better suited for GPU-like parallel architectures by
satisfying all attributes of parallel-friendly algorithms
identified in Section III. All results presented in this section
focus on three aspects: accuracy (WER) and the percentage of
compute overhead and bandwidth saved for our proposed
modifications w.r.t. the baseline setup.

We chose our baseline as the approach followed in the most
optimized GMM compute implementation to-date on the GPU
[3], utilizing the GMM active list of Fig. 1(a) to decide which
GMMs get scored every frame. Since this implementation is
not known to make use of any GPU-specific on-chip
memories (or caches) for exposing temporal locality, data for
every active GMM must be loaded from main memory every
frame. The number of active GMMs can therefore directly be
used for obtaining both the number of compute operations and
the memory bandwidth required, which we use as our baseline
for all savings presented in this section.

A. Modification # 1: Frame-Layer
From the discussion presented in Sections II & III, we

concluded that the only approach for reducing memory
bandwidth is to process frames in groups or chunks,
computing Gaussian likelihood scores over multiple frames
for every load of the GMM model while simultaneously
supporting the acoustic active list (effectively moving the
implementation from Fig. 1(a) to Fig. 1(b)). From our frame-
level analysis of active state lifetimes, since states are active
for more than 10 frames on average, we decided to use a
“blind look-ahead” approach whereby once a state is active, it
is deemed active for the rest of the chunk, irrespective of
when in the chunk it ends-up being deactivated. This approach
allows GMM models to be loaded only once per chunk, and
likelihood scores are computed for all frames from the first
frame in the chunk the state becomes active to the last frame
in the chunk.

Since in the worst case we only compute scores for states
that could otherwise have been de-activated earlier than at the
chunk boundary, the only side effect of this approach is an
increase in compute overhead, while providing significant
bandwidth savings. Importantly, since scores of states de-
activated by the search module are ignored anyway by the

higher levels, it does not affect the accuracy. We refer to this
technique as Acoustic Modelling Look-ahead (AML).

TABLE III
FRAME-LAYER LOOK-AHEAD RESULTS. COMPUTE OVERHEAD REPRESENTS

EXTRA COMPUTATIONS NEEDED DUE TO THE LOOK-AHEAD, WHILE
BANDWIDTH SAVED REPRESENTS FEWER MEMORY ACCESSES COMPARED TO

THE BASELINE (CHUNK=1).

Chunk WER Compute
Ovrd (%)

BW
Saved (%)

1 2.68 0 0
2 2.68 3.40 46.42
4 2.68 9.69 70.04
8 2.68 20.55 82.07
16 2.68 38.06 89.31

Since SIMD units within GPU-like parallel processors have

an even number of lanes, we only focus on even multiples of
chunk sizes. Chunk=1 effectively implies no look-ahead, and
is functionally equivalent to the approach by Chong et al. [3].
We use this as our baseline for comparing all compute and
bandwidth savings. Results in Table III show that a significant
percentage of bandwidth can be saved as chunk sizes increase
at the cost of a more modest increase in compute, without
affecting accuracy. The promising results led us to incorporate
AML for all our subsequent experiments.

B. Modification # 2: GMM-Layer
While the AML technique helps save considerable

bandwidth, it requires significant compute overhead for larger
chunk sizes. We incorporate GMM-layer optimizations to
address this. In Section IV-B we noted that lifetimes of CI
states are much smaller than those of active states. Following
a frame-by-frame approach of which frames in a chunk should
get scored and which frames should be backed-off depending
on CI activity again leads to indeterminism, making it difficult
to utilize the AML approach.

We propose a simple solution to solve this indeterminism.
Instead of considering individual frames, we consider frame
chunks as a whole in order to decide whether active CD states
get scored. If the sum of frames for which the CI state passes
the ci_pbeam threshold is greater than our threshold (CI State
Threshold), CD states are scored for all frames in the chunk;
otherwise all scores in the chunk are backed-off to CI scores.
Since the lifetime of CI states was 3.75, we consider the
threshold of both 3 and 4 frames.

TABLE IV
CI GMM-LAYER LOOK-AHEAD RESULTS. THE CI-GMM OPTIMIZATION

HELPS REDUCE THE REQUIRED COMPUTE WORKLOAD AND MEMORY
BANDWIDTH SIMULTANEOUSLY.

Chunk CI State
Threshold WER Compute

Saved(%)
BW

Saved(%)
1 1 3.09 46.16 46.16
4 3 3.08 60.66 82.27
4 4 3.03 67.97 90.18
8 3 3.03 47.59 90.26
8 4 2.97 54.92 91.89

From Table IV it can be seen that by using the CI-GMM
approach considerable savings in compute can be obtained. As
scores are backed-off, the accuracy degrades slightly due to
the approximations introduced, while simultaneously reducing
the bandwidth and compute burden.

C. Modification # 3: Mixture-Layer
Although the CI-GMM approach reduces both the compute

and bandwidth requirements significantly, we still explore the
mixture-level optimization since in cases of GMM with a
larger number of mixtures, this technique also contributes
significantly to savings by requiring the computation of only
the top mixtures. Instead of computing SVQ codeword scores
and selecting top mixtures every frame, we compute them
only at the start of a chunk, selecting the top N scoring
mixtures. Whenever a state becomes active within a chunk,
only the mixtures selected at the start of the chunk are
computed. While this approach makes a bigger assumption of
the locality and presence of top-scoring mixtures at chunk
beginnings, our results in Table V show reasonable accuracy
can still be achieved by selecting 3 or 4 of 8 mixtures in our
GMM model. The overhead is not significant considering that
the traditional beam-selection approach in Sphinx uses
approximately 2.5 mixtures on average.

TABLE V
MIXTURE-LAYER LOOK-AHEAD RESULTS

Chunk Top
Mixtures WER Compute

Saved(%)
BW

Saved(%)
4 3 3.57 36.61 85.53
4 4 2.95 23.56 81.96
8 3 5.48 39.76 91.50
8 4 3.92 25.50 89.41

D. Piecing it all together: Frame + GMM + Mixture-Layers
Finally, since each of the three techniques analysed in this

paper provide compute reductions that are orthogonal to each
other, we conclude this section by presenting results obtained
on combing these techniques. Due to the approximations
introduced by mixture-level optimizations, the results are not
as promising as those obtained by using just CI-GMM
(Section V-B). Notably, although a comparable compute and
memory bandwidth savings rate is achieved, it comes at the
cost of degradation in accuracy. We believe that the combined
savings will be better for GMMs with more mixtures.

TABLE VI
RESULTS FROM COMBINING ALL THREE LAYERS OF OPTIMIZATIONS

Chunk CI State
Threshold

Top
Mix. WER Compute

Saved(%)
BW

Sv(%)
4 4 3 4.00 69.11 93.94
4 4 4 3.29 65.06 92.69
8 4 3 6.21 72.77 95.58
8 4 4 4.40 67.09 94.56

VI. CONCLUSION & FUTURE WORK
In this paper we focused on GMM computations in

Acoustic Modeling with a special emphasis on reducing the
memory bandwidth requirement in low-end, GPU-like parallel
processors targeted towards mobile and handheld devices. We
proposed three modifications to popular fast GMM techniques,
making them parallel-friendly, which enabled us to reduce the
compute and memory bandwidth requirement by over 60%
and 90% respectively for a relative accuracy degradation
ranging between 13.05% (Table IV) to 22.76% (Table VI)
over our baseline system. The results show that there is no one
solution, with the correct choice depending on several factors.
We shall present the details of our GPU implementation along
with an in-depth analysis of trade-offs for techniques
presented here in a future paper.

ACKNOWLEDGEMENTS
Thanks to Intel Corporation for primary financial support

for this project, with additional support appreciated from the
National Science Foundation (Award 0541448) and the
SciDAC Institute for Ultrascale Visualization.

REFERENCES
[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell, "A Survey of General-Purpose Computation
on Graphics Hardware", in Computer Graphics Forum, vol. 26, pp 80–
113, 2007.

[2] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, "GPU
Accelerated Acoustics Likelihood Computations," in Proc. of
Interspeech, pp. 964-967, Sept. 2008.

[3] J. Chong, Y. Yi, A. Faria, N. Satish, and K. Keutzer, "Data-Parallel
Large Vocabulary Continuous Speech Recognition on Graphics
Processors," in Proc. of EAMA, pp. 23–35, Jun. 2008.

[4] P. R. Dixon, T. Oonishi, and S. Furui, "Harnessing Graphics
Processors for the Fast Computation of Acoustic Likelihoods in Speech
Recognition," Computer Speech & Language, vol. 23, pp. 510–526,
Oct. 2009.

[5] A. Chan, R. Mosur, A. Rudnicky, and J. Sherwani, “Four-layer
Categorization Scheme of Fast GMM Computation Techniques in
Large Vocabulary Continuous Speech Recognition Systems”, in Proc.
of Interspeech, pp. 689–692, Oct. 2004.

[6] B. Mathew, A. Davis , and Z. Fang, "A Low-power Accelerator for the
SPHINX 3 Speech Recognition System," in Proc. Of Conference on
Compilers, Architecture and Synthesis for Embedded Systems, Oct.
2003.

[7] NVIDIA CUDA Compute Unified Device Architecture: Programming
Guide (Version 2.2), NVIDIA Corporation, 2009.

[8] (2009) Sphinx Homepage. [Online].. Available:
http://cmusphinx.sourceforge.net/html/cmusphinx.php

[9] D. Pallett, "A Look at NIST’s Benchmark ASR Tests: Past, Present,
and Future," in Proc of IEEE Workshop on Automatic Speech
Recognition and Understanding, 2003.

[10] (2009) Sphinx Open Source Models website. [Online]. Available:
http://www.speech.cs.cmu.edu/sphinx/models/

[11] A. Chan, R. Mosur, and A. Rudnicky, “On Improvements to CI-based
GMM Selection,” in Proc. of Eurospeech, pp. 565–568. Sept. 2005.

