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Abstract—Mel-frequency cepstral coefficients (MFCC) have 

been dominantly used in speaker recognition as well as in speech 

recognition. However, based on theories in speech production, 

some speaker characteristics associated with the structure of the 

vocal tract, particularly the vocal tract length, are reflected more 

in the high frequency range of speech. This insight suggests that 

a linear scale in frequency may provide some advantages in 

speaker recognition over the mel scale. Based on two state-of-the-

art speaker recognition back-end systems (one Joint Factor 

Analysis system and one Probabilistic Linear Discriminant 

Analysis system), this study compares the performances between 

MFCC and LFCC (Linear frequency cepstral coefficients) in the 

NIST SRE (Speaker Recognition Evaluation) 2010 extended-core 

task. Our results in SRE10 show that, while they are 

complementary to each other, LFCC consistently outperforms 

MFCC, mainly due to its better performance in the female trials. 

This can be explained by the relatively shorter vocal tract in 

females and the resulting higher formant frequencies in speech. 

LFCC benefits more in female speech by better capturing the 

spectral characteristics in the high frequency region. In addition, 

our results show some advantage of LFCC over MFCC in 

reverberant speech. LFCC is as robust as MFCC in the babble 

noise, but not in the white noise. It is concluded that LFCC 

should be more widely used, at least for the female trials, by the 

mainstream of the speaker recognition community.  

 

I. INTRODUCTION 

A. Motivation 

Mel-frequency cepstral coefficients (MFCC) [1] have been 

dominantly used in speaker recognition as well as in speech 

recognition. This is counterintuitive to many researchers since 

speech recognition and speaker recognition seek different 

types of information from speech, namely, phonetic 

information for speech recognition and speaker information 

for speaker recognition. MFCC was first proposed for speech 

recognition and its mel-warped frequency scale is to mimic 
how human ears process sound. Its spectral resolution 

becomes lower as the frequency increases. Therefore, the 

information in the higher frequency region is down-sampled 

by the mel scale. However, based on theory in speech 

production [2][3], speaker characteristics associated with the 

structure of the vocal tract, particularly the vocal tract length, 

are reflected more in the high frequency region of speech. 

This is illustrated in Fig. 1. Fig. 1a shows the schematic of a 

vocal tract. Fig. 1b shows a uniform tube as a vocal tract model 

for a schwa sound.  Fig. 1c shows the acoustic responses of the 

tube at two different lengths. It can be seen that a ΔL (1cm) 

change in the length leads to a much larger shift in F3 and F4 

than in F1. The vocal tract length difference between male 

(average 17 cm) and female (average 14 cm) [2] makes the 

formant structures differ from each other significantly. This is 

the main reason why the trials between male and female in 

speaker recognition are less challenging and they are even 

excluded from the NIST SRE (Speaker Recognition 
Evaluation) [4].  

Motivated by this insight from speech production, this 

study compares the performances between MFCC and linear 

frequency cepstral coefficients (LFCC) in speaker recognition.  

Fig. 2 shows an example of speech spectrum overlapped with 

both the mel filterbanks and the linear filerbanks. It can be 

seen that there are eleven linear filterbanks between F2 and F3, 

but only six mel filterbanks. We hope that, by capturing more 

spectral details in the high frequency region, the linear scale in 

frequency may provide some advantages in speaker 

recognition over the mel scale.  

B. Literature survey 

There are several studies in literature on comparing the 

speaker recognition performances of MFCC, LFCC, and other 

features and on finding an optimal frequency warping function. 

Based on the King speech database and GMM, [5] compared a 

Fig. 1. A) Schematic of vocal tract. B) Simple tube model for 

vowel production (a schwa sound). C) Vocal tract acoustic 

responses for a  length L 16 cm (solid) and length 17 cm 

(L+ΔL). 
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number of acoustic features in a speaker identification task, 

but no significant difference between MFCC and LFCC was 

found. Based on a small database with six males and five 

females and the dynamic-time-warping method, [6] showed 

some advantage of LFCC over MFCC. Based on two different 

criteria, [6] and [7] found that the optimal warping frequency 

for discriminating speaker lies between the mel scale and the 

linear scale. Both [6] and [7] reported a worse performance in 

LFCC than in MFCC even though the optimal functions 
obtained are closer to the linear scale. The speaker 

discriminative power in terms of F-ratio at different frequency 

bands (0-8 kHz) was studied in [9]. It was on a small database 

including 23 males and 13 female speakers and a non-uniform 

warping function was obtained to outperform MFCC and 

LFCC in GMM for a speaker identification task. However 

LFCC has a worse performance than MFCC in four out of five 

conditions in [9]. MFCC, anti-MFCC and LFCC was tested in 

the NIST SRE06 in [10]. Based on a GMM-UBM system with 

factor analysis, [10] found that LFCC gave better performance 

only in nasal and nonnasal consonants, not in vowels. [11] 
used a modified set of LFCC for speaker identification in 

whisper speech and found LFCC is more robust to whisper 

speech. Very recently, [12] evaluated a number of acoustic 

features for speaker recognition using a classifier referred to 

as “GMM-Supervectors”, and found that the LFCC improved 

accuracy over MFCC in five out of eight conditions on a 

private evaluation corpora sampled at 4 kHz. However, there 

is no further detailed analysis in [12] on how the accuracy was 

improved in those datasets by using LFCC. 

Although there were efforts on comparing MFCC and 

LFCC, the results are inconsistent. This might be caused by 
different databases used, different classification methods, or 

even because of the different feature implementation, 

particularly when the source code is not accessible. However, 

to the best of our knowledge, no comparison study has been 

performed based on the current state-of-art speaker 

recognition systems. Furthermore, these studies only present 

the error rates, and no further analysis. 

C. Objectives 

The main objectives of this study are three-fold. First is to 

assess and compare the performances in speaker recognition 

between LFCC and MFCC on state-of-the-art back-end 

systems (the JFA system [13] and the PLDA system [14]). It 

is performed on the NIST SRE10 [4], the latest and 

presumably the most challenging NIST SRE task. Second is to 

further analyze the results and understand the underlying 

mechanism which accounts for our observations. Third is to 

evaluate the noise robustness of both features. Such a study 

will help us with our long-term goal, which is to find an 

optimal frequency-warping function for speaker recognition.  
 

In the rest of this paper, we describe the experiment setups 

including the NIST SRE10 extended core task, the 

configurations for both MFCC and LFCC, and the two state-

of-the-art back-end systems on which the SRE10 task is 

performed. Then we present and compare our results for 
MFCC and LFCC. In addition, their performances under noisy 

conditions are presented. Some explanations are provided for 

our observations. Finally, a summary along with our plans for 

future work are given.  

II. EXPERIMENT SETUP 

A.  NIST SRE10 

In the NIST SRE10 extended-core task, 21,595 English 

recordings from 236 female and 210 male speakers were 

collected from telephone conversations (Tel), telephone 

conversations recorded over a room microphone (Mic), and 

interview conversation recorded over a room microphone (Int). 

Some telephone conversations were in high- or low- vocal 

efforts. An average duration of 2.5 minutes of speech from the 

targeted speaker was present in the telephone conversations. 
The interview recordings were 3 to 15 minutes long. About 

6.5 million trials were tested, each belonging to one of the 

following nine conditions: C1: Int-Int same mic, C2: Int-Int 

different mic,  C3: Int-Tel, C4: Int-Mic, C5: Tel-Tel, C6: Tel-

Tel-high vocal effort, C7: Mic-Mic-high vocal effort, C8: Tel-

Tel-low vocal effort, C9: Mic-Mic-low vocal effort. The trial 

number for each condition is presented in Table I, II, and III. 

B. Development data 

Our development data set comprised data from the NIST 
SRE 2004, 2005, 2006, and 2008 data sets, Switchboard-II, 

phases 2&3, Switchboard-Cellular part1&2, and the Fisher 

database. A total of 23,904 (31,655) telephone speech 

segments from 6,769 male (9,264 female) were obtained. For 

microphone recorded speech, 3,257 (4,183) segments from 

203 male (257 female) speakers were obtained. For all the 

experiments, verification performance was reported in terms 

of equal error rate (EER) and/or the detection cost function 

(DCF) [4]. 

Fig. 2. An example of  speech spectrum overlapped with A)  Mel 
filterbanks,  and B) Liner filterbanks. 
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C. Feature extraction 

A package named RASTAMAT [15] was adapted for 

extracting the MFCC and LFCC features 1 . The parameter 

configurations for both are the same except for the frequency 

warping scales. The speech signal is band-limited to 300-3400 

Hz. 32 filter-banks were used, as shown in Fig. 2. The 19 

cepstral coefficients plus its delta make a 38-dimensional 

feature vector. The analysis window is 20 ms with a shift of 

10 ms. The delta was performed over five frames.  

The voice activity detection for segmenting speech from 

the silence region is based on the provided ASR transcript 

combined with the output of an energy-based VAD system. 
The cepstral mean subtraction and variance normalization was 

applied.  

For the additive noise cases, only the region specified by 

VAD is counted for the signal-to-noise ratio. For reverberant 

speech, simulated room impulses at different reverberation 

times were used for creating reverberant speech.  

D. Two state-of-the-art back-end systems 

Below are the description of the two state-of-the-art back-

end systems we used in this study and their detailed 
descriptions are in [16][17].  

                                                
1 The MFCC/LFCC code is available online at  

http://www.glue.umd.edu/~zxinhui/LFCC_ASRU2011 

The Joint Factor Analysis (JFA) system [16]: The JFA 

[13] paradigm provides an explicit mechanism to model the 

undesired variability in speech. Two separate gender-

dependent universal background models (UBM) with 2048 

mixtures were trained using all of the development data. The 
JFA hyper-parameter sets were also gender-dependent. The 

eigenvoice and eigenchannel matrices (V and U) were trained 

independently. First, a V matrix with 400 columns was trained 

by pooling together all the telephone and microphone 

recordings from the development set. Then, after projecting 

away the information in V from the supervectors, the residual 

term was used to train U=[U_tel U_mic ], with 100 columns 

from telephone data and 50 columns from microphone data. 

The residual matrix D was not trained and set to produce an 

equivalent relevance-MAP with a relevance factor of 16 [16]. 

The I-vectors and Probabilistic Linear Discriminant 
Analysis (PLDA) system [17]:  Both the i-vector extractor as 

well as the PLDA systems were gender-dependent. Baum-

Welch sufficient statistics were collected using the same 2048 

mixture UBMs as in the JFA system. The subspace matrix T 

with 400 columns was obtained by pooling together all the 

telephone and microphone recordings of the development set 

from the corresponding gender. For the PLDA model, the 

same data was used (excluding the Fisher database) to train 

the eigenvoice matrix   with 200 columns and the full-

covariance matrix            . For all the experiments in 
additive noise and reverberation in this study, the PLDA 

scores were normalized using S-norm [17]. For the 

experiments with the original data, only the scores from trials 

Fig. 3. DET (Detection Error Trade-off) curves for  the conditions 2, 5 and 6 in the NIST10 extended core task using MFCC and LFCC (Results for all 

trials (pooled), female and male trials shown in different colours, respectively, upper panel: JFA, lower panel: PLDA) 

Cond. 2 (JFA) Cond. 5 (JFA) Cond. 6 (JFA)

Cond. 2 (PLDA) Cond. 5 (PLDA) Cond. 6 (PLDA)



involving telephone speech were normalized since the 

performance was degraded by S-norm in conditions not 
involving telephone recordings. 

III. RESULTS 

A. Performances of MFCC and LFCC in the SRE10 core-

extended task  

To have a comprehensive performance comparison, the 

results of MFCC and LFCC on both JFA and PLDA are 

presented in Fig. 3, Fig. 4, and Tables I, II and III in different 

forms. Fig. 3 shows the DET curves. Fig. 4 shows the bar plots 

of EER, and Tables I-III show the EERs, the EER difference 

and the relative EER difference between MFCC and LFCC. In 

addition, they are presented for pooled, male, and female trials 

separately. 

The DET curves for three conditions (2, 5 and 6 having the 

most number of target trials) are shown in Fig. 3. It can be seen 
that, in all the DET curves, the LFCC outperforms the MFCC 

for pooled trials (in red color). This is also demonstrated in 

terms of EER in the upper panel of Fig 4 and also Table I 

where LFCC outperforms MFCC in almost all the nine 

conditions for pooled trials (only two outliers with very small 

ΔEER).  It can be seen in the upper panel of Figure 4 and Table I 

that a simple additive score fusion can boost the performance 

in seven out of nine conditions. This indicates that, while 

LFCC outperforms MFCC in pooled trials, they are also 

complementary to each other. 

It can be seen in Fig. 3 that the LFCC consistently 

outperforms MFCC in female trials, but the performances 
between them in male trials are much closer. This suggests 

that LFCC outperforms MFCC in pooled trials mainly due to 

its advantage in female trials.  This advantage of LFCC in 

female trials can be seen in the lower panel of Fig. 4 and Table 

III in almost all the nine conditions on both back-end systems 

(outliers with very small ΔEER). However, the advantage of 

LFCC over FMCC in male trials is not obvious. This 

advantage of LFCC in female trials can be explained by the 

relatively shorter vocal tract in female speakers and the 

resulting higher formant frequencies in their speech. LFCC 

benefits more in female speech by better capturing the spectral 
characteristics in the high formant frequency region.   

Tables I, II, and III show all the EERs, the EER difference 

between MFCC and LFCC, and also the percentage relative to 

the EER of MFCC. It can be seen that the LFCC is a clear 

winner in pooled trials and in female trials.   

B. Performances of MFCC and LFCC in additive noise 

Fig. 5 shows the PLDA results of MFCC and LFCC in 

additive noise for all the trials in Condition 5, and the trends 

we observed are similar on both genders. Due to the space 
limitations, only the results for the Condition 5 are presented 

here. In the case of the white noise at 0dB SNR, compared to 

the clean case, the EER is increased by 14.4% for MFCC, and 

by 16.6% for LFCC. In the case of babble noise at 0dB SNR, 

Fig. 4. EERs for the conditions 1-9 in the NIST SRE10 extended core task using MFCC and LFCC (Results for all 

the trials (pooled), female and male trials shown in different colours, respectively, fusion results are based on 

adding the scores of both MFCC and LFCC. Left panel: JFA, right panel: PLDA) 

JFA (pool) PLDA (pool)

JFA (male trials) PLDA (male trials)

PLDA (female trials)JFA (female trials)



compared to the clean case, the EER is increased by 10.6% for 

both MFCC and LFCC. 

The results show that LFCC is as robust as MFCC in 

babble noise, but not in the white noise. The energy in the 

high frequency region of speech is usually weak and it is more 

susceptible to noise corruption. LFCC has more filterbanks in 

the high frequency region and this is why it is less robust in 

the white noise than MFCC.   

C. Performances of MFCC and LFCC in reverberation 

Fig. 6 shows the PLDA results of MFCC and LFCC in the 

reverberant speech in condition 5 for all the trials, only male 

trials and only female trials, respectively. In the case of RT30 

500 ms, compared to the clean case, the EER for female trials 

is increased by 12.1% for MFCC and by 9.8% for LFCC.  In 

the case of RT30 500 ms, compared to the clean case, the EER 

for male trials is increased by 8.2% for MFCC and by 8.0% 

for LFCC. The results show some advantage of LFCC over 

MFCC in reverberant speech, but mainly for female trials.  
One possible explanation for this advantage is the narrow-

banded linear filter-bank [18]. The early reflection in a room 

impulse response is usually less than 25 ms and it can be 

captured by the narrow-banded linear filter-bank in the high 

frequency region and removed through the cepstral mean 

subtraction, whereas the mel filterbank in the high frequency 

region is broad-banded and does not have this property. 

IV. DISCUSSIONS 

Our results in SRE 2010 Conditions 6 and 7 suggest that 

LFCC may have some advantages in vocal effort and is also 

consistent to the results in [11]. The intuition is that vocal 

efforts are related to the voice excitation and reflected in the 

low frequency region of speech. MFCC emphasizes this 

region, whereas LFCC does not. However, our observations in 
Conditions 6 and 7 were not repeated for male trials in the 

SRI-FRTIV corpus [19]. Only slight improvement in the male 

trials was obtained, so it does not confirm that LFCC helps in 

vocal effort, although the improvement of LFCC over MFCC 

was still observed in the female trials. Further analysis is 

needed to understand the potential advantage of LFCC on 

vocal effort.  

In addition to the mel filterbank and the linear filterbank, 

the cochlear or auditory filterbank was also studied for 

speaker recognition by some researchers [12]. However, its 

performance is not as good as MFCC and LFCC [12]. One 

explanation is that the auditory filterbank center frequencies 
are in the tonotopic order and have even lower resolution in 

Conditions 
(TGT/NTGT trial number, 

in thousands) 

C1 
(4.3/796.0) 

C2 

(15.1/2789.5) 

C3 
(4.0/637.9) 

C4 
(3.6/756.8) 

C5 
(7.2/409.0) 

C6 
(4.1/461.4) 

C7 
(0.4/82.6) 

C8 
(3.8/404.8) 

C9 
(0.3/70.5) 

JFA 

MFCC(LFCC) 2.46( 2.17) 3.63(3.10) 3.77(3.41) 3.14(2.68) 3.49(3.27) 7.16(4.98) 9.16(4.09) 2.82(2.28) 1.98(2.00) 

ΔEER -0.29 -0.53 -0.36 -0.46 -0.22 -2.17 -5.07 -0.54 0.01 

ΔEER/EERMFCC -11.8% -14.7% -9.5% -14.8% -6.2% -30.4% -55.4% -19.1% 0.7% 

Fusion 2.05 2.80 2.81 2.43 2.98 5.17 5.08 1.96 1.61 

PLDA 

MFCC(LFCC) 1.88(1.73) 2.89(2.79) 2.84(2.96) 2.70(2.25) 3.26(2.76) 5.95(4.97) 8.25(4.95) 2.79(2.25) 1.60(1.20) 
ΔEER -0.15 -0.10 0.12 -0.45 -0.50 -0.98 -3.29 -0.54 -0.39 

ΔEER/EERMFCC -8.1% -3.5% 4.1% -16.6% -15.4% -16.5% -39.9% -19.4% -24.7% 

Fusion 1.61 2.36 2.69 2.13 2.66 4.80 5.53 2.10 1.15 

 

Conditions 
(TGT/NTGT trial number, 

in thousands) 

C1 
(2.0/347.0) 

C2 

(6.9/1215.6) 

C3 
(2/303.4) 

C4 
(1.9/364.3) 

C5 
(3.5/175.9) 

C6 
(1.8/191.8) 

C7 
(0.2/39.9) 

C8 
(1.4/145.0) 

C9 
(0.1/29.7) 

JFA 

MFCC(LFCC) 1.14(0.91) 1.77(1.71) 2.64(2.64) 1.87(1.70) 2.53(2.78) 5.71(4.53) 5.53(3.94) 2.00(2.06) 1.22(0.83) 

ΔEER -0.23 -0.06 0.00 -0.17 0.25 -1.18 -1.59 0.06 -0.39 

ΔEER/EERMFCC -20.3% -3.5% -0.1% -9.0% 9.9% -20.7% -28.7% 2.8% -32.2% 

PLDA 

MFCC(LFCC) 0.70(0.92) 1.37(1.34) 1.95(2.17) 1.93(1.77) 2.55(2.40) 4.95(4.59) 4.96(4.37) 1.42(1.86) 0.85(1.02) 

ΔEER 0.21 -0.04 0.21 -0.16 -0.15 -0.35 -0.59 0.44 0.17 

ΔEER/EERMFCC 30.2% -2.6% 11.0% -8.2% -5.8% -7.1% -11.9% 30.9% 19.4% 

 

Conditions 
(TGT/NTGT trial number, 

in thousands) 

C1 
(2.3/449.1) 

C2 

(8.2/1573.9) 

C3 
(2.0/334.4) 

C4 
(1.8/392.5) 

C5 
(3.7/233.1) 

C6 
(2.3/269.7) 

C7 
(0.2/42.7) 

C8 
(2.4/260.0) 

C9 
(0.2/40.8) 

JFA 

MFCC(LFCC) 3.40(3.16) 4.89(4.13) 4.74(4.13) 4.07(3.51) 4.27(3.66) 8.26(5.30) 11.40(4.31) 3.32(2.38) 2.44(2.66) 

ΔEER -0.24 -0.76 -0.61 -0.57 -0.61 -2.96 -7.09 -0.94 0.21 

ΔEER/EERMFCC -7.1% -15.5% -12.9% -13.9% -14.3% -35.8% -62.2% -28.3% 8.8% 

PLDA 

MFCC(LFCC) 2.63(2.33) 3.87(3.89) 3.39(3.40) 3.35(2.62) 3.75(3.06) 6.38(5.18) 11.28(5.61) 2.96(2.10) 1.45(1.21) 

ΔEER -0.30 0.02 0.01 -0.72 -0.70 -1.20 -5.67 -0.86 -0.24 

ΔEER/EERMFCC -11.5% 0.5% 0.2% -21.7% -18.6% -18.8% -50.3% -29.0% -16.5% 

 

Table II. The EERs (%) for the male trials  

Table III. The EERs (%) for the female trials  

Table I. The EERs ( %) for all the trials (female and male trials are pooled) in conditions 1-9 in the NIST SRE10 

extended core task using MFCC and LFCC. Results from both JFA and PLDA reported. Fusion results are based 

on adding the scores of both MFCC and LFCC, ΔEER= EERLFCC - EERMFCC) 



the high frequency region than the mel filterbank. One 

possible strategy to enhance the performance of an auditory 

feature is to use a linear scale but integrate other processing 

procedures for additional benefits such as noise robustness.  

V. CONCLUSION 

This study was motivated by insight from speech 

production that some speaker characteristics associated with 

the structure of the vocal tract, particularly the vocal tract 

length, are reflected more in the high frequency region of 

speech. Based on two state-of-art speaker recognition back-

end systems, this study compares the performances between 

MFCC and LFCC in the NIST SRE 2010 extended-core task. 

Our results in SRE10 show that, while they are 

complementary to each other, LFCC consistently outperforms 

MFCC mainly due to its better performance in the female 

trials. This can be explained by the relatively shorter vocal 
tract in females and the resulting higher formant frequencies 

in speech. LFCC benefits more in female speech by better 

capturing the spectral characteristics in the high frequency 

region. In addition, our results show some advantage of LFCC 

over MFCC in reverberant speech. LFCC is as robust as 

MFCC in the babble noise, but not in the white noise. In 

conclusion, our results suggest that LFCC should be more 

widely used, at least for the female trials, by the mainstream 

of the speaker-recognition community.  

Our current and future work aims to find an optimal 

frequency warping method (for male and female trials, 
respectively) for the speaker recognition task, and also to 

extend and test the linear frequency range to broadband 

instead of only in the telephone frequency band.  
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Fig. 5. EERs for condition 5 with artificial additive noise in the 

test data. (Upper panel: white noise , and Lower panel: babble, 

the results are for all the trials and are based on the PLDA) 

system 

Fig. 6. EERs for condition 5 with artificial reverberation in the 

test data on the PLDA system. (Upper panel: all the trials, 

Middle panel: male trials, and Lower panel: female trials) 
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