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Abstract—Recently there has been interest in combined gen- conditions using model-based compensation/adaptation ap
erative/discriminative classifiers. In these classifierselatures for  proaches [4]. Third, since generative kernels derive featu
the discriminative models are derived from generative kerels. . generative models the parameters of these models can be
One advantage of using generative kernels is that systemati . N .
approaches exist how to introduce complex dependencies tmyd re—estlm_ated to ext_ract more dlscrlmlnatlye featuresviBus
conditional independence assumptionsl Furthermore, by u.sg WOI’k W|th genel’atlve keme|S haS eXam'ned Sevel’a| feature
generative kernels model-based compensation/adaptatiotech- configurations. The use of log-likelihood features extdct
niques can be applied to make discriminative models robust from whole-word and context-dependent HMMs was inves-
to noise/speaker conditions. This paper extends previousalk  yigated in [5] and [6] respectively. However, the features
with combined generative/discriminative classifiers in seeral . . . . .
directions. First, it introduces derivative kernels basedon context- 'n thes_e approaches mhented_ the undgrly_lng HMM condi-
dependent generative models. Second, it describes how dexiive tional Independence aSSUmpt|0nS. Derivative featuree hav
kernels can be incorporated in continuous discriminative nodels. been examined in [4] and [7]. However, the generative models
Third, it addresses the issues associated with large numbesf ysed in these approaches were whole-word models and small
classes and parameters when context-dependent models andlt vocabulary recognition tasks were considered.

dimensional features of derivative kernels are used. The ggoach Thi tends th . K with derivative f
is evaluated on two noise-corrupted tasks: small vocabulgr IS paper extends the previous work wi erivative tea-

AURORA 2 and medium-to-large vocabulary AURORA 4 task. tures to handle medium/large vocabulary speech recognitio
tasks. This requires three fundamental issues to be aédress

. INTRODUCTION The first issue is the large number of context-dependent dis-

Most automatic speech recognition (ASR) systems useminative classes. The approach based on phonetic decisi
generative models, hidden Markov models (HMM), as thieee clustering [6] to ensure that sufficient amount of irain
acoustic models. Likelihoods from these models are conabingata exists for robust parameter estimation is adoptedh Wit
with the prior, the language model, using Bayes’ rule tderivative features parameter tying introduces anothareis
yield the sentence posterior. Although successful, it idelyi When more than one distinct generative model is used to
known that the underlying models are not correct. This hastract features the discriminative parameters beconstsen
lead to interest in discriminative classifiers which dihgct to the order of components in these models. A simple approach
model sentence posteriors/decision boundaries given afsets proposed where discriminative parameters associatéd wi
features extracted from the observation sequence. There darivatives are tied within the states. The third issue & th
several options how features can be extracted from obsemvatarge margin training should be used with high-dimensional
sequences. This includes event detectors [1], generaiveels features and limited amount of training data, however,anirr
[2] and other parametric and non-parametric approaches [Bjplementations [8] can not handle high-dimensional fiesgtu
Event detectors make use of multiple parallel feature sisealn this paper an on-the-fly variant of minimum Bayes’ risk
which operate at different levels of granularity such asdyortraining is performed.
multi-phone and phone. This flexibility enables a wide range
of short and long-spanning dependencies. However, themturr
applications of event detectors do not attempt to improee th
underlying acoustic models, the recognition results frbase Generative models are well known for their natural han-
models are used to derive features. Additionally, the issudling of variable length sequences, adaptability to vagyin
associated with adapting feature streams to noise/speaheise/speaker conditions, efficient learning and infegeale
conditions are not easy to handle. gorithms. For discriminative classifiers these issues ate n

Generative kernels derive features from generative modelssy to handle. This section provides details on a combined
and have several advantages. First, the use of competing lagproach which offers the benefits of generative models with
likelihoods, first and higher order derivatives of log-likeod the additional power of discriminative classifiers.
offers a systematic approach of adding new acoustic feature Consider a framework illustrated by Figure 1 where the
In contrast to log-likelihoods the derivatives do not irihershaded part corresponds to generative models and the rest
conditional independence assumptions from generativeetsodo discriminative classifiers. The generative part is a -stan
and enable other short and long-spanning dependencies. $&cd model-based HMM compensation/adaptation framework.
ond, the generative kernels can be adapted to noise/spedkigen noise and speaker-dependent observation sequ@nce

II. COMBINED GENERATIVE AND DISCRIMINATIVE
CLASSIFIERS



generative model computed for class from observation
sequencé [2]

Adaptation/
Compensation

A Hypotheses g(0|wi) = [1085 (p(0|w,-))] (4)

: A { Hypotheses ~ Another example is shown in equation (5) where, in addition
Generaive | 9(©) Discriminative to the correct class;, log-likelihoods of competing classes
kernel Classifier are also appended) [2]
o} Final
*********************** Hypotheses log (p(Olw1))

log (p(Olws)) 5)

Fig. 1. Combined generative and discriminative framework P (Olw;) =

log (p(Olwx))

the parameters of_ .the canonical HMMs are compensat?ge features derived from basg and appended? log-

to the target conditions using model-based techniques. Tli&jihood kernels inherit conditional independence assu
discriminative part makes use of these compensated HMMsns of the underlying generative models. In contrast p lo
and observation sequences to extract a set of featurese ThgSihood kernels features derived fromerivative kernds
features handle the mapping from variable length sequeinces,aye different conditional independence assumptions.- Con

a fixed dimension and incorporate a range of short and longger ,-th order base derivative kernel where feature vector
spanning dependencies. The advantage of this framework,is; ihe following form

that the features extracted from the compensated HMMs will

be automatically adapted to target noise/speaker conditid log (p(Olwi))

is then possible to train noise/speaker-independentintizta- o B Valog (p(Olw:))

tive classifiers o (Olws) = : 6)
In this work vector Taylor series (VTS) model-based com- V4 log (p(Olw;))

pensation is applied to map HMM parameters to target noi

conditions. The first-order VTS scheme described in [9]

used. The mismatch function between the static part of cle

x§ and noise-corrupted; observation is given by

eaddition to correct class log-likelihood the featureteeén
gﬂuation (6) incorporates derivatives up to the ordewith
respect to generative model parameters. Consider the first-
order derivatives taken with respect to comporfit output

0} =x; +h+ Clog (1 +exp (C_l (nf —x§ —h))) (1) distribution parametera ., = {fjm, X;jm}
T
whereC is a discrete cosine transformation matixs a unit v lo Olw:)) — POV lo o lgi™ 7
vector,n{ andh are additive and convolutional noise vectors. "J‘""g(p( i) ; (6:10) V.. Tog(plod|0:™)) (1)
Applying the first-order VTS expansion and taking expeotati
with respect to static parameters of comporit yields the
following form of updated mean and covariance

These derivatives are functions of component posteriob-{ro
abilities, P(#!"|0), which depend on the whole observation
sequence. This means that the use of derivatives introduces
p15,,= Clog (exp (C1 (B2, — pin)) +oxp (C ' paa)) (2) additional dependencies into the features. Higher-oreevat

T . T tives offer more complex dependencies [7].
mjm (= Jjm) B (T = Jjm) ©) Since not all first and higher order derivatives are equally

where i, and i, %, are convolutional and additive noisediSCriminative a subset of them are normally used. In [14]

parameters estimated using maximum likelihood (ML) tragni the derivatives with re_spe_ct_to _the mean vectdr{m)( were
[10], Lis identity matrix,J ;,, is @ component-specific Jacobiar{Ound to be thg m°$t discriminative f|rst—order derivativeise
matrix computation of which is fully described in [9]. eature vector in this case has the following form
Several options exist to estimate the canonical HMM pa- [ log (p(O|w;))
rameters. One approach is to train HMMs on clean data. POOVS 2 (o, —
Another approach is to adaptively train HMMSs using ML [11], (0,710)%, 1" (0r — p1.1)
[12] or minimum phone error (MPE) [10], [13] training on
multistyle data collected in various noise/speaker caorst

=}
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This allows more data to be used in estimating canonical , XT: p(g?%@g;}\f(ot — 1)
model parameters. ¢," (Olw;) = =1 : (8)
3> P(0;'10)251" (00 — piza1)

Il1. DERIVATIVE KERNELS
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Generative kernels in Figure 1 extract features from genera
tive models. The simplest example dog-likelihood kernels.

N,M —1/2,
The base If) feature in equation (4) is a log-likelihood of P06, |0)Zy iy (08 — )

=

~
Il
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where N is the number of states antll is the number of the SVMs the feature vector of the first-order derivativenledr
components in every state. Note that consistently with rothieas the following form [14]
work in this area standard deviation rather than variance

normalisation is performed [4]. log (p(0|wi)) — log (p(0|wj))
In order to illustrate the advantages of using first and highe (6, wi,w;) = Vx log p(6|wi) 9)
derivatives consider the following example [7]. A discrete ~
0.5 0.5 Valog (p(Olw;)

observation sequence. Note that the feature vector in equa-
V=05 tion (9) is ajoint feature vector which incorporates features
)=10.5 simultaneously from two classes. For multi-class classifit
with SVMs schemes such as majority voting [14], [4] and
Fig. 2. Example discrete HMM topology, transition and ottprobabilites tree-based reductions [16] have been examined. However,
with large number of words the number of binary SVMs
HMM with the topology shown in Figure 2 is used to modetequired in these approaches becomes large. One option to
two classesv; andws. The data for the two classes are  address this issue is to use a multi-class SVM [5]. However,
with high-dimensional derivative features and large numbe
wi: AAAR, BBEB of classes the total dimensionality of the joint featuretoec
wp :  AABB,BBAA becomes huge. This makes constraint satisfaction of marimu
L ) margin training computationally infeasible. Therefore[8)
When ML training is used to estimate HMM parameterg,q jikelihood rather than derivative kernels were used.
then the state transition and output probabilities shown iNthe 56 of acoustic code-breaking approach is suboptimal in
Figure 2 are obtained. Since all estimated distributiomstyi g0\ era| ways. The first issues is that the discriminativeehisd
equal probabilities the HMM is not capable of distinguishinyefineq on a word-level which is not useful for medium/large
between the two classes. The situation is different withveler . ary tasks. The use of subword models is complicated a
tive kernels. Table Il shows values of selected derivative,,,ne houndaries are hard to reliably estimate. Anotheeiss
When the first and second order derivatives are computed h acoustic code-breaking is that isolated segmentserath

than continuous sequences are modelled.

@ 1_0@0.@ 0_5® where w; and w; are two classes an@ is a segment of

TABLE |
FEATURE VECTOR VALUES FOR SECONPORDER GENERATIVE KERNEL )
B. Continuous case kernels

Feature Classwi Classwo
AAAA | BBBB || AABB  BBAA This paper extends derivative kernels to classify contirsuo
VV@T %5803 'é’-f? %3;’3 '8-2? sequences by using continuous discriminative models 5], [
2A 9. . -9. -uU. . . . .
Vouvi, || 017 | 017 || 006  -0.06 [6]. The model considered in this work has a log-linear form

P(W|O) = exp(a’¢(0, W, 9)) (10)

respect to output symbal in state2 (line 1 and 2) then all >w exp(a’d(0, W', "))

training examples may be correctly classified provided nofhereq are discriminative parameters aéids an alignment.
linear decision boundaries can be modelled. With the crosgy important decision to make is at which leweWwill segment
state second order derivatiVe 4 V1 , (line 3) alinear decision the data as this defines the level of conditional indeperalenc
boundary is sufficient. This second order derivative is bépa assumption in the model. Segmenting data at the word-level
of capturing whether label changes or not on transition frop not useful for medium/large vocabulary acoustic models.
state2 to states. Similarly to the work in [6] here the data is segmented at
the phone level. Figure 3 illustrates the structure of thel@ho

in equation (10) by a lattice typically used in discrimiwati

A. Isolated case kernels HMM training [17]. There every word arc is segmented into

IV. CLASSIFICATION WITH DERIVATIVE KERNELS

The derivative kernels from Section Il can be directly 17 49 t
applied for isolated word classification tasks. One option t
extend them to classify sequences rather than isolatedsword
is to use acoustic code-breaking [15]. In this approachgeco
nition of continuous speech is broken down into classificatie—>"
of a sequence of isolated speech segments. Given a woild-leve
hypothesis with alignment an isolated discriminative silféer
is sequentially applied to every segment. One classified use
for this task are binary support vector machines (SVM). Fdrig. 3. Structure modelling approach in continuous disrative models
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a sequence of phone arcs. This allows context-dependesgpectively. The derivative features however have a fixed
generative models attached to phone arcs to be directly useder. Consider an example on the left in equation (14) where
in derivative kernels. The features extracted are shown fior simplicity the class label is omitted and one-state HMM
Figure 3 as the column vectors. Note that for simplicitis assumed.

context-independent labels are shown. T ((0)) T (p(0))
Given observation sequen€2 and hypothesised word se- @o v Ogl p( (0)) @o v Ogl p( (0))
guenceW aligned by@# the model in equation (10) assigns a1 A1 108 P @ A1 108 AP (14)
score equal to the exponent of the dot-product below : : : :
L, Ly QN v>\]\/[ log (p(O)) @ v)\M log (p(O))
a'¢p(0,W, 9)22 " d(Oy(u,.0), wi)"’Z log (P(w;))(11) When several generative models extract features for one dis
=1 j=1 criminative class then the order of components in these mode

The dot product in equation (11) is a summation of phonean adversely affect the discriminative ability of derivas.
level dot products and word-level language model probabifPne option to overcome this is to ensure that a small number
ties. Features used at the phone-level are those extragteddb generative models is used by any discriminative class.
derivative kernels from generative models However, this can introduce robustness issues as fewnirigai
5(w, w1) 2 (Olwr) _exam_ples will be available_. The option c_ons_idered_ in_ thiskwo
e ! is to tie parameters associated with derivatives withitestas
$(0,w) = : (12)  shown on the right in equation (14). With limited amount of
§(w,wk, )Pt (Olwk,) training data this approach can improve robustness by negluc

wherew is one of K, context-dependent classes. The vectdf® number of parameters by a factor of.

in equation (12) is a high-dimensiongdint feature vector, B, Parameter estimation
the use of delta functions ensures that only @f¢O|w;) is
active on every phone arc. The language model probabilities
equation (11) are obtained in this work frornegram model.
During training/decoding the most likely alignment

0/{6. W} = argmaxy o wy (@ ¢(0,W,0)}  (13)

with respect to discriminative parametets theoretically Faior Z > P(W|O")L W, W) (15)
should be used. The inference problem in equation (13) can be r=1'w
solved using the semi-Markov equivalent [18] of the Viteabi where loss functionrC(W, W) may be defined on a sen-
gorithm. In [19] the impact of using the most likely alignntentence, word, phone or frame level. In this work the standard
was investigated with the appended log-likelihood featg’® phone-level loss function [17] is used. Alternatively, niarge
on a digit string recognition task. Small improvements wemimensional features and limited amount of training datgda
observed over using alignments produced by HMMs. In thisargin training may be more appropriate. However, current
work the use of optimal alignment was not investigated arichplementations of large margin training [8] can not handle
the alignment provided by HMMs was adopted. large dimensional features. Therefore in this work a vargdn
MPE training [6] is used.

In MPE training of log-linear models standard gradient-

The standard criterion to train log-linear models is a con-
ditional maximum likelihood (CML). For tasks such as ASR
minimum Bayes'’ risk (MBR) training is a popular alternative
approach. The objective function in MBR training is given by

V. PARAMETER TYING AND ESTIMATION

A. Parameter tying based optimisation is performed
When context-dependent generative models are used the
number of possible classes becomes large. It is unllkelyv Fapelx Z Z Cla a|O( )) (O(r w) (16)
that the amount of training data available will be sufficient —_ Ha)
to robustly estimate parameters of all classes. The stdndar 2€hen

approach with generative models is to ste-level phonetic whereC(a) is phone arca contribution to the average accu-

decision trees to cluster phonetically similar states ttogre racy, P(a|O) is arc posterior probability ang(O, w) is given

[20]. Since discriminative classes in this work are definad dy equation (12). Storing high-dimensional features agddo

a model rather than state level the trees created for g@reeraévery phone arc as in Figure 3 is impractical for mediuméarg

models can not be re-used. Therefore, another saetooel- vocabulary tasks. In this paper on-the-fly training is perfed

level decision trees is created as described in [6]. where every lattice is passed through twice. The first pass
When derivative features are used there is an additioredtracts derivative features on the fly and accumulates dot

issue to consider. In contrast to log-likelihoods the dsiies products with discriminative parameters. These phonetlev

are computed with respect to components of generative modet products are then combined with language model prob-

states. The clustering procedure applied in phonetic ecisabilities in a lattice-based forward-backward algorith¥][

tree building is insensitive to the order of states/commpise to yield arc posterior probabilities and contributions. the

and components when used at the model and state lesetond pass the gradient in equation (16) is accumulated.



Although every derivative is computed twice there is no neegse of isolated discriminative classifier with derivativerhels
to keep features attached to phone arcs. The derivatives gaided large gains over the VTS. The second block in Table II
be computed on-the-fly and destroyed onceais finished. shows the performance of continuous discriminative models
Regularisation is important when estimating parameters e one-dimensional featuras) show results comparable
log-linear models. In this work regularised training is petto the performance of SVMs but have significantly fewer
formed where the final objective function to maximise hasarameters. The derivative featurég™ improve the result
the following form of ¢ relatively by 10%, however, the number of added
1 parameters is approximately half of those available to the
Fla) = Fupe(a) — 5 (a — )" S, (@ —ag)  (17) HMMs. Comparing the performance of the isolated SVMs and

ntinuous derivative kernels it can be seen that modelling

The second term in equation (17) originates from a Gaussi%ﬁ | her than isolated ) )
prior. The mean of the prior has the form whole sentences rather than isolated segments gives €onsis

: tent gains. The same was observed with the appended log-
af) =1 0 ... 0] (18) likelihood kernels in [5].

which in equation (10) would yield the generative moded AURORA 4
performance. The weight matri¥, in this work has a
diagonal form where a separate and o4 weights are used
for parameters associated with log-likelihood and deirrest
respectively.

AURORA 4 is a noise-corrupted medium/large vocabulary
task based on the Wall Street Journal (WSJ) data. Two
configurations of canonical HMMs were considered. The first
repeats the previous setup where the HMMs are trained from
VI. RESULTS clean data (SI-84 WSJO0 part,14 hours). In the second more

This section describes experiments with derivative kerimel @dvanced VTS-adaptive training (VAT) is used to obtain the
AURORA 2 and AURORA 4 task. Only first-order derivativeganonical HMM [10], [12]. For both setups the HMMs are
with respect to mean vectors are considered. For all systefidte-clustered triphones-8140 states) with~16 compo-
the continuous discriminative models are initialised wite nents/mixture. Model-based noise compensation is done in
sparse parameter vector in equation (18) to yield generatfio cycles where multiple (4) iterations of VTS compengatio
model performance on the first iteration. Similarly to othetre performed for the training and test data, the supervisio
work in this area RProp optimisation is performed [1]. T&YPothesis is updated after each cycle. The discriminative
prevent over-training a subset of test data was used to stBpdel is based oy and ¢, features. The parameters of

training, Set A for AURORA 2 and Set B for AURORA 4. discriminative classes are tied to yield 47 and 4020 classes
Evaluation is performed using the standard 5000-word WSJO

A. AURORA 2 bigram model on four noise-corrupted test sets based on NIST

AURORA 2 is a connected digit string recognition taskNov'92 WSJO test sékt.

The number of classes is 11 plus teel and sp model. The first configuration investigates the usefulness of deriv

The generative model of digits is a whole-word HMM withtive kernels based on context-dependent HMMs with differen

16 states and 3 components/mixture trained using ML on thember of discriminative classes. Table Il shows AURORA 4

clean data. The setup used follows the one described in [Adcognition results. The first block gives baseline perfamoe

The continuous discriminative model is based on derivative

featuresp.™ in equation (8), no language model is used. As TABLE I

g . . . AURORA 4 RECOGNITION RESULTS BASED ON CLEANTRAINED HMM s
a contrast another model is built based on one-dimensiona

0 : . LT
featuresoy in equation (4). The nu_mber of d|scr|m|nat|ve Classes| System Saate X BTest sgt 5 Avg
parameters is 21,554 and 13 respectively. The multi-stgta d tied o
is used for training. | [ VTS ] [ 71 153 121 23] 17.9]
0
The word error-rate (WER) averaged over 0-20 dB test data 2 76 146 118 222 172
TR 47 m yes || 75 141 113 21| 166
of the VTS-compensated HMMs (VTS) and discriminative by ho 74 143 117 219| 16.9
classifiers is shown in Table II. The first block quotes the 30 66 142 107 218 167
4020 im yes || 6.8 137 106 21.3| 16.2
TABLE Il b no 6.7 135 102 21.1| 16.0
AURORA2RECOGNITION RESULTS BASED ON CLEANTRAINED HMM s
Test set of the VTS-compensated HMMs. The second block gives
System Avg . .. .
A B C results for 47-class discriminative model based @h and
\s/\T/f/l g-g 97’-}1 g-i’ ?-g ol™ features. The first line in the second block shows that
= ' ' ' = the use of one-dimensionall features gives gains over the
%, |3 2 82 18 VTS although th ber of added is only 47
Hm 70 66 76/ 70 although the number of added parameters is only 47.

. . . . 1Test set A is clean, set B has 6 types of noise added, set Cédaannel
acoustic code-breaking results with binary SVMs [4] as d@isortion introduced and set D has both the additive noigk the channel

scribed in Section IV-A. As can be seen from Table Il theistortion. Average SNR in noise-corrupted data is 10 dB.



The next two lines show that whep!™ features are used to extract features from observation sequences. Previods w
then arbitrary ordering of components in HMMs has a clean small vocabulary tasks with whole word/phone models has
impact on discriminative model performance. The third klodbeen extended to allow context-dependent models to be used.
in Table Il shows results for 4020-class discriminativedab At the phone level, in addition to log-likelihood, the firstder
in the three cases described above. As in the case of ditivatives with respect to HMM mean vectors are used as the
classes the use of one-dimensional features yielded gaérs deatures. Parameter tying and estimation with large number
the VTS. The addition of derivatives similarly improved thef discriminative classes and high-dimensional featuseder
results further. As discussed in Section V with large numbecribed. The performance of continuous discriminative ehod
of classes the impact of arbitrary component ordering vgas evaluated on two noise-corrupted tasks: AURORA 2 and
expected to be small. The results in Table 1ll confirm thiBURORA 4. Consistent gains have been observed over VTS-
by showing that tying parameters instead has lead to a sn@mpensated clean-trained ML, VTS adaptively trained ML
drop in classification accuracy, However, since the numband MPE HMM systems.
of parameters in the tied case is less by a factor of 16 the
within-state tying is useful for making compact discrintiue
models based on derivative kernels. Comparing the secahd anAnton Ragni is jointly funded by EPSRC, HTK and Toshiba
third block consistent gains can be observed from using mdr@search Europe Limited.
discriminative classes.

The second configuration used a VTS adaptively trained
HMM system (VAT). Note in this configuration both the [ G- Zweig and P. Nguyen, “A segmental CRF approach to langeab-

: Ll . . . ulary continuous speech recognition,” roc. ASRU, 2009.
generative and discriminative models are trained on myléis  [2] N. Smith, “Using Augmented Statistical Models and Sc&aces for
data. The foII(_)wing table shows the performance of baseline C|azSSiﬁ_Caéit0;‘ll," “Féh.g)écc:]isrzigtagﬁ%ncvambsriefigrﬁegg\l/zrﬁgg%h o random
VAT, MPE,_tramed _VAT (MP,E_VAT) from [21] and 4020- ?éldgeallgsumr-r’]arfof the JHS CLSP 2010 gummer workshopPrioe.
class continuous discriminative models basedjrand ¢;™ ICASSP, 2011.

features. Comparing the VAT in Table IV (line 1) and the[4] M. Gales and F. Flego, “Discriminative classifiers wittiaptive kernels
for noise robust speech recognitiorGomputer Speech and Language,
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