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ABSTRACT

We propose a simple yet effective method for improving
speech recognition by reranking the N-best speech recog-
nition hypotheses using search results. We model N-best
reranking as a binary classification problem and select the
hypothesis with the highest classification confidence. We use
query-specific features extracted from the search results to en-
code domain knowledge and use it with a maximum entropy
classifier to rescore the N-best list. We show that rescoring
even only the top 2 hypotheses, we can obtain a significant
3% absolute sentence accuracy (SACC) improvement over a
strong baseline on production traffic from an entertainment
domain.

Index Terms— N-best reranking, Voice search, Lan-
guage modeling, Maximum entropy modeling

1. INTRODUCTION

Nowadays, smart devices such as smart phones and TV are
becoming more and more popular as they provide people with
convenient ways to find information related to entertainment.
However, traditional keyboard typing is not an efficient way
for input on such devices. Instead, voice input based on au-
tomatic speech recognition (ASR) is a more natural alterna-
tive [1, 2, 3]. Thus, the quality of an ASR system is critical to
the success of such smart systems.

In ASR systems, the language model (LM) provides a
likelihood for each recognized sentence. N-gram language
models are by far the most common, as they provide excellent
modeling power while being fast to train and easy to com-
pile into finite state transducer (FST) decoders [4]. However,
because of the limited language context they model,n-gram
language models may output ungrammatical or implausible
word sequences [5]. Another drawback ofn-gram language
models is that they cannot easily capture domain knowledge:
at most they can be trained on domain-specific data, but they
can’t take into consideration query-specific information.For
example, a language model that is broad enough to model
naturally spoken queries may not be able to disambiguate
between acoustically confusable sentences such as “I say”
and “Ice Age”. However, if it is known that the input is a
query meant for an entertainment search system recognizing

TV shows, music, apps, etc, it becomes more likely that “Ice
Age” is what users wanted. There are many other examples
where words are acoustically confusable, and a broad lan-
guage model is not able to pick the right phrase, such as “Leap
frog” versus “sleep frog”, “Halo Reach” vs “halo wheat”,
“Pinterest” versus “interest”, or “Siri” versus “series”.How-
ever, we can accurately detect all of the errors if we send them
as queries to a search backend and examine the search results.

Even when the right transcription is not the top recogni-
tion hypothesis, it is often in the N-best hypotheses list. In
this study, we found that among all the recognition errors we
found in our test sets, 30% contain the correct recognition
result among the top 20 hypotheses. Furthermore, most of
the correct results occur within top five hypotheses. Table 1
shows the error distribution at different N-best positions. No-
tably, if the correct recognition result is in the N-best list, 44%
of the time it occurs in the second position.

Table 1: N-Best error distribution in different position

Rank position Error percentage
2 44%
3 20%
4 13%
5 9%
6+ 14%

These observations motivate us to rerank the speech N-
best list using search results as features. A benefit of such an
approach is that it is query specific, thus we can improve in-
frequent queries that are usually not handled well by a generic
language model which naturally puts more modeling power
on the head of the distribution. As we will see in our exper-
iments, this approach significantly improves speech recogni-
tion accuracy, increasing the sentence-level accuracy by3%
even when we only rerank the top 2 hypotheses.

This work is to our knowledge the first publication that
reports successfully exploiting search results directly to im-
prove speech recognition accuracy. We formulate the prob-
lem as a binary classification problem and model it with a
maximum entropy classifier whose output is used for rerank-
ing hypotheses and for rejecting bad utterances.



2. RELATED WORK

There is a lot of research in N-best rescoring in the natu-
ral language processing (NLP) and speech domains [6, 7].
Most existing speech reranking approaches focus on rerank-
ing lattices with a large language model or with additional
features [5, 8, 9, 10, 6, 11]. Reranking with additional fea-
tures usually works in the scenarios where there is additional
knowledge that is not available or too expensive to compute
in the first pass, such as syntactic features [12, 13] or morpho-
logical features and N-best edit distance features [14]. Inthis
work, we use search results and semantic parsing features.

Maximum entropy models for language modeling have
been applied to various problems, such as correcting speech
split and merge errors [15] or discriminative reranking [6]. In
this work, we choose instead to define the problem as a bi-
nary classification problem, where the classifier output canbe
directly used for reranking or rejecting recognition results.

3. N-BEST RERANKING AS A CLASSIFICATION
PROBLEM

In our application, misrecognizing part of a movie name or an
app name results in a poor user experience. To emphasize this,
we use whole sentence accuracy (SACC) as our recognition
metric, as done in other papers such as [16].

With SACC as a metric, we can define the N-best rerank-
ing problem as a binary classification problem: a recognition
hypothesis is apositiveexample that has all words correctly
recognized or anegativeexample that has at least one mis-
recognition. We compute the probability that each hypothesis
for a given input is correct, and we rank the hypotheses us-
ing this score. The hypothesis with the highest score is used
as the final recognition result. Since the classification output
is probabilistic, we can also use the score to reject an utter-
ance, i.e., if the score of the best hypothesis is below some
threshold, we can consider this utterance as irrelevant. Inpro-
duction systems, this happens quite often as users speak to
other people, or click on the microphone but don’t speak, so
that the input contains only ambient noise. Rejecting such in-
puts provides a better user experience than returning random
search results for them.

There are many classification solutions such as decision
trees, support vector machine (SVM), and maximum entropy
models. We choose maximum entropy model as it naturally
models the problem we want to solve, and it has the flexibility
of incorporating arbitrary features.

Figure 1 and 2 describe the training and testing proce-
dures.

3.1. Maximum Entropy Classification

Conditional maximum entropy (ME) modeling is a frame-
work that has been used in a wide array of NLP tasks [17, 18].

1. Step 1: Extract N-best hypotheses from the speech
recognizer.

2. Step 2: For each hypothesis, extract speech recog-
nition features, semantic features, and search result
features.

3. Step 3: Label each hypothesis aspositiveor neg-
ative by comparing it to a human transcription of
the input: if all words are correct, it is labeled as
positive, else it is marked asnegative.

4. Step 4: Train a maximum entropy classifier from
the labeled training data, using the L-BFGS algo-
rithm.

Fig. 1: Training procedure

1. Step 1: Extract N-best hypotheses from the speech
recognizer.

2. Step 2: For each hypothesis, extract speech recog-
nition features, semantic features, and search result
features.

3. Step 3: Apply the maximum entropy classifier on
each hypothesis and compute a classification score.

4. Step 4: Rerank the N-best hypotheses based on
their classification scores. Pick the hypothesis with
the highest score as the final system output.

5. Step 5: If the ranking score of the best hypothesis is
too low, reject the utterance. This step is optional.

Fig. 2: Testing procedure

The principle of maximum entropy is to pick a distribution
that has the maximum entropy subject to known constraints
expressed as features. Let a real-valued function of the hy-
pothesish and the classc be a feature,fi(c, h). Maximum
entropy allows us to restrict the model distribution to have
the same expected value for this feature as its empirical value
from the training data,H. Thus, we stipulate that the learned
conditional distributionP (c|h) must have the property:

∑

h∈H

fi(c, h) =
∑

h∈H

∑

c

P (c|h)fi(c, h) (1)

It is shown that the maximum entropy distribution has the
following form [19]:

P (c|h) =
e
∑

i
λifi(c,h)

Z(h)
(2)

whereZ(h) is a normalization factor,



Z(h) =
∑

c

∑

i

λifi(c, h). (3)

During ME training, the optimal weightsλi correspond-
ing to featuresfi(c, d) are learned so as to maximize the log-
likelihood of the training data. The weights are learned via
an improved iterative scaling algorithm, or faster algorithms
such as conjugate gradient descent and L-BFGS [20]. We
used L-BFGS. For further details on the training algorithm,
we refer the reader to [20].

A great advantage of the maximum entropy model com-
pared to other models is that it can take arbitrary constraints
as features with no independence assumptions among the fea-
tures. In our application, we use a maximum entropy model
to combine arbitrary contextual features from search results,
syntactic features from parsing, and speech recognition fea-
tures.

3.2. Features

This section describes in more details the constraint features
used in our maximum entropy model. The features defined
need to capture domain knowledge. Our application is in the
entertainment domain, where users can search by voice for
songs, albums, artists, TV shows, movies, and apps. We de-
fine three sets of features: speech recognition features, se-
mantic features and search result features.

Query features capture knowledge that can be extracted
from the speech recognizer. These include:

• LM score: This is a real value score from then-gram
language model.

• Rank position: Rank position of first pass rank from
the speech recognizer N-best list. Position 0 is the best
hypothesis from the speech recognizer, and is our base-
line.

• Num tokens: Number of tokens in the hypothesis.

• Speech confidence: Confidence score from the speech
recognizer.

We also create a semantic feature based on pattern match-
ing. Many voice queries are commands like “show me movies
by Jim Carrey”, “open Facebook”. The intuition is that if
a hypothesis matches a popular voice action pattern, it has
a better chance to be a correct recognition. We parse each
hypothesis with a finite state machine based pattern matcher,
and create semantic parsing features for popular voice actions
such as Open app, Play movie. If a hypothesis matches such
a pattern, theSemanticfeature is set to 1, otherwise it is set
to 0.

The third category are features extracted from search re-
sults. The intention of search result features is to capturethe

degree to which a hypothesis is navigational, i.e., this hy-
pothesis as search query often leads users to click a particular
search result. the rationale being that if a hypothesis is navi-
gational in this domain, it is likely to be a correct recognition.
For example, typically if a user has spoken the title of a movie,
and the candidate transcription is correct, the highest-ranking
movie result has a feature score indicating a high degree of
match with the candidate transcription. The second-ranked
movie result would tend to have a score indicating a lower
degree of match, since the title is different from the title spo-
ken by the user. By contrast, when feature scores indicate that
the highest-ranking and second-ranking results are both poor
matches for the candidate transcription, the candidate tran-
scription is less likely to be correct. Accordingly, we design
the following features to capture navigational intent.

• Number of results: The feature value is the number
of search results returned for a given query. If a query
returns more search results it has a better chance to be
correct. In the extreme case, if a query does not return
any results, it is most likely a bad transcription.

• Top result title match: This feature computes the de-
gree to which a hypothesis has a complete title match
as top result.

• Top category probability: This is the probability score
of the first result category. For example, if the first re-
sult is a movie result, this is the probability of being in
the Movie category.

• Next category probability: This is the probability
score for the second result category. Together with fea-
ture top category probability, it tells us how different
the first result and second result are. The larger the gap
is, the more chance a query is navigational.

• Score for TV show: A score that indicates how well the
best TV show result matches the candidate transcrip-
tion. For example, if the top-most item is a TV show,
then this feature is the raw item score for the top-most
item, otherwise it is 0.

• Next score for TV show: A score that indicates how
well the second TV show result matches the candidate
transcription.

• Score for Album: A score that indicates how well the
best album result matches the candidate transcription.

• Next Score for Album: A score that indicates how well
the second album result matches the candidate tran-
scription;

• Score for App: A score that indicates how well the best
APP result matches the candidate transcription;



• Next score for App: A score that indicates how well
the second APP result matches the candidate transcrip-
tion;

• Score for Artist : A score that indicates how well the
best artist result matches the candidate transcription;

• Next score for Artist: A score that indicates how well
the second artist result matches the candidate transcrip-
tion;

• Score for Movie: A score that indicates how well the
best movie result matches the candidate transcription;

• Next score for Movie: A score that indicates how well
the second movie result matches the candidate tran-
scription;

• Score for Song: A score that indicates how well the
best song result matches the candidate transcription;

• Next score for Song: A score that indicates how well
the second song result matches the candidate transcrip-
tion;

4. EXPERIMENTS

4.1. Data Sets

We randomly sampled 22k utterances from an entertainment
service. We had these utterances human-transcribed. A sig-
nificant portion of these utterances (about 10%) contain back-
ground music or noise but no speech. These utterances are la-
beled with a special transcription symbol and are referred to
as “junk” in our experiments. Sentence accuracy (SACC) [16]
is computed by comparing speech recognition outputs with
human transcriptions. A simple normalization is applied dur-
ing comparison to ignore case and punctuation. We used 10-
fold cross-validation to avoid overfitting of the classifier.

The speech recognition engine used is a standard large-
vocabulary recognizer using a 5-gram language model trained
from many sources, including search queries from the en-
tertainment domain. The language model thus already has
strong aggregated domain knowledge. The improvement we
see below is mostly from adding query-level search result fea-
tures.

4.2. Results

We first report results on all utterances, including utterances
that should be rejected as irrelevant to the application domain.

Table 2 shows 10-fold cross-validation reranking results
of the 2-best hypotheses on all utterances including these
“junk” utterances. The first column is the fold number. The
second column shows the baseline performance testing on
this fold after training on the other nine, and the fourth col-
umn contains reranking results. The third column is the

oracle reranking results, that is, if the correct hypothesis is
in the list, it is artificially placed at the top. We can see that
there is about a 9.2% gap between the baseline and the oracle
ranking. Our reranking obtains stable improvement on each
fold of the 10-folds tests, with an average of3%, improving
SACC from 64.1% to 67.1%. A paired t-test1 shows all
results are statistically significant with p-value smallerthan
0.001.

Table 2: 10-fold cross validation results on all utterances, in-
cluding “junk” utterances

Fold Baseline Optimal Rerank
1 0.657 0.745 0.685
2 0.643 0.738 0.671
3 0.636 0.732 0.672
4 0.640 0.729 0.670
5 0.656 0.741 0.681
6 0.645 0.735 0.671
7 0.631 0.724 0.658
8 0.636 0.733 0.671
9 0.621 0.718 0.653
10 0.641 0.734 0.666

Average 0.641 0.733 0.671

In order to isolate the impact of “junk” utterances, since
ideally these utterances should be rejected, we repeated the
experiments without “junk” utterances. Results are summa-
rized in Table 3. Note the absolute accuracy in this table is
higher than that in Table 2 because the computation here ig-
nores the “junk” utterances. We see a similar 3% improve-
ment.

Table 3: 10-fold cross validation results on utterances exclud-
ing “junk” utterances

Fold Baseline Optimal Rerank
1 0.694 0.796 0.723
2 0.672 0.774 0.710
3 0.678 0.773 0.709
4 0.694 0.784 0.719
5 0.678 0.773 0.706
6 0.674 0.774 0.703
7 0.677 0.781 0.714
8 0.665 0.769 0.700
9 0.682 0.781 0.708
10 0.700 0.793 0.729

Average 0.680 0.780 0.712

There are many utterances for which the correct recogni-
tion result is not among the N-best. These are the 22% of the
utterances where oracle reranking still fails. For these utter-
ances, reranking makes no difference. Table 4 reports per-
formance on reranking two hypothesis limited to utterances

1https://en.wikipedia.org/wiki/Student’st-test



that have the correct hypothesis among the top20. We can
see even though the recognition accuracy on such utterances
is fairly high, we can still achieve an additional4% SACC
improvement, from87.4% to 91.4%.

Table 4: 10-fold cross validation results on utterances that
has the correct transcription in the N-best list

Fold Baseline Rerank
1 0.87 0.909
2 0.868 0.917
3 0.878 0.917
4 0.885 0.916
5 0.877 0.911
6 0.872 0.908
7 0.867 0.914
8 0.865 0.908
9 0.873 0.904
10 0.883 0.919

Average 0.874 0.914

4.3. Discussions

Since we have 3 categories of features, it is natural to ask
which features are the most important. Table 5 shows the
results of removing each feature category. We can see that re-
moving any category of features causes losses, which means
all features are useful. In particular, removing speech recogni-
tion features decreases the performance the most. This is not
surprising since recognition features come from the speech
recognizer, which is accurate most of the time. The semantic
feature only provides small impact because the triggering ra-
tio of this feature is very low. Removing all the search result
features erases almost all gains, indicating their importance.
However, result set features alone are not enough. They have
to be provided as additional knowledge on top of the speech
recognition features.

Table 5: Results with a subset of features

SACC
All Features 0.914
Remove speech recognition features0.615
Remove search result features 0.873
Remove semantic feature 0.910

We have reported results on reranking only 2 hypothesis.
Table 1 shows that there are still more than half of the errors
that can be potentially recovered by going beyond the top 2.
A natural question then is how many hypotheses should we
rerank? We varied N from 2 to 5, and Table 6 shows that
reranking 2 or 3 hypotheses is best. When there are more
hypotheses, the quality of hypotheses generally goes down
and creates more noise for reranking.

Table 6: Results with ranking different N

N SACC
1 0.874
2 0.914
3 0.910
4 0.905
5 0.904

Search result features can sometimes cause problems as
well. If an utterance is asking for an App that is less nav-
igational, but sounds close to a navigational App, the more
navigational intent App may be picked as transcription. For
example, an utterance “facial” is asking for some facial Apps,
but the reranking picked “Facebook” as the top hypothesis.

Another issue is that we currently send two hypotheses
for every utterance to the search backend. This creates a
significant backend cost if the traffic is heavy. This could be
optimized by selectively sending hypotheses to extract search
features. One possible straightforward solution is to use
speech recognition confidence as a filter to select only low-
confidence utterances for rescoring. However, this approach
does not work very well. We calculate the linear correlation
coefficient2 between the speech recognition confidence and
class label. The coefficient is0.43, which indicates speech
recognition confidence and class label are positively corre-
lated but the correlation is not very strong. On the other hand,
the coefficient between classification score and class labelis
0.62. This also indicates that the classification output is much
more accurate than the first-pass speech recognition output.
We can therefore use class confidence as a metric to reject
utterances, which is more accurate than speech confidence.

5. CONCLUSION AND FUTURE WORK

This paper describes some early research on using search re-
sults as features to rescore speech N-best hypotheses. We
formulate the problem as a binary classification problem and
model it with a conditional maximum entropy model. We can
achieve significant recognition accuracy improvements over
a production-quality recognition baseline. There are many
problems we are considering for future work. First issue is
how to effectively select which utterances to rerank to avoid
backend costs. Second, we can model the problem as a re-
gression problem and use word error rate sensitive metrics as
cost function. As found in [9], ranking approaches may yield
more gain than classification approaches. Third, better fea-
tures can likely improve accuracy even more.
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