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ABSTRACT the phone level([[8.]9,/6]. These powerful segmental features

Discriminative segmental models, such as segmental co@€ @ double-edged sword—on the one hand, the model be-
ditional random fields (SCRFs) and segmental structured sugomes more expressive; on the other, it is computationally
port vector machines (SSVMs), have had success in spee€hallenging to decode with and train such models. For this
recognition via both lattice rescoring and first-pass deapd reason, SCRFs$ [10] and SSVMs [3] were initially applied to
However, such models suffer from slow decoding, hamperingPeech recognition in a multi-pass approach, where the seg-
the use of computationally expensive features, such as se@ental model considers only a subset of the hypothesis space
ment neural networks or other high-order features. A tylpicacontained in lattices generated by HMMs. Much effort has
solution is to use approximate decoding, either by beam-prurPeen devoted to removing the dependency on HMMs and in-
ing in a single pass or by beam pruning to generate a latticétead developindirst-pass segmental modelg11, [S,[12].
followed by a second pass. In this work, we study discriminaHowever, working with the entire hypothesis space imposes
tive segmental models trained with a hinge loss (i.e., segme @n even larger burden on inference, especially when the fea-
tal structured SVMs). We show that beam search is not suifures are computationally intensive or of high order.
able for learning rescoring models in this approach, though If we wish to consider the entire search space in decod-
it gives good approximate decoding performance when thifg, we can only afford features of low order or of specific
model is already well-trained. Instead, we consider an aplypes as in([9]. An alternative approach to the problem is to
proach inspired by structured prediction cascades, wtseh u Use approximate decoding. There are two widely used ap-
max-marginal pruning to generate lattices. We obtain a-highproximate decoding algorithms: beam search and multi-pass
accuracy phonetic recognition system with several expensi decoding. In the intuitive and popular beam search, theigea
feature types: a segment neural network, a second-order lai prune as we search along the graph representing the search

guage model, and second-order phone boundary features. space. It has been used for decoding in almost all HMM sys-
Index Terms— segmental conditional random field tems, and for generating Iat.tices as V\{ell. Though popular, i
structured prediction cascades, phone recognition s&grr;eOﬁerS no guarantee§ about.|ts approxme}tlon. In the cayeqo
neural network. beam search ' ' of multi-pass decoding, Iatnpe andbest list rescoring [13]
' are commonly used alternatives.
1. INTRODUCTION We focus on a particular type of multi-pass approach
based on structured prediction cascades [14], which we term
Segmental models have been considered for speech recogdiscriminative segmental cascadesA cascade is a general
tion as an alternative to frame-based models such as hiddepproach for decoding and training complex structured mod-
Markov models (HMMs), in order to address the shortcom-els, using a multi-pass sequence of models with increasing
ings of the frame-level Markov assumption and introduceorder of features, while pruning the hypothesis space by a
expressive segment-level features. Segmental models imultiplicative factor to counteract the growth in featumere
clude segmental conditional random fields(SCRFs) [[1], putation. In this approach, the hypothesis space in each pas
or semi-Markov conditional random fields] [2kegmental is pruned withmax-marginals, which offers the guarantee
structured support vector machines(SSVMs) [3]; and gen- that all paths with scores higher than the pruning threshold
erative segmental models| [4, 5]. Previous work comparingre kept.
segmental model training algorithms has shown some ben- Applying the discriminative segmental cascade approach
efits of discriminative segmental models trained with hingeo speaker-independent phonetic recognition on the TIMIT
loss (SSVM-type learning) [6], and we consider this type ofdata set, we obtain a first-pass phone error rate of 21.4%
model here. with a unigram language model, and a two-stage cascade er-
Discriminative segmental models have allowed the exploror rate of 19.9%, which includes a bigram language model,
ration of complex features, both at the word level [7] and ata segment neural network classifier, and second-order phone
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boundary features. This is to our knowledge the best resufieneral, the model can be trained with different losses. The
to date with a segmental model. In the following sections wanodel is an SCRF if we train it with log loss log p(y|x)
define the discriminative segmental models we consider, davherep(y|z) x exp(8 " ¢(x,v)). Itis a segmental structured
scribe how we represent a cascade of hypothesis spaces wiWM if we use the structured hinge loss:

a finite-state composition-like operation, present disora-

tive sggmenta} cascade; for decoding apd training with max—ghinge(e) — max | costy, ) — 0T¢(I’ y) + 0T¢(x7y/) 7
marginal pruning, and discuss our experiments. y'ey 2

where cost: Y x )V — [0,00) measures the badness of a
hypothesis pathy’ compared with the ground trugh

A linear segmental modefor input spacet and hypothesis The loss can be optimized with first-order methods,
space) is defined formally as a paii9, ¢), whered ¢ R? such as stochastic gradient descent (SGD). The gradient
is the parameter vector amsl: X x ) — R? is the feature (or subgradient, in this case) computation typically ives
vector. For an input € X, each hypothesig € ) is asso- a forward-backward-like algorithm. For example, the sabgr
ciated with a scoré " ¢(z, ), and the goal of decoding is to dient of the hinge loss is

find the hypothesis that maximizes the score,

2. DISCRIMINATIVE SEGMENTAL MODELS

veéhinge(e) = _¢(x7 y) + QZ)((E, g)a (3)
argmax 6 ' ¢(z, ). 1
gey (@) @) where computing theost augmented path
For spegch recognit.io_n, we formally define the hypothesis § = argmaxcosty, y') + 8" é(z,y), 4)
space) in terms of finite-state transducers (FST). Rebe y'ey

the label set (e.g., the phone set in phone recognition), and

¥ = X U {e}, wheree is the empty label. Definedecoding ~ requires afqrward pass over the grz_;tph. Compared to comput-
graph as a standard FS& = (V, E, I, F,w, i, 0), where\ N9 the gradient of other losses, yvhlch requires more foFdwar
is the set of verticesz? C V x V is the set of edged, C V passes and backward passes, hinge loss has computational ad
is the set of initial verticesi” C V is the set of final vertices, vantages, and has been shown to perform well [6], so we will
w : E — Ris a function that associates a weight to an edget/Se hinge loss for the rest of the paper.

i : E — Y is a function that associates an input label to an

edge, and : E — Y is a function that associates an output la- 3. HIGH-ORDER FEATURES

bel to an edge. In addition to the standard definition of FSTs, AND STRUCTURED COMPOSITION

we equipG with a functiont : V' — R that maps a vertex to a

time stamp. For any edde, v) € E, lettail((u,v)) = u,and  The order of a feature is defined as the number of labels on
head(u, v)) = v. For convenience, we will use subscripts towhich it depends. A feature is said to bérat-order feature
denote components of a particular FST, efgs, is the edge  if it depends on a single label, second-order featureif it

set of G. depends on a pair of labels, and so on. Features with no label
For an input utterance, let be the sequence of acoustic dependency are calleroth-order features
feature vectors. We construct a decoding grapfrom z, High-order features in sequence prediction can be ex-

then define our hypothesis spaieC 2” to be the subset of tended from low-order ones by increasing the number of
paths that start at an initial vertexirand end at a final vertex labels considered. Forma”y for any label 32and any fea-

in F. A pathy € Y of lengthm is a sequence of unique edgestyre vectorp € R¢, the feature vectdexicalizedwith a label
{e1,....en}, satisfying heatt;) = tail(e;41) fori € [m]. s e ¥ is defined agh ® 1, wherel, is a one-hot vector of
Given a model(#, ¢), for each edge € E, the weightw(e)  |ength|%| for the labels and® : R™*™ x RPX4 — RmPXnq

is defined a® " ¢(z, ). For convenience, for a pathe V, s the outer product. With a slight abuse of notation, we let
we overloadp andw and definep(z, y) = >°.c, ¢d(z.e)and ¢ @ s = ¢ ® 1,. The resulting vector is of lengtlt|d. Sim-
w(y) = 0" ¢(x,y) = > eey w(e), where we treata paghas ilarly, we can lexicalize a feature vector with pairs of libe

a set of (unique) edges PRs1Rsy = Pp® 1, @14, giving a vector of lengths|2d.

If the decoding graph is the full hypothesis space with all  For example, a common type of zeroth-order segmental
possible segmentations and all possible labels, for exampfeature is of the formy(x,t1,t2) wherex is the sequence
the graph on the left in Figufé 1, then the modelfsst-pass  of acoustic feature vectors; is the start time of the seg-
segmental model Otherwise, it is a lattice rescoring model. ment, andt, is the end time of the segment. To make it
By the above definitions, inference (decoding) in the modetliscriminative in a decoding grapH, we can compute the
(@) can be solved with a standard shortest-path algorithm. first-order featurep, (z, e) for any edge: by first computing

The model parameteéscan be learned by minimizing the «(x, t(tail(e)), t(heade))) and then lexicalizing it with the
sum of loss functions on samplés, y) in a training set. In  labelog (e).
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Fig. 1. From left to right An example of the full hypothesis spaég with four frames (five vertices) and three unique labels
{a, b, ¢ (three edges between every pair of vertices) with segmegtheup to three frames (actual labels omitted for clarity);
H,, a prunedH;; a graph structure corresponding to a bigram language migdever three labels; ands> o-composed with

Ly, wheres; _s, denotes the bigramy so.

To have a unified way of extending the order of features, 4. DISCRIMINATIVE SEGMENTAL CASCADES

we define the concept of FSSfructured composition, or o-
compositionfor short, as follows. For any two FST4 and
B, theo-composedFST is defined as

G=A0,B (5)
where

Vo =Vax Vg (6)

EG: {<€1,€2> EEAXEB :0,4(61):2'3(62)} (7)

and
ig((e1,e2)) =ialer) (8)
oc({e1,e2)) = op(e2) 9)
tailc({e1, e2)) = (tail4(e1), tail g (e2)) (10)
head:({e1,e2)) = (headi(e1), heads(ez)) (11)

Our approach, which we term a discriminative segmental cas-
cade (DSC), is an instance of multi-pass decoding, congisti

of levels with increasing complexity of features and desfea
ing size of search space. We start with the full search space
and a “simple” first-level discriminative segmental model
using inexpensive features, and use the first-level model to
prune the search space. We then apply a model using more
expensive features, and optionally repeat the processsfor a
many levels as desired. Rather than the typical beam pruning
we prune withmax-marginals [16,[14], which have certain
useful properties and turn out to be important for achieving
good performance with our models. A max-marginal of an
edgee in G is defined as

v(e) = max ' ¢(z,y).
yoe

(13)

In words, it is the highest score of a path that passes through

where(., -) denotes a tuple. Unlike in classical composition,the edge:. We prune the edge if its max-marginal is lower

we only constrain the structure 6fand are free to defineg
differently. In particular, we let

we({e1, e2)) = 85p(w, (e1,e2)), (12)

ande¢; is free to usep , and¢ g but is not constrained to do
so. In other words, the weight functiety, can extract richer

features thamw 4 andwp.

than a threshold, and keep it otherwise. In order to prune
a multiplicative factor of edges at each level of the cascade
Weiss et al.[[14] propose to use the threshold

= (1-)\) > e) + Ama 0" p(z,y), (14)

1
|EG| ecEqg

With structured composition, we can easily convert low-which interpolates between the mean of the max-marginals
order features to high-order ones. Continuing the above ex@nd the maximum. I\ is set to 1, we only keep the best path.

ample, we camr-compose the decoding grapgh with a bi-
gram language model (LML in its FST form [15] with a

Lattice generation by max-marginal pruning guarantees
that there is always at least one path left after pruning and

slight modification. We require the output labels of the LMthat anyy satisfyingw(y) > . is kept, because for every
FST to include the history labels alongside the currentllabee € y, v(e) > w(y) > 7. In particular, if the ground truth
For example, the output labels of a bigram LM are of theéhas a score higher than the threshold, it will still be in the
form s;s, € ¥ x X, wheres; is the history label (possi- search space for the next level of the cascade.

bly €) and s, is the current label. Let; = H o, L. We
can definetz({e1,e2)) = tm(e1). For an edge € Eg,

we can compute first-order featureso s1, and second-order

featuresy ® s1 ® s2 for s1so = og(e) ands; # €, where
v = YP(z,te(tailg(e)), ta(head;(e))). If s; = ¢, every-
thing falls back to the previous example. In general,oby

composing with high-orden-gram LMs, we can compute

high-order features by lexicalizing low-order ones.

Computing max-marginals in a specific level of the cas-
cade requires a forward pass and a backward pass through the
graph. Pruning with max-marginals thus takes twice the time
as searching for the best path alone.

Learning the cascade of models is also done level by level.
We start with the entire hypothesis spdée limited only by
a maximum segment length. A first set of computationally
inexpensive features up to first order is used for learnirgg. L



_ : neural network (CNN)[19], which we describe next.
Table 1. A summary of results in terms of phonetic error ) ( JL19], which w I X

rate (%) on the TIMIT test set, for prior first-pass segmental »
models, a speaker-independent HMM-DNN system given by-1-1. CNN frame classifier

a standard Kaldi recipe [18], and our models. The input to the network is a window of 15 frames of log-
mel filter outputs. The network has five convolutional layers
dev test with 64—256 filters of sizé& x 5 for the input andB x 3 for
PER (%) PER (%) others, each of which is followed by a rectified linear unit
HMM-DNN 214 (RelLU) [20] activation, with max pooling layers after thesfir
first first-pass SCRF[8] 33.1 and the third ReLU layers. The output of the final ReLU layer
Boundary-factored SCREI[9] 26.5 is concatenated with a window of 15 frames of MFCCs cen-
Deep segmental NN [11] 21.87  tered on the current frame, and the resulting vector is passe
_ourfirst-passmodel{;) 2215  21.73  through three fully connected ReLU layers with 4096 units
DSC 2'“ [evel with bigram LM 19.80 each. The network is trained with SGD for 35 epochs with a
+ 2nd-order boundary features 19.22 batch size of 100 frames. Fully connected layers and the con-
+ 1st-order segment NN 18.86 catenation layer are trained with dropout at a 20% and 50%
+ 1st-order bi-phone NN bottleneck  18.77 19.93 rate, respectively. This classifier was tuned on the develop

_ _ _ ment set and achieves a 22.1% frame error rate (after cellaps
the first set of weights learned Bg. We can us#, for first-  ing to 39 phone labels) on the test set. We will use GNN)
pass decoding if it is good enough, or we can choose to gefig denote the log of the final softmax layer, corresponding to

erate the next level of the cascade and use more computatiofie predicted log probabilities of the phones, given astinpu
ally expensive features, such as higher-order ones. MOVinFitq; T
S

to the next level of the cascade, we compute max-marginal

with 6, and_ prqneHl with a threshold, resulting in a lattice 5.1.2 First-order features

H,. If we wish increase the order of features, sweompose

H, with a bigram LM L,. A second set of features up to sec- Below we list the features for each edge v). We will use
ond order can then be used for learning. Suppose the secoid= t(v) — ¢(u) for short.

set of weights i#,. Again, we have the choice either to use

6, for decoding or to prune and repeat the process with morAverage of CNN log probabilities The log of the CNN out-

computationally expensive features. put layer is averaged over all frames in the segment:
L-1
5. EXPERIMENTS 1 ,
T > " CNN(, t(u) + i) (15)
=0

We experiment with segmental models in the context of pho-
netic recognition on the TIMIT corpus [17]. We follow the
standard TIMIT protocol for training and testing. We use 19
randomly selected utterances from the complete test set oth
than the core test set as our development set, and will efer
the core test set simply as the test set. The phone set is col-

lapsed from 61 labels to 48 before training. In addition ® th CNN (17, t(u) + L
48 phones, we also keep the glottal stop /q/, sentence start,

and sentence end so that every frame in the training set hasr 1 = 0, 1, 2.

a label. A summary of prior first-pass decoding results with

segmental models, along with our results and one from a stafgoundary features The log probabilities frames before the
dard speaker-independent HMM-DNN, is shown in Table 1. left boundary CNNz, ¢(u) — i) andi frames after the right
boundary CNNz, ¢(v) + ¢) are used as features. We use the
concatenation of the boundary featuresifer 1, 2, 3.

2Samples of CNN log probabilities The log of the CNN out-
put layer is sampled from the middle frames of three equally
plit sub-segments, i.e.,

[k+(k42—1)]LJ) 16

3.

5.1. First-pass segmental model

First we demonstrate the effectiveness of our first-pass del}__ength indicator 1, for£=0,1,...,30.

coder. The first-pass search graph, dendfedcontains all Bjas A constant 1.

possible labels and all possible segmentations up to 3Ggam

per segment. Like some prior segmental phonetic recognitio  We lexicalize all of the above features to first order,
models|[11] B], many of the features in our first-pass decodeaand include a zeroth-order bias feature. We minimize hinge
are based on averaging and sampling the outputs of a neutaks with the overlap cost function introduced in [6] with
network phonetic frame classifier, specifically aconvalnél  AdaGrad for up to 70 epochs with step sizes tuned in
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Fig. 2. Beam search ofil; with different beam widthsLeft
Hit rate on the development s&Right PER on the develop-
ment set. The dashed line is the PER of the exact search.

Fig. 3. Beam search for learning with different beam widths:
-~ peam=10 4 beam=20 - beam=30 — exact. Top
Learning onH,. Bottom Learning onH; o, L. The
dashed line is the learning curve of the second-level cascad
{0.01,0.1,1}. No explicit regularizer is used; instead we H, o, L.

choose the step size and iteration that perform best on the

development set (so-called early stopping). As shown in Ta- L . .
ble[d, our first-pass segmental model outperforms all ptevio shown in Figuré [ for the step size that achieves the lowest

segmental model TIMIT results of which we are aware. developmen_t SetPER. Wh‘?” we_tram the segmen_tal model on

H; (top of Figure B), learning with beam search is success-
ful when the beam width is large enough, while féy o, Lo
(bottom of Figuré B), learning completely fails.

We next explore multi-pass decoding with beam search and

with discriminative segmental cascades. In the second pass2.2. Discriminative segmental cascades (DSC)
we include features of order two and a bigram L. Back-
off is approximated withke transitions in the bigram LM. Let
G = H o, Lo, whereH can beH; or Hy, the prunedi;. We
consider the following additional features on edges E;.

5.2. Higher-order features and segmental cascades

We next consider the proposed discriminative structured ca
cades (DSC) for utilizing the bigram LM and second-order
features. We first prung; with max-marginal pruning using
our first-pass segmental model with weigBts resulting in

Bigram LM score The bigram log probabilitjog iy (s2|s1), Hz2, ando-composel, with L. Recall that the larger the

wheres; sy = o (e) We do not lexicalize this feature because pruning parametek, the sparser the lattice. We measure the
it is naturally second-order. density of the lattice by the number of edgegin divided by

the number of ground-truth (gold) edges. The qualityfefs
produced with differenf\’s is shown in Figuré4 (left). For
the DSC second level, we define an additional feature:
Before experimenting with the second-order features, we . ) )
compare beam search and exact search on the best modéftice score Instead of re-learning all of the weights for

for H, to give a sense of the approximation quality of beamine features in the first-pass model, we combine them into

search. We measure the quality of approximation via the “hingl additional feature from the first level of the cascade

rate”, i.e., how often the exact best path is found. Result§1 @, (%;e1), which is never lexicalized, wherey & H

are shown in FigurEl2. As expected, the hit rate decreasédSuch thatei, ez) € Eg.

as the beam width decreases. However, the PER does ng§ compare with beam search, we use the lattice score, the
decrease significantly, which demonstrates that beamfseargjgram LM score, second-order boundary features, firséiord
is @ good approximate decoding algorithm when the model ifangth indicators, and first-order bias as our featurestfer t
well-trained. . second level of the cascade. Hinge loss is minimized with
~Judging from the decoding results, we use beam searchgaGrad for up to 20 epochs with step sizes optimized in
with beam widthg(10, 20, 30} for learning. Since the runtime (0. 01, 0.3. Again, no explicit regularizer is used except early
of beam search is controlled by the beam width when the destopping on the development set. Learning results on eiffer
coding graph is large, we can search directlyr, L. The  |attices are shown in Figufé 4 (right). We see that learning
composition is done on the fly to avoid enumerating all edgegiith the DSC is clearly better than with beam search.
in Hy o, Lo. We compare learning on bofth, andH; o, Ls.
For H; we use the same features as the first-pass segmen
model, while forH; o, L, we add the bigram LM score and
second-order boundary features. For consistency, we ese tfio add more context information, we use the same CNN ar-
same beam width for decoding. Hinge loss is minimized withchitecture and training setup to learn a bi-phone framestlas
AdaGrad with step sizes tuned {0.01, 0.1, . Results are fier, but with an added 256-unit bottleneck linear layer befo

5.2.1. Beam search

g"bfﬂ Other expensive features
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<4 197 puts of the shallow network and lexicalize them to first order
i/ 3l 1 ® 196} . We refer to the result as2gment NNfeatures.

Wl | e 19.5f 1 Results with these additional features are shown in Ta-
L.l | T 194 1 ble[1. Adding the second-order features, bigram LM, and the
e 0 193¢ i above NN features gives a 1.8% absolute improvement over

our best first-pass system, demonstrating the value ofdnclu
ing such powerful but expensive features.

(edges per gold edge) (edges per gold edge)

6. DISCUSSION
Fig. 4. Quality of H, for X's in {0.8, 0.7, 0.6, 0.5. Left
Oracle error rates for different lattice densitieRight Cor-
responding second-pass development set PERs?

We have presented discriminative segmental cascades (DSC)
an approach for training and decoding with segmental mod-
els that allows us to incorporate high-order and complex fea
tures in a coarse-to-fine approach, and have applied them to
the task of phone recognition. The DSC approach uses max-
marginal pruning, which outperforms beam search for learn-

Table 2. TIMIT segment classification error rates (ER).
test ER (%)

Gaussian mixture model (GMM) [23] 26.3 ing the second-pass model. Starting from a first-pass large-
SVM [23] 22.4 margin model that outperforms previous segmental model re-
Hierarchical GMM [22] 21.0 sults and is competitive with HMM-DNNs, the DSC second
Discriminative hierarchical GMM [24] 16.8 pass improves the phone error rate by another 1.8% absolute.
SVM with deep scattering spectrum[25] 15.9 Further analysis may be needed to understand precisely
our CNN ensemble 15.0 why learning with beam search is not successful in the contex

of our models. One issue is thatcomposingH; and L,
introduces many dead ends (paths that do not lead to final

the softmax([211]. Each frame is labeled with its segmentllabeyertices) in the graph because we have to do the composition
and one additional label from a neighboring segment. If theyn the fly. MinimizingH; o, L. might help, but we would
current frame is in the first half of the segment, the add#@ion need to touch the edges &, o, L at least once, which is
label is the previous phone; if it is in the second half, thentself expensive. Second, even if we reach the final vertices
the additional label is the next phone. The learned bottllene the Cost-augmented path m|ght still have a lower cost+score
layer outputs are used to define features (although theytlo nghan the ground-truth path, which leads to no gradient wpdat
correspond to log probabilities) with averaging and sanwpli  This issue has been studied recently, and one possiblécsolut
as for the uni-phone case. We refer to the resulting featses js “premature updates? [28], but these are intended for the
bi-phone NN bottleneckfeatures. perceptron loss. Third, the edge weights in our models are

Finally, we also use the same type of CNN to train anot strictly negative. Beam search would tend to go dep-fir
segment classifier. Here the features at the input layer afghen encountering edges with positive weights. On the other
the log-mel filter outputs from a 15-frame window around thehand, if the edge weights are negative, beam search would
segment’s central frame. The network architecture is theesa tend to go breadth-first, which may explain why greedy search
as our frame classifier, but instead of concatenation with 15ijke beam search may cause problems for segmental models
frame MFCCs, we concatenate with a segmental feature vegut works for HMMs.
tor consisting of the average MFCCs of three sub-segments Additional future work includes considering even more
in the ratio of 3-4-3, plus two four-frame averages at bothexpressive features, higher-order features and additiasa
boundaries and length indicators for length 0 to 20 (similacade levels. There is also much room for exploration with
to the segmental feature vectors of|[22] 23]). This CNN issegment neural network classifiers. One concern with our
trained on the ground-truth segments in the training set. Fisegment classifiers is that they are trained only with ground
nally, we build an ensemble of such networks with differentiryth segments, so it is unclear how they behave when the
random seeds and a majority vote. This ensemble classifigiput is an incorrect hypothesized segment. Alternatives i
has a 15.0% classification error on the test set, which isito og|ude training on all hypothesized segments and allowieg th
knowledge the best result to date on the task of TIMIT phongetwork to learn to classify non-phones, similarly to thé-an

segment classification (see Table 2). phone and near-miss modeling of [5].
It is, however, still too time-consuming to compute the

segment network outputs for every edge in the lattice. We in-
stead compress the best-performing (single) CNN into a shal_
low network with one hidden layer of 512 ReLUs by training 1 NiS research was supported by NSF grant I1S-1433485. The
it to predict the log probability outputs of the deep network ©Pinions expresged in this Wor_k are those of the authors and
as proposed by [26, 27]. We then use the log probability oytdo not necessarily reflect the views of the funding agency.
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