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ABSTRACT

In this work, we perform an empirical comparison among the
CTC, RNN-Transducer, and attention-based Seq2Seq models
for end-to-end speech recognition. We show that, without
any language model, Seq2Seq and RNN-Transducer mod-
els both outperform the best reported CTC models with a
language model, on the popular Hub5’00 benchmark. On
our internal diverse dataset, these trends continue - RNN-
Transducer models rescored with a language model after
beam search outperform our best CTC models. These results
simplify the speech recognition pipeline so that decoding can
now be expressed purely as neural network operations. We
also study how the choice of encoder architecture affects the
performance of the three models - when all encoder layers
are forward only, and when encoders downsample the input
representation aggressively.

1. INTRODUCTION

In recent years, deep neural networks have advanced the state-
of-the-art on large scale automatic speech recognition (ASR)
tasks [24) 28} 2. Deep neural networks can not only extract
acoustic features, which are used as inputs to traditional ASR
models like Hidden Markov Models (HMM) [24. 28]], but also
act as sequence transducers, which results in end-to-end neu-
ral ASR systems [2} 16]].

One major challenge of sequence transduction is that
the input and output sequences differ in lengths, and both
lengths are variable. As a result, a speech transducer has to
learn both the alignment and the mapping between acoustic
inputs and linguistic outputs simultaneously. Several neural
network-based speech models have been proposed during the
past years to solve this challenge. In this work, we focus
on understanding the differences between these transduction
mechanisms. Specifically, we compare three transduction
models - Connectionist Temporal Classification (CTC) [12],
RNN-Transducer [[L1], and sequence-to-sequence (Seq2Seq)
with attention [5) 13]. For the ASR task, these models differ
mainly along assumptions made in these three axes:

e Conditional independence between predictions at dif-
ferent time steps, given audio. This is not a reason-
able assumption for the ASR task. CTC makes this as-
sumption, but RNN-Transducers and Attention models
do not.

o The alignment between input and output units is mono-
tonic. This is a reasonable assumption for the ASR
task, which enables models to do streaming transcrip-
tion. CTC and RNN-Transducers make this assump-
tion, but Attention models|'|do not.

e Hard vs Soft alignments. CTC and RNN-Transducer
models explicitly treat alignment between input and
output as a latent variable and marginalize over all pos-
sible hard alignments while the attention mechanism
models a soft alignment between each output step and
every input step. It is unclear if this matters to the ASR
task.

There are no conclusive studies comparing these architec-
tures at scale. In this work, we train all three models on the
same datasets using the same methodology, in order to per-
form a fair comparison. Models which do not assume con-
ditional independence between predictions given the full in-
put (viz, RNN-Transducers, Attention) are able to learn an
implicit language model from the training corpus and opti-
mize WER more directly than other models. We find that
they therefore perform quite competitively, even outperform-
ing CTC + LM models without the use of an external lan-
guage model. Among them, RNN-Transducers have the sim-
plest decoding procedure and fewer hyper-parameters to tune.

In the following sections, we will first revisit the three
models, and describe interesting specific details of our imple-
mentations. Then, in section [3] we present our results on the
Hub5’00 benchmark (which uses €/// hours of training data),
and our own internal dataset (of oo/, /// hours). In sectionwe
study how well they train when using only forward-only lay-
ers, and when we do excessive pooling in the encoder layers
on the WSJ dataset by controlling the number of parameters
in each model. Section[6] presents related work and Section
summarizes the key takeaways and presents the scope of fu-
ture work.

2. NEURAL SPEECH TRANSDUCERS

A speech transducer is typically composed of an encoder
(also known as acoustic model), which transforms the acous-
tic inputs into high level representations, and a decoder,

"Here we focus on the vanilla Seq2Seq models with full attention [6} [3],
though there exist some efforts in enforcing local and monotonic attention
recently, and they typically results in a loss in performance
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(a) CTC (b) RNN-Transducer (c) Attention

Fig. 1. Illustration of probability transitions of three transducers on an utterance of length 5 and labelled as “CAT”. The node at ¢
(horizontal axis), u (vertical axis) represents the probability of having output the first u elements of the output sequence by point
t in the transcription sequence. The vertical arrow represents predicting multiple characters at one time step (not allowed for
CTC). The horizontal arrow represents predicting repeating characters (for CTC) or predicting nothing (for RNN-Transducer).
The solid arrows represent hard alignments (for CTC and RNN-Transducer) and soft ones (for Attention). As noticed, in CTC
and RNN-Transducer, states can only move towards the top right direction one step by one, while in Attention, all input frames

could potentially be attended in any decoding step.

which produces linguistic outputs (i.e, characters or words)
from the encoded representations. The challenge is the input
and output sequences have variable (also different) lengths,
and usually alignments between them are unavailable. So
neural transducers have to learn both the classification from
acoustic features to linguistic predictions as well as the align-
ment between them. Transducer models differ in the formu-
lations of the classifier and the aligner.

More formally, given the the input sequence x = (z1, .., Z7)

of length 7', and the output sequence y = (y1,...,yu) of
length U, with each y, being a V' dimensional one-hot vec-
tor, transducers model the conditional distribution p(y|x).
The encoder maps the input x into a high level representa-
tion h = (hq, ..., hys), which can be shorter than the input
(T’ < T) with time-scale downsampling. The encoder can
be built with feed-forward neural networks (DNNs) [16]], re-
current neural networks (RNNs) [[14], or convolution neural
networks (CNNs) [10]. The decoder defines the alignment(s)
a and the mapping from h to y.

2.1. CTC

CTC [12,2] computes the conditional probability by marginal-
izing all possible alignments and it assumes conditional inde-
pendence between output predictions at different time steps
given aligned inputs. An extra ‘blank’ label, which can be in-
terpreted as no label, is introduced to map h and y to the same
length, i.e, an alignment (path) a is obtained by inserting (7" -
U) blanks into y. A mapping B : a — y is defined between a
and y, which can be done by removing all blanks and repeat-
ing letters in a. The conditional probability Pore(y|x) can
be efficiently calculated using a forward-backward dynamic-
programming algorithm, as detailed in [12]. Note that the

alignments {a} are both local and monotonic.

Pere(ylx)= ) P(alh) (D
acB~1(y)
-
= Z Hp(at\ht) 2
acB-1(y)t=1
P(a¢|hs) = softmax(at, hy) 3)

where we use the conventional definition of softmax?l The
CTC output could be decoded by greedily picking the most
likely label at each time-ste To make beam search effec-
tive, the conditional independence assumption is artificially
broken by the inclusion of a language model, and decoding is
then the task of finding the argmax of

log(Porc(ylx)) + alog(Pra(y)) + fwordcount(y) (4)

This decoding is approximate, and performed using beam
search, typically with a large beam or lattice [15} [19]. The
above equation presents a discrepancy between how these
models are trained and tested. To address this, models could
be further fine-tuned with a loss function that also incorpo-
rates language model information like SMBR [24], but the
principle issue is still the absence of dependence between
predictions.

2.2. RNN-Transducer

RNN-Transducer [11} [14] also marginalizes over all possible
alignments, like CTC does, while extending CTC by addition-
ally modeling the dependencies between outputs at different

2softmax(a,v) = exp(v = a)/ Yy exp(v = k)
3strictly speaking, this finds the most likely alignment, not y, but we find
that for a fully trained model P(y|x) is dominated by a single alignment



timesteps {y,,u € 1, .., U}. More specifically, the prediction
of y, at time step u depends on not only aligned input h but
also the previous predictions {y<, }.

> P(ah) )

aeB~1(y)

"
= Y IIP@lh,y<u,) (6)

acB-1(y)t=1

Prr(ylx) =

where u; donates the output timestep aligned to the input
timestep ¢. An extra recurrent network is used to help deter-
mine a; by predicting decoder logits g, = ¢g(y<u, ), and the
conditional distribution at time ¢ is computed by normalizing
the summation of the h; and the g,,,:

P(atlht7y<u1) = P(atlet,u) = SOftmax(a’ta et,u) (7)
et = f(he; gu) 3

f could be any parametric function, we use e, = hy + gy
as in [L1]. Like in CTC, the marginalized alignments {a} are
local and monotonic, and the likelihood of the label can be
calculated efficiently using dynamic programming. Decod-
ing uses beam search as in [L1], but we do not use length
normalization as originally suggested, since we do not find it
necessary.

2.3. Attention Model

Attention model [8} 3| 5] aligns the inputs and outputs us-
ing the attention mechanism. Like RNN-transducer, attention
model removes the conditional independence assumption in
the label sequence that CTC makes. Unlike CTC and RNN-
transducer however, it does not assume monotonic alignment,
nor does it explicitly marginalize over alignments. It com-
putes p(y|x) by picking a soft alignment between each output
step and every input step.

U
Paun(yx) = P(y[h) = [[ Pvulcuw y<u) 9

u=1

where ¢, is the context for decoding timestep u, which is
computed as the sum of the entire h weighted by o (known
as attention).

T
Cu =Y o ihy (10)
t=1
T
s =expleas)/ Y explewr)) (11)
t'=1
€y = f(haauflvgufl) (12)

where g,, is the hidden states of the decoder at decoding step
u. There exist different ways [0, 3] to compute e,,. We used

a location-aware hybrid attention mechanism in our experi-
ments, which can be described as:

gt = AttentionRNN (3,1, g2t7) (13)
e, = ComputeAttention(h, o, 1, g%""™)  (14)
gu = DecoderRNN(c,, g%*" g, 1) (15)

The attention mechanism allows the model to attend any-
where in the input sequence at each time, and thus the align-
ments can be non-local and non-monotonic. However, this
excessive generality comes with a more complicated decod-
ing for the ASR task, since these models can both terminate
prematurely as well as never terminate by repeatedly attend-
ing over the same encoding steps. Therefore, the decoding
task finds the argmax of

log(Paten (y[x))/y|" + Beov(a) + Mog(Pru(y)) (16)

where - is the length normalization hyperparameter [27]]. The
coverage term “cov” encourages the model to attend over all
encoder time steps, and stops rewarding repeated attendance
over the same time steps. The coverage term addresses both
short as well as infinitely long decoding.

3. PERFORMANCE AT SCALE

In this section, we compare the performance of the models on
a public benchmark as well as our own internal dataset.

The promise of end-to-end models for ASR was the sim-
plification of the training and inference pipelines of speech
systems. End-to-end CTC models only simplified the train-
ing process, but inference still involves decoding with mas-
sive language models, which often requires teams to build
and maintain complicated decoders. Since attention and
RNN-Transducers implicitly learn a language model from the
speech training corpus, rescoring or decoding using language
models trained solely from the text of the speech corpus, does
not contribute to improvements in WER (Table [T). When an
external LM trained on more data is available, simply rescor-
ing the final beam (typically small, between 32 and 256)
recovers all the performance difference (Table[3). The decod-
ing and beam search is therefore simplified, can be expressed
as neural network operations and need not support massive
language models. This trend is already seen in the neural
machine translation tasks, where state-of-art NMT systems
do not typically use an external language model [27]].

3.1. Hub5’00 results

The performance of the models on the Hub5’00 benchmark
is presented in Table [T] along with other published results on
in-domain data. All of the models in Table [T use the standard
language model that is paired with the dataset, except for the
rows marked “NO LM”. Without using any language model,
both the attention and RNN-Transducer models outperform



Architecture SWBD CH
WER | WER
= Iterated-CTC [29] 11.3 18.7
£ BLSTM + LF MMI [21] 8.5 15.3
£ LACE + LF MMI[][28] 8.3 14.8
&£ Dilated convolutions [25]] 7.7 14.5
CTC + Gram-CTC [17] 73 14.7
BLSTM + Feature fusion[23]] 7.2 12.7
CTC [17] 9.0 17.7
RNN-Transducer
- Beam Search NO LM 8.5 16.4
OE Beam Search + LM 8.1 17.5
Attention
Beam Search NO LM 8.6 17.8
Beam Search + LM 8.6 17.8

Table 1. WER comparison against previous published results
on Fisher-Switchboard Hub5’00 benchmark using in-domain
data. We only list results using single models here. All the
previous works reported WER using language models. We
don’t leverage any speaker information in our models, though
it has been shown to reduce WER in previous works [28, 25].

the CTC model trained on the same corpus, and are highly
competitive with the best results on this dataset. Since the LM
is also trained on the same training corpus, rescoring with the
LM has little effect on attention and RNN-Transducer models.

We found that beam search in attention worked best when
using only length normalization (y = 1, 8 = 0 in Equa-
tion . However, as the distribution of errors in Table
show, the RNN-Transducer has no obvious problems with
pre-mature termination as the number of deletions is very
small even though there is no length normalization. Atten-
tion and RNN-Transducer both use a beam width of 32.

Model | WER | Subs | Ins | Dels
CTC 9.0 55 |25 1.0
RNN-Transducer 8.1 47 | 26| 0.8
Attention 8.6 5.4 1.2 | 2.0

Table 2. Error distribution for SWBD slice in Hub5’00

3.2. DeepSpeech corpus

The DeepSpeech corpus contains about 10,000 hours of
speech in a diverse set of scenarios, such as far-field, with
background noise, accents etc., Additionally, the train and
targets sets are drawn from a different distribution since we
don’t have access to large volumes of data from the target
distribution. We rely on external language models trained on
significantly larger corpus of text to close the gap between
train and test distributions. This setting therefore provides us

Model | Dev  Test
CTC [4]
Greedy decoding 23.03 -
Beam search + LM (beam=2000) | 15.9 16.44
RNN-Transducer
Greedy decoding 18.99 -
Beam search (beam=32) 17.41 -
+ LM rescoring 15.6  16.50
Attention
Greedy decoding 22.67 -
Beam search (beam=256) 18.71 -
+ Length-norm weight 19.5 -
+ Coverage cost 18.9 -
+ LM rescoring 16.0 1648

Table 3. Comparison of WER obtained by different transduc-
tion models on the DeepSpeech dataset which has a mismatch
between training and test distributions.

Model ‘ Prediction
Ground Truth SILENCE
CTC SILENCE
RNN-Transducer SILENCE
Attention i want to get to get to get to get to
get to get to get to get to do that
Ground Truth play the black eyed peas songs
CTC
+ Greedy lading to black irpen songs

+ Beam Search + LM
RNN-Transducer
+ Greedy
+ Beam Search
+ LM rescore
Attention
+ Greedy
+ Beam Search
+ LM rescore

leading to black european songs

play the black eye piece songs
play the black eye piece songs
play the black eyed peas songs

play the black eyed pea songs
play the black eyed pea songs
play the black eyed peas songs

Table 4. Samples from decoding the same utterance across
different models on the DeepSpeech dev set. We find that
a big reason for the relatively worse WER of the attention
model could be attributed to a few utterances like the first one
which contributes to the edit distance a lot. The first exam-
ple shows only greedy decoding cases for all the models, the
second set shows how the prediction evolves through various
stages of decoding.

the best opportunity to study the impact of language models
on attention and RNN-Transducers.

On the development set, note that RNN-Transducer model
matches the performance of the best CTC model within 1.5
WER without any language model, and completely closes



the gap by rescoring the resulting beam of only 32 candi-
dates. Surprisingly, attention models start from a WER sim-
ilar to that of CTC models after greedy decoding, but the
two architectures make very different errors. CTC models
have a poorer WER mainly because of mis-spellings, but the
relatively higher WER of attention models could be largely
attributed to noisy utterances. In these cases, the attention
models act similar to a language model and arbitrarily out-
put characters while repeatedly attending over the same en-
coder time steps. While the coverage term in Equation [T6]
helps address this issue during beam search, the greedy de-
coding cannot be improved. An example of this situation is
shown in Table 4] The monotonic left-to-right decoding of
CTC and RNN-Transducers naturally avoid these issues. Fur-
ther, the coverage term only helps keep the correct answers in
the beam and language model rescoring of the final beam is
still required to bring the correct answers back to the top.

3.3. Experimental details

Data specification. Throughout the paper, all audio data is
sampled at 16kHz and normalized to a constant power. Log-
Linear or Log-Mel spectrograms (the specific type of featur-
ization is a hyper-parameter we tune over) are extracted with
a hop size of 10ms and window size of 20ms, and then glob-
ally normalized so that each input spectrogram bin has zero
mean and unit variance. We do not use speaker information
in any of our models. Every epoch, 40% of the utterances are
randomly selected to add background noise to.

All models in Table [I, were trained on the standard
Fisher-Swbd dataset comprising of the LDC corpora (97562,
2004S13, 2004T19, 2005513, 2005T19). We use a portion of
the RTO2 corpus (2004S11) for hyper-parameter tuning. The
language model used for decoding the CTC model as well
as when rescoring the other models is the same 4-gram LM
available for this benchmark from the Kaldi receipe [[20]. The
language model used by all models in Table [3]is built from a
sample of the common crawl dataset [26].

Model specification. All models in Tables [I] and 3] are
tuned independent of each other - we perform a random
search over encoder and decoder sizes, amount of pooling,
minibatch size, choice of optimizer, learning and annealing
rates. Further, no constraints are placed on any model, in
terms of number of parameters, wall clock time, or others.

The training procedure mainly follows [2], and uses
SortaGrad, and all models use bi-directional ReLU GRU
encoders with batch-normalization through depthE], and may
use a convolutional front-end. In short hand, [2x2D-Conv
(2), 3x2560 GRU] represents a stack of 2 layers of 2D-
convolution followed by a stack of 3 bidirectional ReLU
GRU. “(2)” represents that the layer downsamples the input

5 We also find that these encoder layers could be replaced with LSTM
layers with tanh activation, weight noise, and no batch normalization. In most
cases, only 512 LSTM cells with weight noise can match the performance of
large un-regularized GRU cells with batch-normalization

by 2 along the time dimension. In short hand, the best CTC
model is [2x2D-Conv (2), 3x2560 GRU], the best RNN-
Transducer’s encoder is [2x2D-Conv (2), 4x2048 GRU] and
decoder is [3x1024 Fwd-GRU]. The best attention model
works best without a convolutional front-end, the encoder
is [4x2560 GRU (4)] and the decoder is [1x512 Fwd-GRU].
All models therefore have about 120M parameters. All mod-
els were trained with a minibatch of 512 on 16 M40 gpus
using synchronous SGD, and typically converge within 70k
iterations to the final solution.

4. IMPACT OF ENCODER ARCHITECTURE

In this section, we use the standard WSJ dataset to understand
how the models perform with different encoding choices.
Since encoder layers are far away from the loss functions we
are evaluating, one expect that an encoder that works well
on CTC would also perform well on attention and RNN-
Transducer. However, different training targets allow for
different kinds of encoders: particularly, 1) the amount of
downsampling in the encoder is an important factor that im-
pacts both training wall clock time as well as the accuracy of
the model. 2) Encoders with forward-only layers also allow
for streaming decoding, so we also explore that aspect. We
believe that these results on the smaller and more uniform
dataset should still hold at scale, and therefore focus on the
trends rather than optimizing for WER.

We control all the models in this section to have 4 layers
of 256 bidirectional LSTM cells in the encoder, with weight
noise. We perform random search over pooling in the en-
coder, whether to use a convolutional front-end, data augmen-
tation, weight noise and optimization hyper-parameters. We
report the best numbers within the first 60k iterations of train-
ing ﬂ This search over hyper-parameter space has allowed us
to match previously published results. The attention model
in Table |3 has a WER of 17.4 after beam search on the WSJ
dev’93 set, which matches the previously published results
(17.9) in [9]. Similarly, the CTC model has better results
than reported in [[13]. We therefore believe that this provides
a good baseline to explore the trade-offs in modeling choices.

4.1. Forward-only encoders

Streaming transcription is an important requirement for ASR
models. The first step towards deploying these models in this
setting is to replace the bidirectional layers with forward-only
recurrent layers. Note that while this immediately makes CTC
and RNN-Transducer models deployable, attention models
still need to be able to process the entire utterance before out-
putting the first character. Alternatives have been proposed
to circumvent this issue [22, 1] and build attention models
with monotonic attention and streaming decoders, but none

SBetter results are observed for all models if they are trained for 400k
iterations - e.g, a WER of 15.72 for Attention model after beam search on the
WSJ dev’93 set - but the conclusions of comparison remain unchanged.



of them are able to completely match the performance of the
full attention models. Nevertheless, we believe a comparison
with models with full attention is important for us to find out
if full attention over the entire audio provides additional per-
formance or improves training. In our experiment, we replace
every layer of 256 bidirectional LSTM cells in the encoder
with a layer of 512 forward-only LSTM cells.

Model Bidirectional Forward-only
Decoding Greedy | Beam Beam
NolLM | +LM +LM
CTC 15.73 | 10.08 13.78
RNN-Transducer | 1529 | 14.05 22.38
Attention 14.99 | 14.07 19.19

Table 5. WER of baseline models on WSJ eval’92 set. On
smaller datasets, RNN-Transducers and Attention models do
not have enough data to learn a good implicit language model
and therefore perform poorer compared to CTC even after
rescoring with an external LM (RNN-Transducers and Atten-
tion models learn a better implicit language model at scale, as
shown in Tables[T] and ).

From Table [5] we find that CTC models are significantly
more stable, easier to train and perform better in the forward
only setting. Also, since the attention models are quite a bit
better than RNN-Transducer models, the full attention over
all encoder time steps seems to be valuable.

4.2. Downsampling in the encoder
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Fig. 2. Effect of increasing the frame-rate on WER

One effective way to control both the memory usage as
well as the training time of these models is to compress along
the time dimension in the encoder, so that the recurrent lay-
ers are unrolled over fewer time-steps. Previous results have
shown that CTC models work best at 50 steps per second of
audio [2] (a 2x reduction since spectrograms are often made
at 100 steps per second of audio), and attention models work

best at about 12 steps per second of audio [6]. So given the
same encoder architecture, the final encoder layer on an atten-
tion model with 3 layers of pyramidal pooling has 4 x lesser
compute when compared to a CTC model. This is important
since the attention now only needs to be computed over such a
small number of encoder time steps. Since RNN-Transducers
and attention models can output multiple characters for the
same encoder timestep, we expect RNN-Transducers to be
as robust as attention models as we increase the amount of
pooling in the encoder. While Figure [2] shows that they are
fairly robust compared the CTC models, we find that atten-
tion models are significantly more robust. In addition, we
have successfully trained attention models with up to 5 lay-
ers of pooling - 32x reduction in the encoder which forces to
compress one second of audio into only 3 encoder steps.

5. ALIGNMENT VISUALIZATION

The three transduction models formulate the alignments be-
tween input and output in different ways. CTC and RNN-
Transducer models explicitly treat alignment as a latent vari-
able and marginalize over all possible hard alignments while
attention models a soft alignment between each output step
and every input step. In addition, RNN-Transducer and Atten-
tion models allow for producing multiple characters by read-
ing the same input locations while CTC can only produce one.

Herein, we visualize the alignments learned by three mod-
els to understand the formulations made by each model. Fig-
ure [3] plots the alignment for one utterance from the WSJ de-
vset. Since the alignment is computed based on ground-truth
text (instead of predictions), all three models produce reason-
able alignments, especially being monotonic for Attention.
Several notable observations are listed as below:

e We can see the small jumps along x-axis in the left sub-
figure, as CTC inserts blanks into output labels in order
to align with inputs.

e Multiple attending (producing characters) along the
same input (the same column) can be found in RNN-
Transducer (middle) and Attention (right) models.

o The alignments computed by CTC and RNN-Transducer
are more concentrated (or peaky) compared to that of
Attention. In addition, Attention model produces dif-
fused distributions at the beginning of the audio.

6. RELATED WORK

Segmental RNNs [18] provide another alternative way to
model the ASR task. Segmental RNNs model P(y|x) using
a zeroth-order CRF. While global normalization help address
the label bias issues in CTC, we believe that the bigger issue
is still the conditional independence assumptions made by
both CTC and Segmental RNNs.

[15, 18 3] directly compare the WERs of attention models
with those of CTC and RNN-transducer listed in the original
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Fig. 3. Visualization of learned alignments for the same utterance using CTC (left), RNN-Transducer (middle), and Attention
(right). The alignments are between ground-truth text (y-axis) and audio features fed into the decoder(x-axis). Note that
Attention does two more time-scale downsampling, which results in 4 x shorter sequences (x axis) compared to the other two.

papers, without any control in either acoustic models or opti-
mization methodology. [7]] did an initial controlled compari-
son over several speech transduction models, but only present
results on a small datset - TIMIT.

There is also some recent effort [22| [1]] in introducing
local and monotonic constraints into attention models espe-
cially for online applications. These efforts will in theory
bridge the modelling assumptions between attention and
RNN-transducer models. With these constraints, the fitting
capability of attention models would be limited, but they
might be more robust to noisy test data in return. In other
words, attention models can work without extra tricks during
beam search decoding, e.g, , coverage penalty.

7. CONCLUSION AND FUTURE WORK

We present a thorough comparison of three popular models
for the end-to-end ASR task at scale, and find that in the
bidirectional setting, all three models perform roughly the
same. However, these models differ in the simplicity of their
training and decoding pipelines. Notably, end-to-end models
trained with the CTC loss, simplify the training process but
still require to be decoded with large language models. RNN-
Transducers and Attention also simplify the decoding pro-
cess and require the language models to be introduced only
in a post processing stage to be equally if not more effec-
tive. Between these two, RNN-Transducers have the simplest
decoding process with no extra hyper-parameters tuning for
decoding, which leads us to believe that RNN-Transducers
present the next generation of end-to-end speech models. In
attempt to train RNN-Transducer models with the streaming
constraint, and in reducing computation in encoder layers, we
find that CTC and attention models still have strengths that we
aim to leverage in our future work with RNN-Transducers.
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