
ar
X

iv
:1

70
7.

07
24

0v
3

 [
cs

.C
L

]
 1

9
Se

p
20

17

LANGUAGE MODELING WITH NEURAL TRANS-DIMENSIONAL RANDOM FIELDS

Bin Wang, Zhijian Ou

Department of Electronic Engineering, Tsinghua university, Beijing, China.
wangbin12@mails.tsinghua.edu.cn, ozj@tsinghua.edu.cn

ABSTRACT

Trans-dimensional random field language models (TRF LMs)

have recently been introduced, where sentences are modeled as a

collection of random fields. The TRF approach has been shown to

have the advantages of being computationally more efficient in infer-

ence than LSTM LMs with close performance and being able to flex-

ibly integrate rich features. In this paper we propose neural TRFs,

beyond of the previous discrete TRFs that only use linear potentials

with discrete features. The idea is to use nonlinear potentials with

continuous features, implemented by neural networks (NNs), in the

TRF framework. Neural TRFs combine the advantages of both NNs

and TRFs. The benefits of word embedding, nonlinear feature learn-

ing and larger context modeling are inherited from the use of NNs.

At the same time, the strength of efficient inference by avoiding ex-

pensive softmax is preserved. A number of technical contributions,

including employing deep convolutional neural networks (CNNs) to

define the potentials and incorporating the joint stochastic approx-

imation (JSA) strategy in the training algorithm, are developed in

this work, which enable us to successfully train neural TRF LMs.

Various LMs are evaluated in terms of speech recognition WERs by

rescoring the 1000-best lists of WSJ’92 test data. The results show

that neural TRF LMs not only improve over discrete TRF LMs, but

also perform slightly better than LSTM LMs with only one fifth of

parameters and 16x faster inference efficiency.

Index Terms— Language modeling, Random field, Stochastic

approximation

1. INTRODUCTION

Statistical language models, which estimate the joint probability of

words in a sentence, form a crucial component in many applications

such as automatic speech recognition (ASR) and machine transla-

tion (MT). Recently, neural network language models (NN LMs),

which can be either feedforward NNs (FNNs) [1] or recurrent NNs

(RNNs) [2, 3], have been shown to surpass classical n-gram LMs.

RNNs with Long Short-Term Memory (LSTM) units are particularly

popular. Remarkably, both n-gram LMs and NN LMs follow the di-

rected graphical modeling approach, which represents the joint prob-

ability in terms of conditionals. In contrast, a new trans-dimensional

random field (TRF) LM [4, 5] has recently been introduced in the

undirected graphical modeling approach, where sentences are mod-

eled as a collection of random fields and the joint probability is de-

fined in terms of local potential functions. It has been shown that

TRF LMs significantly outperform n-gram LMs, and perform close

to LSTM LMs but are computationally more efficient (200x faster)

in inference (i.e. computing sentence probability).

Although the TRF approach has the capacity to support non-

linear potential functions and rich features, only linear potentials

This work is supported by NSFC grant 61473168.

with discrete features (such as word and class n-gram features) are

used in the previous TRF models, which limit their performances.

The previous TRF models [4, 5] will thus be referred to as discrete

TRFs. This limitation is clear when comparing discrete TRF LMs

with LSTM LMs. First, LSTM LMs associate with each word in

the vocabulary a real-valued feature vector. Such word embedding

in continuous vector space creates a notion of similarity between

words and achieves a level of generalization that is hard with dis-

crete features. Discrete TRFs mainly rely on word classing and var-

ious orders of discrete features for smoothing parameter estimates.

Second, LSTM LMs learn nonlinear interactions between underly-

ing features by use of NNs, while discrete TRF LMs basically are

log-linear models. Third, LSTM models could model larger contexts

by using memory cells than discrete TRF models. Despite these dif-

ferences, discrete TRF LMs still achieves impressive performances,

being close to LSTM LMs. A promising extension is to integrate

NNs into the TRF framework, thus eliminating the above limitation

of discrete TRFs.

The above analysis motivates us to propose neural trans-

dimensional random fields (neural TRFs) in this paper. The idea

is to use nonlinear potentials with continuous features, implemented

by NNs, in the TRF framework. Neural TRFs combine the advan-

tages of both NNs and TRFs. The benefits of word embedding,

nonlinear feature learning and larger context modeling are inherited

from the use of NNs. At the same time, the strength of efficient

inference by avoiding expensive softmax is preserved.

We have developed a stochastic approximation (SA) algorithm,

called augmented SA (AugSA), with Markov chain Monte Carlo

(MCMC) to estimate the model parameters and normalizing con-

stants for discrete TRFs. Note that the log-likelihood of a discrete

TRF is concave, guaranteeing training convergence to the global

maximum. Fitting neural TRFs is a non-convex optimization prob-

lem, which is more challenging. There are a number of techni-

cal contributions made in this work, which enable us to success-

fully train neural TRFs. First, we employ deep convolutional neu-

ral networks (CNNs) to define the potential functions. CNNs can

be stacked to represent larger and larger context, and allows easier

gradient propagation than LSTM RNNs. Second, the AugSA train-

ing algorithm is extended to train neural TRFs, by incorporating the

joint stochastic approximation (JSA) [6] strategy, which has been

used to successfully train deep generative models. The JSA strategy

is to introduce an auxiliary distribution to serve as the proposal for

constructing MCMC operator for the target distribution. The log-

likelihood of the target distribution and the KL-divergence between

the target distribution and the auxiliary distribution are jointly opti-

mized. The resulting AugSA plus JSA algorithm is crucial for han-

dling deep CNN features, not only significantly reducing computa-

tion cost for every SA iteration step but also considerably improving

SA training convergence. Third, several additional techniques are

found to improve the convergence for training neural TRFs, includ-

http://arxiv.org/abs/1707.07240v3

ing wider local jump in MCMC, Adam optimizer [7], and training

set mini-batching.

Various LMs are evaluated in terms of speech recognition WERs

by rescoring the 1000-best lists of WSJ’92 test data. The neural

TRF LM improves over the discrete TRF LM, reducing WER from

7.92% to 7.60%, with less parameters. Compared with state-of-the-

art LSTM LMs [8], the neural TRF LM outperforms the small LSTM

LM (2 hidden layers and 200 units per layer) with relative WER

reduction of 4.5%, and performs slightly better than the medium

LSTM LM (2 hidden layers and 650 units per layer) with only one

fifth of parameters. Moreover, the inference of the neural TRF LM is

about 16 times faster than the medium LSTM LM. The average time

cost for rescoring a 1000-best list for a utterance in WSJ’92 test set

are about 0.4 second vs 6.36 seconds, both using 1 GPU.

In the rest of the paper, we first discuss related works in Section

2. Then we introduce the new neural TRF model in Section 3 and

its training algorithm in Section 4. After presenting experimental

results in Section 5, the conclusions are made in Section 6.

2. RELATED WORK

LM research can be roughly divided into two tracks. The directed

graphical modeling approach, includes the classic n-gram LMs and

various NN LMs. The undirected graphical modeling approach, has

few priori work, except [4, 5, 9]. A review of the two tracks can

be found in [5]. To our knowledge, the TRF work represents the

first success in using undirected graphical modeling approach to lan-

guage modeling. Starting from discrete TRFs, the main new features

of neural TRFs proposed in this paper is the marriage of random

fields and neural networks, and the use of CNNs for feature extrac-

tion. In the following, we mainly comment on these two related

studies and the connection to our work.

2.1. Marriage of random fields and neural networks

A key strength of NNs is their nonlinear feature learning abil-

ity. Random fields (RFs) are powerful for describing interactions

among structured random variables. Combining RFs and NNs has

been pursued but most models developed so far are in fact com-

bining conditional random fields (CRFs) [10] and NNs, namely

“CRFs+NNs”. In conventional CRFs, both node potentials and edge

potentials are defined as linear functions using discrete indicator

features. “CRFs+NNs” has been introduced a few times in priori

literature. It was termed Conditional Neural Fields in [11], and later

Neural Conditional Random Fields [12] with a slightly different

specification of potentials. It also appeared previously in the speech

recognition literature [13]. Recently, there are increasing more

studies that use various types of NNs, e.g. FNNs [14], RNNs [15],

LSTM RNNs [16], to extract features as input to CRFs. Remark-

ably, the general idea in “CRFs+NNs” models is to implement the

combination by using NNs to represent the potential functions in

a RF. This is in spirit the same as in neural TRFs. However the

algorithms developed in “CRFs+NNs” studies are not applicable to

neural TRFs because the sample spaces of these CRFs are much

smaller than that of TRFs.

It is worth pointing out that CRFs can only be used for discrim-

inative tasks, e.g. sequence labeling, structured prediction tasks. In

contrast, language modeling is a generative modeling task. A gen-

erative random field model is proposed in [17], where the potentials

are also defined as CNNs, but it is only for modeling fixed-size im-

ages (i.e. fix-dimensional modeling).

2.2. Convolutional neural networks

Besides the great success in computer vision, CNNs have recently

received more attention in language modeling. CNNs over language

act as feature detectors and can be stacked hierarchically to capture

large context, like in computer vision. It is shown in [18] that apply-

ing convolutional layers in FNNs performs better than conventional

FNN LMs but is below LSTM LMs. Convolutional layers can also

be used within RNNs, e.g. as studied in [19], 1-D convolutional fil-

ters of varying widths are applied over characters, whose output is

fed to the upper LSTM RNN. Recently, it is shown in [20] that CNN-

FNNs with a novel gating mechanism benefit gradient propagation

and perform slightly better than LSTM LMs. Similarly, our pilot ex-

periment shows that using the stacked structure of CNNs in neural

TRFs allows easier model training than using the recurrent structure

of RNNs.

3. MODEL DEFINITION

Throughout, we denote by xl = (x1, · · · , xl) a sentence (i.e. word

sequence) of length l, ranging from 1 to m. Sentences of length l are

assumed to be distributed from an exponential family model:

pl(x
l; θ) =

1

Zl(θ)
eφ(x

l;θ)
(1)

where θ indicates the set of parameters and φ is the potential func-

tion, and Zl(θ) is the normalization constant of length l, i.e. Zl(θ) =
∑

xl e
φ(xl;θ). Moreover, assume that length l is associated with a

probability πl for l = 1, · · · , m. Therefore, the pair (l, xl) is jointly

distributed as:

p(l, xl; θ) = πlpl(x
l; θ) (2)

Different from using linear potentials in discrete TRFs [5], neu-

ral TRFs define the potential function φ(xl; θ) by a deep CNN, as

described below and shown in Fig. 1.

Embedding and projection. First, each word xi (i = 1, · · · , l)
in a sentence is mapped to an embedded vector ei ∈ Rde . Then

a projection layer with rectified linear unit (ReLU) activation is ap-

plied to each embedding vector to reduce the dimension, i.e.

yi = max{Wpei + bp, 0}, i = 1, · · · , l (3)

where yi ∈ Rdp is the output of the projection layer of dimension

dp; Wp ∈ Rdp×de and bp ∈ Rdp are the parameters.

CNN-bank. The outputs of the projection layer are fed into a

CNN-bank module, which contains a set of 1-D convolutional filters

with widths ranging from 1 to K. These filters explicitly model

local contextual information (akin to modeling unigrams, bigrams,

up to K-grams) [19]. Denote by F ∈ Rdp×k a filter of width k,

k = 1, · · · ,K, and by Y = [y1, · · · , yl] ∈ Rdp×l the output of the

projection layer. We first symmetrically pad zeros to the beginning

and end of Y to make it k−1 longer, denoted by Y ′ ∈ Rdp×(l+k−1).

Then the convolution is performed between Y ′ and filter F , and the

output feature map f ∈ Rl is given by

f [i] = max{〈Y ′[:, i : i+ k − 1], F 〉, 0}, i = 1, · · · , l (4)

where f [i] is the i-th component of vector f , Y ′[:, i : i + k − 1] is

the i-to-(i + k − 1)-th columns of Y ′ and 〈A,B〉 is the Forbenius

inner product. Such convolution with the above padding scheme is

known as half convolution1 . The output feature maps from multiple

1http://deeplearning.net/software/theano/library/tensor/nnet/conv.html

word embedding

projection layer

multiple convolutional

filters with varying

widths

max-pooling with

width 2 and stride 1

CNN layer-1

CNN layer-2

CNN layer-3

weighted summation

summation over time

linear layer

The sun will always

CNN-bank

CNN-stack

come out

Fig. 1. The deep CNN architecture used to define the potential func-

tion φ(xl; θ). Shadow areas denote the padded zeros.

filters with varying widths are spliced together, and followed by a

max-pooling over time with width 2 and stride 1. Zeros are also

padded before the max-pooling to preserve the time dimensionality.

Suppose there are w filters for each filter width. The output of the

CNN-bank module is Yb ∈ RwK×l.

CNN-stack. On the top of the CNN-bank module, a CNN-stack

module consists of a stack of 1-D convolutional layers to further

extract hierarchical features with n layers. The outputs of each con-

volutional layer are weighted summarized, which is similar to the

skip-connections in [21]. Let Y j
s ∈ Rds×l denote the output of

the j-th convolutional layer, j = 1, · · · , n. Our experiments use

ds < wK to reduce the dimension and employ half convolution at

each CNN layer. The output of the CNN-stack module Ys ∈ Rds×l

is:

Ys[:, i] = max{0,
n
∑

j=1

aj ∗ Y
j
s [:, i]}, i = 1, · · · , l (5)

where aj ∈ Rds is the weights applied to the j-th layer and ∗ is the

element-wise multiplication.

Summation over time. Finally, the potential function is defined

to take the following value:

φ(xl; θ) = λT
l

∑

i=1

Ys[:, i] + c (6)

where λ ∈ Rds , c ∈ R are the parameters. In summary, θ denotes

the collection of all the parameters defined in the deep CNNs.

4. MODEL LEARNING

A novel learning algorithm, called augmented SA (AugSA), has

been developed to estimate both the model parameters and normal-

izing constants for discrete TRFs [5]. In this section, the AugSA

algorithm is extended to train neural TRFs.

4.1. AugSA plus JSA

In AugSA, we introduce the following joint distribution of (l, xl):

p(l, xl; θ, ζ) = π0
l pl(x

l; θ, ζ) =
π0
l

Z1(θ)eζl
eφ(x

l;θ)
(7)

where ζ = (ζ1, · · · , ζm)T with ζ1 = 0 and ζl is the hypothe-

sized value of the log ratio of Zl(θ) with respect to Z1(θ), namely

log{Zl(θ)/Z1(θ)}, l = 1, · · · ,m. Z1(θ) is chosen as the refer-

ence value and can be calculated exactly. π0
l is the specified length

probability used in model training. Note that we set the prior length

probability πl to the empirical length probability in inference.

Denote by D the training set and by Dl the collection of sen-

tences of length l in the training set. The maximum likelihood esti-

mation of parameter θ and normalization constant ζ can be found by

solving the following simultaneous equations [5]:

ED

[

∂φ

∂θ

]

−

m
∑

l=1

|Dl|

|D|
Epl

[

∂φ

∂θ

]

= 0, (8)

∑

xl

p(l, xl; θ, ζ) = π0
l , (9)

where |Dl| is the number of sentences in set Dl, |D| =
∑m

l=1 |Dl|,
ED is the empirical expectation on the training set D and Epl is the

expectation with respect to the model distribution pl(x
l; θ, ζ) in (7):

ED

[

∂φ

∂θ

]

=
1

|D|

m
∑

l=1

∑

xl∈Dl

∂φ(xl; θ)

∂θ

Epl

[

∂φ

∂θ

]

=
∑

xl

pl(x
l; θ, ζ)

∂φ(xl; θ)

∂θ

Exact solving (8) and (9) is infeasible. AugSA is proposed to

stochastically solve (8) and (9) in the SA framework [22], which iter-

ates MCMC sampling and parameter update. The convergence of SA

has been studied under various conditions [23, 24, 25]. The MCMC

sampling in AugSA is implemented by the trans-dimensional mix-

ture sampling (TransMS) algorithm [5] to simulate sentences of dif-

ferent dimensions from the joint distribution p(l, xl; θ, ζ) in (7).

The sampling operations in TransMS make the computational

bottleneck in AugSA. Suppose that we use Gibbs sampling to simu-

late a sentence for a given length, which is the method used in [5] for

training discrete TRFs. We need to calculate the conditional distri-

bution pl(xi|x 6=i) of word xi for each position i, given all the other

Input: training set D
1: Init the parameter θ(0) and µ(0) and set

ζ(0) = (0, log |V|, 2 log |V|, · · · , (m − 1) log |V|), where

|V| is the vocabulary size.

2: for t = 1, 2, . . . , tmax do

3: Random select KD sentences from the training set, as D(t)

4: Generate KB sentences using TransMS in section 4.2, as

B(t)

5: Compute θ(t) based on (11)

6: Compute ζ(t) based on (12) and (13)

7: Compute µ(t) based on (14)

8: end for

Fig. 2. The AugSA plus JSA algorithm for training neural TRFs

words x 6=i. This is computational expensive because calculating

pl(xi|x 6=i) needs to enumerate all the possible values of xi ∈ V and

to compute the joint probability pl(xi, x 6=i) for each possible value,

where V denotes the vocabulary. In [5], word classing is introduced

to accelerate sampling, which means that each word is assigned to

a single class. Through applying Metropolis-Hastings (MH) within

Gibbs sampling, we first sample the class by using a reduced model

as the proposal, which includes only the features that depend on xi

through its class, and then sample the word. This reduces the com-

putational cost from |V| to |V|/|C|, where |C| denotes the number of

classes. However, the computation reduction in using word classing

in neural TRFs is not as significant as in discrete TRFs, because the

deep CNN potentials in neural TRFs involve a much larger context,

which makes the sampling computation with the reduced model still

expensive.

To apply AugSA to neural TRFs, we borrow the idea of joint

stochastic approximation (JSA) [6], which has been used to success-

fully train deep generative models. The JSA strategy is to introduce

an auxiliary distribution q(l, xl;µ) with parameter µ to serve as the

proposal for constructing MCMC operator for the target distribution

p(l, xl; θ, ζ) in (7). The log-likelihood of the target distribution and

the KL-divergence between the target distribution and the auxiliary

distribution are jointly optimized. Therefore, the AugSA plus JSA

algorithm is defined as stochastically solving the three simultaneous

equations, namely (8), (9) together with

∂

∂µ
KL(p(l, xl; θ, ζ)||q(l, xl;µ)) = 0 (10)

At each iteration, the parameter µ of the auxiliary distribution

q(l, xl;µ) is updated together with the parameter θ and normaliza-

tion constants ζ, and q(l, xl;µ) is used in TransMS as a proposal

distribution (See Section 4.2 for details). In this paper, the auxiliary

distribution is implemented by an LSTM RNN.

Moreover, several additional techniques are used to suit the use

of nonlinear potentials and to improve the convergence for training

neural TRFs. The first technique, called training set mini-batching

[4], is that at each iteration, a mini-batch of sentences is randomly

selected from the training set and the empirical expectation is calcu-

lated over this mini-batch. This is crucial for training neural TRFs

because unlike in discrete TRFs, the gradient of the nonlinear po-

tential function φ with respect to θ depends on the parameters θ.

Second, the Adam [7] optimizer is used to update the parameter θ,

saving the computation cost for estimating the empirical variances.

The AugSA plus JSA algorithm is summarized in Fig. 2 and de-

tailed as follows. At iteration t, we first random select KD samples

from training set D, denoted by D(t). Then TransMS (in Section

4.2) is performed to generate KB samples, denoted by B(t). The

update for the parameters θ is:

θ(t) = θ(t−1)+γθ,tAdam







ED(t)

[

∂φ

∂θ

]

−
1

KB

∑

(l,xl)∈B(t)

π̃l

π0
l

∂φ

∂θ







,

(11)

where Adam denotes the Adam optimizer, γθ,t is the learning rate

for θ and π̃l is the empirical probability of length l. Remarkably,

the gradient of φ with respect to θ can be efficiently computed by

backpropagtion. The update for the normalization constants ζ is the

same as in [5]:

ζ(t−
1
2
) = ζ(t−1) + γζ,t

{

δ1(B
(t))

π0
1

, · · · ,
δm(B(t))

π0
m

}T

, (12)

ζ(t) = ζ(t−
1
2
) − ζ

(t− 1
2
)

1 , (13)

where ζ
(t)
1 , the first element of ζ(t), is set to 0 by (13), and γζ,t

is the learning rate for ζ, and δl(B
(t)) is the proportion of length l

appearing in B(t):

δl(B
(t)) =

1

KB

∑

(j,xj)∈B(t)

1(j = l).

The update for the parameters µ of the auxiliary distribution is:

µ(t) = µ(t−1) + γµ,t
∑

(l,xl)∈B(t)

∂

∂µ
log q(l, xl;µ), (14)

where γµ,t is the learning rate for µ.

4.2. TransMS with an auxiliary distribution

The trans-dimensional mixture sampling (TransMS) proposed in [5]

is extended for applying AugSA plus JSA. The TransMS consists

of two steps at each iteration: local jump between dimensions and

Markov move for a given dimension. First, the auxiliary distribu-

tion q(l, xl;µ) is introduced as the proposal distribution g(·|xh) in

both local jump and Markov move. Second, multiple-trial metropo-

lis independence sampling (MTMIS) [26] is used to increase the ac-

ceptance rate. Let l(t−1) and x(t−1) denote the length and sequence

before sampling at iteration t. The algorithm is described as follows.

Step I: Local jump. Assuming l(t−1) = k, first we draw a new

length j ∼ Γ(k, ·), where the jump distribution Γ(k, ·) is defined to

be uniform in the neighborhood of k:

Γ(k, j) =
1

min(k + r,m)−max(k − r, 1) + 1
, (15)

if |k−j| ≤ r and to be 0 otherwise, where m is the maximum length

and r is the jump range, which is set to be one in [5].

If j = k, we retain the observation, i.e. set l(t) = l(t−1) and

x(t) = x(t−1), and perform the next step directly.

If j > k, we first draw a subsequence uj−k of length j−k from

a proposal distribution: uj−k ∼ g(·|x(t−1)). Then we set l(t) = j

and x(t) = {x(t−1), uj−k} with probability

min

{

1,
Γ(j, k)

Γ(k, j)

p(j, {x(t−1), uj−k}; θ, ζ)

p(k, x(t−1); θ, ζ)g(uj−k|x(t−1))

}

, (16)

where {x(t−1), uj−k} denotes the sequence with length j whose

first k elements are x(t−1) and the last j − k elements are uj−k .

LSTMs PPL WER-p WER-r WER-s

LSTM-2×200 113.9 8.14 7.96 7.80

LSTM-2×650 84.1 7.59 7.66 7.85

LSTM-2×1500 78.7 7.32 7.36 8.18

Table 1. Comparison of three different rescoring strategies for

LSTM LMs. “LSTM-2×200/650/1500” indicates the LSTM with

2 hidden layers and 200/650/1500 hidden units per layer. “PPL” de-

notes the perplexity on the PTB test set. “WER-p”, “WER-r” and

“WER-s” correspond to the preserve, reset and shuffle strategy re-

spectively.

If j < k, we set l(t) = j and x(t) = x
(t−1)
1:j with probability

min

{

1,
Γ(j, k)

Γ(k, j)

p(j, x
(t−1)
1:j ; θ, ζ)g(x

(t−1)
j+1:k|x

(t−1)
1:j)

p(k, x(t−1); θ, ζ)

}

, (17)

where x
(t−1)
i:j denotes the subsequence of x(t−1) from the i-th posi-

tion to the j-th position.

Here, the proposal distribution g(·|xh) is computed using the

auxiliary distribution q(l, xl;µ). For q(l, xl;µ) implemented by an

LSTM RNN as in this paper, calculating g(·|xh) and sampling form

g(·|xh) can be performed recurrently.

Step II: Markov move. In this step, given the current sequence

and fixing the length, we perform the block Gibbs sampling from

the first position to the last position with block-size s. MTMIS is

used with the same proposal distribution g(·|xh) as in local jump.

In our experiments, the block-size s = 5 and multiple-trial number

M = 10. Denote by (l, xl) the current length and sequence after

local jump. For positions i = 1, s + 1, 2s + 1, · · · , Markov move

proceeds as follows:

• Generate M i.i.d. samples us
(k) ∼ g(·|xl

1:i−1), each of length

s, k = 1, · · · ,M , compute

w(us
(k)) =

p(l, {xl
1:i−1, u

s
(k), x

l
i+s:l}; θ, ζ)

g(us
(k)|x

l
1:i−1)

and W =
∑M

k=1 w(us
(k)), where us

(k) is a sequence of length

s and {xl
1:i−1, u

s
(k), x

l
i+s:l} denotes the concatenation of the

three subsequences xl
1:i−1, us

(k) and xl
i+s:l.

• Draw us from the trial set {us
(1), · · · , u

s
(M)} with probability

proportional to w(us
(k)).

• Set x(t+1) = {xl
1:i−1, u

s, xl
i+s:l} with probability

min

{

1,
W

W − w(us) + w(xl
i:i+s−1)

}

5. EXPERIMENTS

5.1. Experiment setup and baseline LMs

In this section, we compare neural TRF LMs with different LMs on

speech recognition. The LM training corpus is the Wall Street Jour-

nal (WSJ) portion of Penn Treebank (PTB). Sections 0-20 are used

as the training set (about 930 K words), sections 21-22 as the devel-

opment set (74 K) and section 23-24 as the test set (82 K). The vo-

cabulary is limited to 10 K words, including a special token 〈UNK〉
denoting the word not in the vocabulary. This setting is the same

as that used in other studies [2, 4, 5, 8]. For evaluation in terms of

speech recognition WERs, various LMs obtained using PTB train-

ing and development sets are applied to rescore the 1000-best lists

from recognizing WSJ’92 test data (330 utterances). For each utter-

ance, the 1000-best list of candidate sentences are generated by the

first-pass recognition using the Kaldi toolkit [27] with a DNN-based

acoustic models. The oracle WER of the 1000-best list is 0.93%.

The baseline LMs include a 5-gram LM with modified Kneser-

Ney smoothing [28] (denoted by “KN5”), and three LSTM LMs with

2 hidden layers and 200, 600, 1500 hidden units per layer respec-

tively, which are called small, medium and large LSTMs in [8]. We

reproduce the three LSTM LMs in [8] and use them in our rescoring

experiments. The 5-gram LM is trained using the SRILM toolkit

[29], which automatically adds the beginning-token 〈s〉 and end-

token 〈/s〉 at the beginning and the end of each sentence. When

applying the KN5 LM to rescoring, the beginning-token and end-

token are also added to each sentence in the 1000-best list.

In contrast, for training LSTM LMs, a tricky practice [8] is to

only add the end-token at the end of each sentence, and then con-

catenate all training sentences. This in fact treats the whole training

corpus as a single long sentence. In rescoring, only the end-token is

added to each sentence, like in training. But there are three strategies

of how the initial hidden state is configured in rescoring.

1. preserve: the final hidden state (i.e. the hidden state which

predicts the end-token) of the previous sentence is preserved

and used to compute the initial state of the current sentence

together with the end-token.

2. reset: the final state of the previous sentence is reset to zero.

3. shuffle: we first shuffle all the candidate sentences of all the

testing utterances, and then use the first strategy. This elimi-

nate the unfair use of information across sentences.

The WERs of the above strategies are shown in Table 1. It can

be seen that the lowest WER is achieved by “LSTM-2×1500” with

2 hidden layer and 1500 hidden units, using the preserve strategy.

When we shuffle the sentences, the WER increases significantly,

from 7.32 to 8.18, which is even worse than the WER of “LSTM-

2×200”. This is because that in the preserve strategy, the candidate

sentences of each utterance are rescored successively. The final hid-

den state carries relevant information to benefit the prediction of the

next candidate sentence which belongs to the same testing utterance

as the current candidate sentence. After shuffling, the relation be-

tween adjacent candidate sentences is broken. The information pre-

served in the hidden states may mislead the prediction.

In the following, we use “WER-r”, the WER obtained by the

reset strategy, as the performance measure of the LSTM LMs, since

the resulting WERs are independent of the processing order of the

candidate sentences and stable. Moreover, this enables a more fair

comparison with KN5 and neural TRF LMs, since they do not use

any information across sentences.

5.2. Neural TRF LMs in speech recognition

The CNN configuration used in neural TRF models is shown in ta-

ble 3. The AugSA plus JSA algorithm in Fig.2 is used to train neural

TRF LMs on PTB training corpus. At each iteration, we random

select KD = 1000 sentences from training corpus, and generate

KB = 100 sentences of various lengths using the TransMS algo-

rithm described in Section 4.2. The auxiliary distribution q(l, xl;µ)
is defined as a LSTM LM with 1 hidden layers and 250 hidden units.

The learning rates in (11), (12) and (14) are set as γθ,t = 1/(t+104),
γζ,t = t−0.2 and γµ,t = 1.0. The length distribution π0

l is set as

specified in [5].

Model PPL WER(%) #param (M) Training time Inference time

KN5 141.2 8.78 2.3 22 seconds (1 CPU) 0.06 seconds (1 CPU)

LSTM-2×200 113.9 7.96 4.6 about 1.7 hours (1 GPU) 6.36 seconds (1 GPU)

LSTM-2×650 84.1 7.66 19.8 about 7.5 hours (1 GPU) 6.36 seconds (1 GPU)

LSTM-2×1500 78.7 7.36 66.0 about 1 day (1 GPU) 9.09 seconds (1 GPU)

discrete TRF [5] ≥130 7.92 6.4 about 1 day (8 CPUs) 0.16 seconds (1 CPU)

neural TRF ≥37.4 7.60 4.0 about 3 days (1 GPU) 0.40 second (1 GPU)

KN5+LSTM-2×1500 - 7.47

TRF+LSTM-2×1500 - 7.17

Table 2. Performances of various LMs. “PPL” is the perplexity on PTB test set. “WER” is the word error rate on WSJ’92 test data. “#param”

is the number of parameter numbers (in millions). “+” denotes the log-linear interpolation with equal weights of 0.5. For LSTMs, the WER

is obtained using the reset strategy. “Inference time” denotes the average time of rescoring the 1000-best list for each utterance.

word embedding size 256

projection dimension 128

CNN-bank cnn-k-128, with k ranging from 1 to 10

max-pooling width 2 and stride 1

CNN-stack cnn-3-128 → cnn-3-128 → cnn-3-128

Table 3. CNN configuration in neural TRFs. “cnn-k-n” denotes a

1-D CNN with filter width k and output dimension n. “A → B”

denotes that the output of layer A is fed into layer B.

All the parameters of the CNN and LSTM are initialized ran-

domly within an interval from -0.1 to 0.1, except for the word em-

bedding of the CNN, which is initialized by running the word2vec

toolkit [30] on PTB training set and updated during training. We

stop the training once the smoothed log-likelihood (moving average

of 1000 iterations) on the PTB development set does not increase

significantly, resulting in 33,000 iterations (about 800 epochs). The

negative log-likelihood of TRF LMs on PTB test set and the KL-

divergence between the model distribution p(l, xl; θ, ζ) and the aux-

iliary distribution q(l, xl;µ) are shown in Fig. 3.

As the model parameters of neural TRF LMs are estimated

stochastically, we cache 10 model parameters from the most recent

10 training epochs. After the training is stopped, we calculate the

PPLs over PTB test set and the LM scores of the 1000-best lists, us-

ing the cached 10 model parameters. Then the resulting 10 PPLs are

averaged as the final PPL, and the LM scores from the 10 models are

averaged and used in rescoring, giving the final WER. This is similar

to model combination using sentence-level log-linear interpolation,

which reduces the variance of stochastically estimated models.

The PPLs and WERs of various LMs are shown in Table 2,

from which there are several comments. First, as studied in [5],

AugSA tends to underestimate the perplexity on test set. The re-

ported PPLs in Table 2 should be a lower bound of the true PPLs

of the TRF models. Second, the neural TRF LM achieves the

WER of 7.60, which outperforms the discrete TRF using features

“w+c+ws+cs+wsh+csh+tied” [5] with relative reduction of 4.0%.

Compared with “LSTM-2x200” with similar model size, the neural

TRF LM achieves a relative WER reduction of 4.5%. Compared

with “LSTM-2x650”, the neural TRF LM achieves a slightly lower

WER with only a fifth of parameters. The large “LSTM-2x1500”

performs slightly better than the neural TRF but with 16.5 times

more parameters. Third, we examine how neural TRF LMs and

LSMT LMs are complimentary to each other. The probability of

each sentences are log-linearly combined with equal interpolated

weights of 0.5. The interpolated neural TRF and “LSTM-2x1500”

further reduces the WER and achieves the lowest WER of 7.17.

0 200 400 600
epochs

50

100

150

200

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d neural TRF
KN5
LSTM-2x200
LSMT-2x650

(a)

0 200 400 600
epochs

-20

-10

0

10

20

K
L

-d
is

ta
nc

e

neural TRF

(b)

Fig. 3. (a) The negative log-likelihood on PTB test set and (b) the

KL-divergence KL(p||q), at each training epoch.

Moreover, the inference with neural TRF LMs is much faster

than with LSTM LMs. The time cost of using ten neural TRFs to

rescore the 1000-best list for each utterance is about 0.4 second.

Compared with LSTM LMs, the inference of neural TRFs is about

16 times faster than “LSTM-2x200” and “LSTM-2x650”, and about

23 times faster than “LSTM-2x1500”.

6. CONCLUSION

In this paper, we further study the TRF approach to language model-

ing and define neural TRF LMs that combine the advantages of both

NNs and TRFs. The following contributions enable us to success-

fully train neural TRFs.

• Although the nonlinear potential functions could be imple-

mented by arbitrary NNs (FNNs or RNNs), the design of the

deep CNN architecture in this paper is found to be important

for efficient training.

• The proposed AugSA plus JSA training algorithm is crucial

for the learning of neural TRFs to be feasible.

• Several additional techniques are found to be useful for train-

ing neural TRFs, including wider local jump in MCMC,

Adam optimizer, and training set mini-batching.

It is worth pointing out that apart from the success in language

modeling, the neural TRF models can also be applied to other

sequential and trans-dimensional data modeling tasks in general,

and also to discriminative modeling tasks, e.g. extending current

“CRFs+NNs” models. For language modeling, integrating richer

nonlinear and structured features is an important future direction.

7. REFERENCES

[1] Holger Schwenk, “Continuous space language models,” Com-

puter Speech & Language, vol. 21, pp. 492–518, 2007.

[2] Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan H Cer-

nocky, and Sanjeev Khudanpur, “Extensions of recurrent neu-

ral network language model,” in Proc. International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP),

2011.

[3] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney, “Lstm

neural networks for language modeling.,” in Proc. Interspeech,

2012, pp. 194–197.

[4] Bin Wang, Zhijian Ou, and Zhiqiang Tan, “Trans-dimensional

random fields for language modeling,” in Proc. Annu. Meeting

of the Association for Computational Linguistics (ACL), 2015.

[5] Bin Wang, Zhijian Ou, and Zhiqiang Tan, “Learning trans-

dimensional random fields with applications to language mod-

eling,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 2017.

[6] Haotian Xu and Zhijian Ou, “Joint stochastic approximation

learning of helmholtz machines,” International Conference on

Learning Representations (ICLR) Workshop Track, 2016.

[7] Diederik Kingma and Jimmy Ba, “Adam: A method for

stochastic optimization,” arXiv:1412.6980 [cs.LG], 2014.

[8] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals, “Re-

current neural network regularization,” arXiv preprint

arXiv:1409.2329, 2014.

[9] Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu, “Whole-

sentence exponential language models: a vehicle for linguistic-

statistical integration,” Computer Speech & Language, vol. 15,

pp. 55–73, 2001.

[10] John Lafferty, Andrew McCallum, and Fernando Pereira,

“Conditional random fields: Probabilistic models for segment-

ing and labeling sequence data,” Proc. International Confer-

ence on Machine Learning (ICML), pp. 282–289, 2001.

[11] Jian Peng, Liefeng Bo, and Jinbo Xu, “Conditional neural

fields,” in Advances in neural information processing systems,

2009, pp. 1419–1427.

[12] Thierry Artieres et al., “Neural conditional random fields,” in

Proceedings of the Thirteenth International Conference on Ar-

tificial Intelligence and Statistics, 2010.

[13] Rohit Prabhavalkar and Eric Fosler-Lussier, “Backpropaga-

tion training for multilayer conditional random field based

phone recognition,” in Acoustics Speech and Signal Process-

ing (ICASSP), 2010 IEEE International Conference on. IEEE,

2010, pp. 5534–5537.

[14] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,

Koray Kavukcuoglu, and Pavel Kuksa, “Natural language pro-

cessing (almost) from scratch,” Journal of Machine Learning

Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[15] Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu, Xiao-

long Li, and Feng Gao, “Recurrent conditional random field

for language understanding,” in Acoustics, Speech and Signal

Processing (ICASSP), 2014 IEEE International Conference on,

2014.

[16] Xuezhe Ma and Eduard Hovy, “End-to-end sequence la-

beling via bi-directional lstm-cnns-crf,” arXiv preprint

arXiv:1603.01354, 2016.

[17] Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu, “A

theory of generative convnet,” in International Conference on

Machine Learning, 2016.

[18] Ngoc-Quan Pham, German Kruszewski, and Gemma Boleda,

“Convolutional neural network language models,” in Proc. of

EMNLP, 2016.

[19] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M

Rush, “Character-aware neural language models,” in Thirtieth

AAAI Conference on Artificial Intelligence, 2016.

[20] Yann N Dauphin, Angela Fan, Michael Auli, and David Grang-

ier, “Language modeling with gated convolutional networks,”

arXiv preprint arXiv:1612.08083, 2016.

[21] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-

monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-

drew Senior, and Koray Kavukcuoglu, “Wavenet: A generative

model for raw audio,” CoRR abs/1609.03499, 2016.

[22] Herbert Robbins and Sutton Monro, “A stochastic approxi-

mation method,” The Annals of Mathematical Statistics, pp.

400–407, 1951.

[23] Albert Benveniste, Michel Métivier, and Pierre Priouret, Adap-

tive algorithms and stochastic approximations, New York:

Springer, 1990.

[24] Hanfu Chen, Stochastic approximation and its applications,

Springer Science & Business Media, 2002.

[25] Zhiqiang Tan, “Optimally adjusted mixture sampling and lo-

cally weighted histogram analysis,” Journal of Computational

and Graphical Statistics, vol. 26, pp. 54–65, 2017.

[26] Jun S Liu, Monte Carlo strategies in scientific computing,

Springer Science & Business Media, 2008.

[27] “Kaldi,” http://kaldi.sourceforge.net/.

[28] Stanley F. Chen and Joshua Goodman, “An empirical study

of smoothing techniques for language modeling,” Computer

Speech & Language, vol. 13, pp. 359–394, 1999.

[29] “Srilm - the sri language modeling toolkit,”

http://www.speech.sri.com/projects/srilm/.

[30] “word2vec,” https://code.google.com/archive/p/word2vec.

http://kaldi.sourceforge.net/
http://www.speech.sri.com/projects/srilm/
https://code.google.com/archive/p/word2vec

	1 Introduction
	2 Related work
	2.1 Marriage of random fields and neural networks
	2.2 Convolutional neural networks

	3 Model Definition
	4 Model learning
	4.1 AugSA plus JSA
	4.2 TransMS with an auxiliary distribution

	5 Experiments
	5.1 Experiment setup and baseline LMs
	5.2 Neural TRF LMs in speech recognition

	6 Conclusion
	7 References

