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ABSTRACT

Neural Machine Translation (NMT) has recently demon-

strated improved performance over statistical machine trans-

lation and relies on an encoder-decoder framework for trans-

lating text from source to target. The structure of NMT makes

it amenable to add auxiliary features, which can provide com-

plementary information to that present in the source text. In

this paper, auxiliary features derived from accompanying

audio, are investigated for NMT and are compared and com-

bined with text-derived features. These acoustic embeddings

can help resolve ambiguity in the translation, thus improving

the output. The following features are experimented with:

Latent Dirichlet Allocation (LDA) topic vectors and GMM

subspace i-vectors derived from audio. These are contrasted

against: skip-gram/Word2Vec features and LDA features

derived from text. The results are encouraging and show

that acoustic information does help with NMT, leading to an

overall 3.3% relative improvement in BLEU scores.

Index Terms— Neural Machine Translation, LDA topics,

Acoustic Embeddings

1. INTRODUCTION

In Neural Machine Translation (NMT) [1], text from a source

language is first encoded using a recurrent neural network

(RNN), resulting in compressed context vector, which is then

passed to the decoder, also a RNN, and takes the encoded

context vector and the previously translated word as input

and produces the target translated word at the current time

step. The compressed context vector is derived by applying

an attention mechanism [1], which is a measure of alignment

between the source and target text, to the RNN hidden state

vectors of the encoder up to the current time-step.

Auxiliary features can be integrated at the encoder by con-

catenating the word vectors with features [2, 3, 4]. Linguistic

input features such as lemmas were found to improve NMT

results when they are appended to the word vector at the en-

coder [2] or even when added as an extra output at the decoder

[3]. In [4], latent Dirichlet allocation (LDA) [5] topic vectors

were appended to the hidden state vector for each word and

subsequently used to obtain a topic-informed encoder context

vector, which is then passed to the decoder. In [6] domain in-

formation was incorporated by concatenating a 3-letter word

representing the domain to the source text.

Auxiliary information in the form of multi-modal streams

such as images have also been integrated in NMT [7, 8, 9, 10,

11]. In most cases, the visual features are extracted from a

convolutional neural network (CNN) and can be appended to

the head or tail of the original text sequence in the encoder

[7], added to the word embeddings after a linear projection

to match the word feature dimensionality [8] or even encoded

separately with a separate attention mechanism as in [9, 10].

This work focuses on the integration of auxiliary features

extracted from audio accompanying the text. Whilst features

extracted from text and images have been explored, the use

of audio information for NMT remains an open question. In

this work, audio features in the form of show-level i-vectors

[12] and Latent Dirichlet Allocation (LDA) topic vectors ex-

tracted from audio (acoustic LDA) [13] are explored for ma-

chine translation (MT) of source text. These auxiliary fea-

tures are compared and combined with show-level LDA topic

vectors derived from text [5] as well as word embeddings

that preserve distance of similar words in vector space [14].

The combination of features at different levels of granularity

(show-level and word-level) is also investigated.

The aims of this work are thus three-fold. First, the use

of audio as an extra stream of information is investigated

within the framework of NMT. Second, we aim to investigate

whether ways of structuring this diversity through topic mod-

elling on both the text and acoustic data can help improve

translation results. Third, we look at whether semantically

motivated text embeddings can help with NMT when used as

an auxiliary feature on top of the default word representation

and in combination with other embeddings. Evaluation is

carried out on a English to French MT task on public TED

lecture data based on the IWSLT 2015 evaluation [15], which

consists of TED talks/shows with accompanying audio. A

key characteristic of the TED data is that it has diversity in

the variety of topics that are spoken and multimedia informa-

tion in the form of text, audio and video are available, even



though visual information is not considered within the scope

of this work.

2. BACKGROUND

2.1. Neural Machine Translation

Neural Machine Translation allows the decoder to predict a

word sequence y1, . . . ,yT in the target language from the

previous word, the RNN hidden state si and the compressed

context vector from the encoder c:

p(yi|y1, . . . ,yi−1, c) = g(yi−1, si, c), (1)

The context vector is computed by fusing the past RNN

hidden states, {hj}
T
j=1 using an attention mechanism.

c =
T
∑

j=1

αijhj (2)

Where αij is called the attention weights and are com-

puted as follows:

αij =
exp (eij)

∑T

k=1
exp (eik)

, (3)

Where eij = a(si−1,hj) is a measure of the alignment

between the RNN hidden state at position i − 1 and the de-

coder state at position j.

The encoder is a standard RNN that predicts the current

word in the source language, xi from the previous word xi−1

and the RNN hidden state vector at the current time, hi.

p(xi|x1, . . . ,xi−1,hi) = f(xi−1,hi) (4)

2.2. NMT Augmented with Auxiliary Features

Auxiliary features can be integrated into Recurrent Network

Networks (RNN) in various ways. They can be added either at

the input layer, hidden layer or output layer through concate-

nation, addition or composition. A detailed review of feature

integration into Recurrent Neural Network Language Models

(RNNLM) is presented in [16].

In NMT, auxiliary features can be integrated at the en-

coder through a simple weighted concatenation in the way

proposed by Sennrich et al. [2] as follows:

hi = σ(WExi +Uhi−1) (5)

Where E is a word embedding matrix, W and U are

weight matrices and σ is a non-linear activation function such

as sigmoid or tanh.

This assumes that the features are aligned for each

word/token, thus requiring a one-to-one mapping between

the features and words. In our case, we are interested in the

integration of both word-level and sentence-level features.

As a result of this, a robust way of concatenating different

kinds of information extracted on both word and the sentence

levels, through asynchronous fusion, can be used.

Assume kt are word-level and ks are sentence-level fea-

tures and taking φ(wi) to be the NMT word embedding for

word wi. The concatenation method produces a new word

embedding φ(w̄i) according to the following:

φ(w̄i) = σ(φ(wi) +Wkt
φkt

(wi) +Wks
φks

(wi)) (6)

Where φ(w̄i) is the resultant word information that is

composed of φ(wi) – the word embedding vector; φkt
(wi)

– the token-level external information; and φks
(wi) – the

sentence-level external information. Wkt
and Wks

are affine

transforms that help both to account for the difference in

dimensionality between the word embedding vector and the

features and they are learnt during the NMT training process,

where the aim is to weight and balance the contributions of

different features in order to give an optimal translation result.

Document-level features can also be integrated by repli-

cating them at the sentence-level, because in NMT, each sen-

tence is independent and there is no propagation of states

across sentences.

This approach has the advantage that features can be com-

posed at multiple levels, which can be useful for disambiguat-

ing translation as it is known that the result NMT can be im-

proved by attending to both local and global context [17].

In the next sections, the text and acoustic auxiliary fea-

tures used in this work are described.

3. TEXT FEATURES FOR NMT

3.1. Word2Vec

Word2Vec [14] is a distributed representation of words in

a vector space and allows semantically similar words to be

mapped close in the vector space. Word2Vec is a class of neu-

ral networks that can produce a vector for each word in the

corpus given an unlabelled training corpus, where the word

vectors encode semantic information. There are two main

Word2Vec models, the skip-gram model and the continuous

bag-of-words model. In this work, the skip-gram model is

used and this is now further explained.

Skip-gram is based on a neural network model that is

trained by feeding it word pairs found in training documents.

The network is then going to learn the statistics from the

number of times each pairing shows up. The words are

represented as a 1-of-K encoding (1-hot vector) when used

as input or output to the neural network. The input of the

skip-gram neural network model is a single word WI from a

given sentence and the output are the words in WI ’s context,

{WO,1, . . . ,WO,c} and defined by the word window size c.

More formally, given a sequence of words {wt}
T
t=1, the

objective of the Skip-gram model is to maximise the average

log probability:

L =
1

T

T
∑

t=1

∑

−c≤j≤c,j 6=0

log p(wt+j |wt) (7)



Where where c is the size of the training context and the

Skip-gram formulation defines p(wt+j |wt) according to:

p(wj |WI) =
exp (v′wj

T
vwI

)
∑N

j′=1
exp (v′

w′

j

T
vwI

)
(8)

Where vw and v′w are the input and output vector repre-

sentations of wj , and N is the number of words in the vocab-

ulary. The model is trained using back-propagation and the

final value of wj is taken as the Word2Vec vector of the word.

Both monolingual and bilingual skip-grams were found

to lead to small but non-significant improvements in BLEU

score for English to Spanish statistical machine translation on

the News Commentary corpus [18]. In this work, we aim to

investigate the same on English to French translation on TED

Talks using the NMT framework. Moreover, the composition

of Word2Vec (token-level) features and show-level features

derived from audio and text, are investigated.

3.2. Show-based Text LDA

Text-based LDA [5], referred to in this paper as text LDA

(tLDA), is an unsupervised probabilistic generative model

that allows text data to be represented by a set of unobserved

latent topics. It aims to describe how every item within

a collection is generated, assuming that there are a set of

latent variables and that each item is modelled as a finite

mixture over those latent variables. It can be used to extract

show-level topic information, which can help disambiguate

the context of translation. LDA features can be obtained by

first extracting term frequency-inverse document frequency

(TF-IDF) vectors that are computed for each document of the

training text data, which are then used to train LDA models.

LDA features are then obtained by computing Dirichlet pos-

teriors over the topics for each document, where a document

corresponds to a specific show in the case of the TED data.

A dataset is defined as a collection of documents where

each document is in turn a collection of discrete symbols (in

case of topic modelling of text documents, a document is

equivalent to a set and words inside a document are equivalent

to the discrete symbols). Each document is represented by a

V -dimensional vector based on the histogram of the symbols’

table which has size of V . It is assumed that the documents

were generated by the following generative process:

1. For each document dm,m ∈ {1...M}, choose a K–

dimensional latent variable weight vector θm from

the Dirichlet distribution with scaling parameter α:

p(θm|α) = Dir(α)

2. For each discrete item wn, n ∈ {1...N} in document

dm

(a) Draw a latent variable zn ∈ {1...K} from the

multinomial distribution p(zn = k|θm)

Fig. 1. Graphical model representation of LDA

(b) Given the latent variable, draw a symbol from

p(wn|zn, β), where β is a V ×K matrix and

βij = p(wn = i|zn = j, β)

It is assumed that each document can be represented as a bag–

of–symbols - i.e. by first–order statistics, which means any

symbol sequence relationship is disregarded. Since speech

and text are highly ordered processes this can be an issue.

Another assumption is that the dimensionality of the Dirichlet

distribution K is fixed and known (and thus the dimensional-

ity of the latent variable z).

A graphical representation of the LDA model is shown

at Figure 1 as a three–level hierarchical Bayesian model. In

this model, the only observed variable is w and the rest are all

latent. α and β are dataset level parameters, θm is a document

level variable and zn, wn are symbol level variables. The

generative process is described formally as:

p(θ, z,w|α, β) = p(θ|α)
N
∏

n=1

p(zn|θ)p(wn|zn, β) (9)

The posterior distribution of the latent variables given the
symbols and α and β parameters is:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
(10)

Computing p(w|α, β) requires some intractable integrals. A

reasonable approximate can be acquired using variational ap-

proximation, which is shown to work reasonably well in vari-

ous applications [5]. The approximated posterior distribution

is:

q(θ, z|γ, φ) = q(θ|γ)

N
∏

n=1

q(zn|φn) (11)

where γ is the Dirichlet parameter that determines θ and φ

is the parameter for the multinomial that generates the latent

variables.

Training tries to minimise the Kullback–Leiber Diver-

gence (KLD) between the real and the approximated joint

probabilities (equations 10 and 11) [5]:

argmin
γ,φ

KLD
(

q(θ, z|γ, φ) || p(θ, z|w, α, β)
)

(12)

Compared to the Word2Vec representation which is at

word level, the LDA features are extracted at show level and

thus provides a complementary source of information, where

global context is taken into account. Text LDA features have

been shown to be useful both for SMT [19] and NMT [4],



where LDA topic vectors were included both at the encoder

and decoder. Whilst both [19, 4] investigated Chinese to En-

glish translation, this work investigates LDA for English to

French translation, on TED Talks, which are diverse in topics

spoken. LDA can help to structure this diversity and thus

provide global context to help disambiguate translation.

4. ACOUSTIC FEATURES FOR NMT

4.1. Show-based Acoustic LDA

Acoustic LDA (aLDA) is a specific form of acoustic embed-

ding and represents an acoustic signal as a distribution of la-

tent topics, which can embody information such as speaking

style, genre, as well as linguistic information and can thus

help disambiguate machine translation. Typically speech is

represented using continuous features such as Mel frequency

cepstral coefficients (MFCCs), and has variable length. In or-

der to extract acoustic LDA, vector quantisation needs to be

performed to represent the speech signal as a sequence of dis-

crete symbols. This is done using the same method described

in [20], where a GMM model with V components is trained

using all of the training data. The model is then used to get the

posterior probabilities of the Gaussian components to repre-

sent each frame by the index of the Gaussian component with

the highest posterior probability. Frames of every speech seg-

ment of length T , X = {xt}
T
t=1 are represented as:

x̃t = argmax
i

P (Gi|xt) (13)

where Gi (1 ≤ i ≤ V ) is the ith Gaussian component. After

applying this process to each utterance, each speech segment

is represented as {x̃t}
T
t=1 where x̃t is index of the Gaussian

component and thus a natural number (1 ≤ x̃t ≤ V ). Here

we refer to each speech utterance as an acoustic document.

With this information, a fixed length vector â = {x̂t}
T
t=1

of size V is constructed to represent the count of every Gaus-

sian component in an acoustic document.

This leads to a type of bag-of-sounds representation. The

sounds would normally be expected to relate to phones, how-

ever given the acoustic diversity of background conditions

many other factors may play a role. Once these bag-of-sounds

representations of acoustic documents are derived, LDA mod-

els can be trained. After training the LDA acoustic model, a

similar procedure is followed to extract acoustic LDA features

from test data.

Acoustic LDA has been found to be useful for unsuper-

vised latent domain discovery in automatic speech recogni-

tion [13], where the discovered domains were then used for

maximum-a-posteriori (MAP) domain adaptation. The aim

in this work is to investigate whether acoustic LDA extracted

at the show level, can have similar value in helping disam-

biguate machine translation.

4.2. Show-based i-Vectors

I-vectors are motivated by Joint Factor Analysis [21], and

were originally proposed in the context of speaker recogni-

tion [12]. An i-vector represents the specific characteristics

of the audio as a point in total variability space.

MFCC vectors are extracted from audio files and show-

dependent Gaussian Mixture Models (GMM) are trained on

the audio features, which make up a Universal Background

Model (UBM). The mean vectors of all Gaussian Mixture

Models (GMMs) in this UBM are concatenated into a super-

vector µ0. Correspondingly, a set of show-dependent GMMs

is derived for each show, and its mean vectors are concate-

nated into a show dependent super-vector, i.e. µs for show

s. The total variability matrix M spans the bases with high-

est variability in the mean super-vector space according to the

following.

µs = µ0 +Mλs. (14)

where λs represents the i-vector for show s. Show-based

i-vectors are also an unsupervised audio embedding just like

acoustic LDA. However, the key difference is that acoustic

LDA is based on a topic model built on a vector-quantisation

of the audio data, whilst i-vectors are a subspace representa-

tion of the audio at a show level. These two representations

embed different types of information from the audio at a show

level with acoustic LDA providing a characterisation of genre

and speaking-style, whilst the i-vector would capture salient

features for each show, including the speaker characteristics,

accents, etc.

5. EXPERIMENTS AND RESULTS

5.1. Data

The data used in this work is the IWSLT 2015 TED Talks

[15]. Training data conforms to the IWSLT 2015 evaluation

criteria for both the ASR and MT task, with 1711 talks con-

sisting of parallel English and French talks. As acoustic data

is used to extract auxiliary features in this work, the training

data was filtered to retain only 1622 talks where the corre-

sponding multimedia clips can be crawled from TED.com.

This data set is referred to as TEDtrain. TEDdev was ex-

tracted from IWSLT 2010 (dev+test) data and was used to

provide stopping criterion in NMT training. TEDeval was

from IWSLT 2012 (test) data. The statistics of the TED data

are given in Table 1.

5.2. Experimental Setup

We use the standard LSTM-based bidirectional encoder-

decoder architecture with global attention [17]. All our NMT

models have the following architecture: the input and output

vocabulary are limited to words that appear at least three

TED.com


Snt Types Tokens Avg. Length

(TEDtrain)

English
201,719

58.0k 3.512M 17.4

French 74.6k 3.680M 18.2

(TEDdev)

English
2,551

5.5k 44.2k 17.4

French 6.7k 44.8k 17.6

(TEDeval)

English
1,124

2.9k 18.5k 16.5

French 3.5k 20.0k 17.8

Table 1. Statistics of TED data

times in the training data and the remaining words are re-

placed by the <UNK> token. The hidden layer dimensionality

is set to 256 and the word dimensionality is set to 128, for

both the encoder and decoder, as this configuration was found

to lead to faster training times without sacrificing translation

performance. At decoding time, the topmost probable word

at each time step, is computed.

Concerning the auxiliary features, both 50 and 100 di-

mensional vectors were extracted for i-vectors, acoustic and

text LDA. 300-dimensional Word2Vec embeddings were ex-

tracted after training on the Google news corpus1.

5.3. Results

Table 2 show the results obtained using each auxiliary fea-

ture on the dev and test sets in terms of BLEU [22] and

METEOR [23] scores. “Baseline” corresponds to a standard

NMT model trained without any additional features.

Model TEDdev TEDeval

BLEU METEOR BLEU METEOR

Baseline 30.38 0.6158 36.02 0.6485

Word2Vec (300d) 30.44 0.6116 35.89 0.6424

i-vector (50d) 29.97 0.6118 35.87 0.6455

i-vector (100d) 29.77 0.6065 36.14 0.6428

tLDA (50d) 30.12 0.6092 36.09 0.6432

tLDA (100d) 30.12 0.6126 36.14 0.6449

aLDA (50d) 30.32 0.6118 36.11 0.6506

aLDA (100d) 29.93 0.6125 36.51 0.6474

Table 2. BLEU and METEOR scores on TED data in NMT

setting

These results shows that when used independently, the

Word2Vec features give the best BLEU score on the dev set

whilst the 100-dimensional acoustic LDA gives the best re-

sult on the eval set. The results of text and acoustic LDA

vary across the dev and test sets with both the 50-dim and

the 100-dim acoustic LDA slightly outperforming the base-

line in terms of BLEU score on the eval set but not on the

dev set. Both the 50-dim and 100-dim text LDA slightly out-

performs the baseline on the dev set but not on the eval set.

1https://code.google.com/archive/p/Word2Vec/

The Word2Vec feature gives the best result in terms of BLEU

score on the TEDDev data but not on TEDEval.

Table 3 shows the results of composing word-level fea-

tures (Word2Vec) with show-level features (text&acoustic

LDA, i-vectors) according to Eqn. 6.

Model TEDdev TEDeval

BLEU METEOR BLEU METEOR

Baseline 30.38 0.6158 36.02 0.6485

Word2Vec (300d) 30.44 0.6116 35.89 0.6424

Word2Vec+i-vector (50d) 30.09 0.6146 36.15 0.6499

Word2Vec+i-vector (100d) 30.20 0.6105 36.73 0.6524

Word2Vec+tLDA (50d) 30.38 0.6128 36.23 0.6482

Word2Vec+tLDA (100d) 30.57 0.6123 36.27 0.6479

Word2Vec+aLDA (50d) 30.50 0.6087 36.04 0.6463

Word2Vec+aLDA (100d) 30.16 0.6140 37.21 0.6525

Table 3. BLEU and METEOR scores on TED data in com-

positional NMT setting

A different pattern is observed when composing the

Word2Vec token-level embeddings with the show-level fea-

tures, with 100-dimensional acoustic LDA giving the best

results on the eval set with a BLEU score of 37.21, represent-

ing a relative improvement of 3.3% over the baseline result

of 36.02. However, the 100-dim text LDA gives better results

than other embeddings on the dev set but only narrowly out-

performing the 50-dimensional acoustic LDA. The i-vectors

have a different behaviour in the compositional setting with

both the 50-dim and the 100-dim i-vectors leading to im-

provements in terms of BLEU scores, over both the baseline

and the Word2Vec-only result, on both the TEDDev and the

TEDEval data.

The results from the i-vector experiments suggest that

some features can be complementary with used in the com-

positional setting. Whilst the i-vectors do not seem useful

on their own, they lead to gains when used in composition

with Word2Vec. The results also indicate that both text-based

and acoustic-based topic information from LDA help to dis-

ambiguate translation and lead to improved results and so do

word embeddings that preserve distance in vector space. In

order to better understand these results, some further analysis

has been carried out on the outputs of the translation so as to

better understand under which conditions the features help.

5.4. Further Analysis of Results

In this section, we aim to take a closer look at particular TED

Talks shows where each of the features perform best, based on

per-sentence METEOR scores. Table 4 illustrates the shows

in the TEDEval data.

It can be seen in Table 3, that the METEOR scores are

most highly correlated to the BLEU scores for the TEDEval

data. As a result of this, we compute per-show METEOR

scores for TEDEval for the compositional case and the results

are given in Table 5.

https://code.google.com/archive/p/Word2Vec/


TED Show Title Keywords

1 Jack Choi: On the virtual dissection table education, health care, interface design, medical research, technology

2 Frank Warren: Half a million secrets arts, creativity, design, memory, storytelling

3 Lucy McRae: How can technology transform the human body? architecture, design, technology

4 Drew Curtis: How I beat a patent troll business, entrepreneur, law

5 Frans de Waal: Moral behavior in animals engineering, animals, community, morality, science

6 Tal Golesworthy: How I repaired my own heart engineering, health, innovation, medicine, science, technology

7 Sherry Turkle: Connected, but alone? communication, community, culture, technology

8 Atul Gawande: How do we heal medicine? health care, medicine

9 Laura Carstensen: Older people are happier aging, culture, science

10 Michael Norton: How to buy happiness business, community, money, philanthropy, psychology, shopping

11 Christina Warinner: Tracking ancient diseases using ... plaque evolution, medicine, paleontology, science

Table 4. TED Shows for TEDEval

TED Show baseline Word2Vec

Word2Vec+

i-vector(50) +

Word2Vec+

i-vector(100)

Word2Vec+

acoustic lda(50)

Word2Vec+

acoustic lda(100)

Word2Vec+

text lda(50)

Word2Vec+

+text lda(100)

1 0.6446 0.6372 0.6325 0.6432 0.6458 0.6479 0.6426 0.6484

2 0.6300 0.6286 0.6416 0.6396 0.6283 0.6371 0.6361 0.6296

3 0.6708 0.6657 0.6610 0.6674 0.6816 0.6692 0.6828 0.6527

4 0.6585 0.6315 0.6518 0.6705 0.6419 0.6529 0.6476 0.6582

5 0.6843 0.6566 0.6784 0.6715 0.6681 0.6841 0.6699 0.6715

6 0.6978 0.6986 0.6890 0.6926 0.6885 0.6976 0.6943 0.6867

7 0.6886 0.6820 0.6967 0.7013 0.6887 0.6767 0.6846 0.6729

8 0.7046 0.7078 0.7119 0.7178 0.7045 0.7056 0.7163 0.6941

9 0.6441 0.6803 0.6834 0.6959 0.6892 0.6884 0.6874 0.6822

10 0.6025 0.5928 0.6186 0.6002 0.6116 0.6077 0.5992 0.5937

11 0.6985 0.6954 0.7056 0.7042 0.6972 0.6997 0.6949 0.7070

Table 5. TED Talk Show-Specific METEOR scores for TEDEval

The results seem to indicate that different features lead

to improvements on individual shows in a variable manner.

Whilst the Word2Vec features alone do not seem to lead to

an improvement for most shows, they lead to different be-

haviours when used with acoustic features with both the 50
and 100-dimensional i-vectors leading to improvements in

BLEU score but only the 100-dimensional acoustic LDA giv-

ing consistently good results across all shows. However, this

pattern is not observed for 50 and 100 dimensional text LDA

with the 50-dimensional text LDA outperforming the 100-

dimensional LDA features in most cases. One possible reason

for this could be that an increase in number of text LDA top-

ics could lead to higher sparsity, especially when the diversity

of topics in the TED Talk is not very high. For example TED

shows 2, 3, 4, 8 and 9 have fewer keywords according to Ta-

ble 4 and thus more focussed in terms of topics. These shows

also have a lower performance when using 100-dimensional

compared to when using 50-dimensional text LDA features.

In constrast, TED show 1 has the highest number of key-

words and also gives the highest score with 100-dimensional

text LDA. However, this generalisation does not apply for all

shows and therefore, further investigation is needed.

Also, it is clear from Table 4 that different shows respond

differently to acoustic embeddings. For example, some shows

that give very good performance with i-vectors perform less

well with acoustic LDA and vice-versa and the same is true

for text-based features like Word2Vec and text LDA. This

suggests that the different features are complementary and

can lead to improvements if used in composition with each

other.

6. CONCLUSIONS

This paper has investigated Neural Machine Translation aug-

mented with auxiliary features, where the features are derived

from accompanying audio and have been both composed

and contrasted with text-based features. Both word-level

and show-level embeddings have been explored. Acoustic

embeddings like acoustic LDA show promise when used as

a single auxiliary feature and so do semantically-motivated

word embeddings. It was shown a composition of the acous-

tic features with word embeddings that preserve similarity

in vector space, leads to further improvements of the results.

Further analysis of the results also showed that different

shows respond differently to text and acoustic features, thus

highlighting their complementary nature.

In future work, we will further investigate the composition

of features in different settings in order to better understand

the type of complementary information they bring and how

these can be leveraged effectively in NMT systems. More-

over, we will also investigate the use of different types of

acoustic embeddings, such as those derived from siamese net-

works [24], that try to preserve distance of words both seman-

tically and in acoustic space.
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