
ITERATIVE POLICY LEARNING IN END-TO-END TRAINABLE
TASK-ORIENTED NEURAL DIALOG MODELS

Bing Liu1, Ian Lane1,2

1Electrical and Computer Engineering, Carnegie Mellon University
2Language Technologies Institute, Carnegie Mellon University

liubing@cmu.edu, lane@cmu.edu

ABSTRACT

In this paper, we present a deep reinforcement learning (RL)
framework for iterative dialog policy optimization in end-
to-end task-oriented dialog systems. Popular approaches in
learning dialog policy with RL include letting a dialog agent
to learn against a user simulator. Building a reliable user
simulator, however, is not trivial, often as difficult as building
a good dialog agent. We address this challenge by jointly
optimizing the dialog agent and the user simulator with deep
RL by simulating dialogs between the two agents. We first
bootstrap a basic dialog agent and a basic user simulator by
learning directly from dialog corpora with supervised train-
ing. We then improve them further by letting the two agents to
conduct task-oriented dialogs and iteratively optimizing their
policies with deep RL. Both the dialog agent and the user
simulator are designed with neural network models that can
be trained end-to-end. Our experiment results show that the
proposed method leads to promising improvements on task
success rate and total task reward comparing to supervised
training and single-agent RL training baseline models.

Index Terms— dialog systems, task-oriented, dialog pol-
icy, end-to-end, reinforcement learning

1. INTRODUCTION

Task-oriented dialog system is playing an increasingly impor-
tant role in enabling human-computer interactions via natu-
ral spoken language. Different from chatbot type of conver-
sational agents [1, 2, 3], task-oriented dialog systems assist
users to complete everyday tasks, which usually involves ag-
gregating information from external resources and planning
over multiple dialog turns. Conventional task-oriented dia-
log systems are designed with complex pipelines [4, 5, 6, 7],
and there are usually separately developed modules for natu-
ral language understanding (NLU) [8, 9, 10, 11], dialog state
tracking (DST) [12, 13], and dialog management (DM) [14,
15, 16]. Such pipeline approach inherently make it hard to
scale a dialog system to new domains, as each of these mod-
ules has to be redesigned separately with domain expertise.
Moreover, credit assignment in such pipeline systems can be

challenging, as errors made in upper stream modules may
propagate and be amplified in downstream components.

Recent efforts have been made in designing end-to-end
frameworks for task-oriented dialogs. Wen et al. [17] and Liu
et al. [18] proposed supervised learning (SL) based end-to-
end trainable neural network models. Zhao and Eskenazi [19]
and Li et al. [20] introduced end-to-end trainable systems
using deep reinforcement learning (RL) for dialog policy op-
timization. Comparing to SL based models, systems trained
with RL by exploring the space of possible strategies showed
improved model robustness against diverse dialog situations.

In RL based dialog policy learning, ideally the agent
should be deployed to interact with users and get rewards
from real user feedback. However, many dialog samples may
be required for RL policy shaping, making it impractical to
learn from real users directly from the beginning. Therefore,
a user simulator [21, 22, 23] is usually used to train the dialog
agent to a sufficient starting level before deploying it to the
real environment. Quality of such user simulator has a direct
impact on the effectiveness of dialog policy learning. Design-
ing a reliable user simulator, however, is not trivial, often as
difficult as building a good dialog agent. User simulators used
in most of the recent RL based dialog models [19, 23, 20] are
designed with expert knowledge and complex rules.

To address the challenge of lacking a reliable user simu-
lator for dialog agent policy learning, we propose a method
in jointly optimizing the dialog agent policy and the user sim-
ulator policy with deep RL. We first bootstrap a basic neural
dialog agent and a basic neural user simulator by learning di-
rectly from dialog corpora with supervised training. We then
improve them further by simulating task-oriented dialogs be-
tween the two agents and iteratively optimizing their dialog
policies with deep RL. The intuition is that we model task-
oriented dialog as a goal fulfilling task, in which we let the
dialog agent and the user simulator to positively collaborate
to achieve the goal. The user simulator is given a goal to
complete, and it is expected to demonstrate coherent but di-
verse user behavior. The dialog agent attempts to estimate the
user’s goal and fulfill his request by conducting meaningful
conversations. Both the two agents aim to learn to collaborate

ar
X

iv
:1

70
9.

06
13

6v
1

 [
cs

.C
L

]
 1

8
Se

p
20

17

with each other to complete the task but without exploiting
the game.

Our contribution in this work is two-fold. Firstly, we pro-
pose an iterative dialog policy learning method that jointly
optimizes the dialog agent and the user simulator in end-to-
end trainable neural dialog systems. Secondly, we design a
novel neural network based user simulator for task-oriented
dialogs that can be trained in a data-driven manner without
requiring the design of complex rules.

The remainder of the paper is organized as follows. In
section 2, we discuss related work on end-to-end trainable
task-oriented dialog systems and RL policy learning methods.
In section 3, we describe the proposed framework and learn-
ing methods in detail. In Section 4, we discuss the experiment
setup and analyze the results. Section 5 gives the conclusions.

2. RELATED WORK

Popular approaches for developing task-oriented dialog sys-
tems include treating the problem as a partially observable
Markov Decision Process (POMDP) [7]. RL methods [24]
can be applied to optimize the dialog policy online with the
feedback collected via interacting with users. In order to
make the RL policy learning tractable, dialog state and sys-
tem actions have to be carefully designed.

Recently, people have proposed neural network based
methods for task-oriented dialogs, motivated by their supe-
rior performance in modeling chit-chat type of conversations
[25, 2, 3, 26]. Bordes and Weston [27] proposed modeling
task-oriented dialogs with a reasoning approach using end-to-
end memory networks. Their model skips the belief tracking
stage and selects the final system response directly from a
list of response candidates. Comparing to this approach, our
model explicitly tracks dialog belief state over the sequence
of turns, as robust dialog state tracking has been shown [28]
to boost the success rate in task completion. Wen et al. [17]
proposed an end-to-end trainable neural network model with
modularity connected system components. This system is
trained in supervised manner, and thus may not be robust
enough to handle diverse dialog situations due to the limited
varieties in dialog corpus. Our system is trained by a com-
bination of SL and deep RL methods, as it is shown that RL
training may effectively improved the system robustness and
dialog success rate [29, 20, 30]. Moreover, other than having
separated dialog components as in [17], we use a unified
network for belief tracking, knowledge base (KB) operation,
and dialog management, to fully explore the knowledge that
can be shared among different tasks.

In many of the recent work on using RL for dialog policy
learning [19, 31, 20], hand-designed user simulators are used
to interact with the dialog agent. Designing a good perform-
ing user simulator is not easy. A too basic user simulator as in
[19] may only be able to produce short and simple utterances
with limited variety, making the final system lack of robust-

ness against noise in real world user inputs. Advanced user
simulators [32, 23] may demonstrate coherent user behav-
ior, but they typically require designing complex rules with
domain expertise. We address this challenge using a hybrid
learning method, where we firstly bootstrapping a basic func-
tioning user simulator with SL on human annotated corpora,
and continuously improving it together with the dialog agent
during dialog simulations with deep RL.

Jointly optimizing policies for dialog agent and user simu-
lator with RL has also been studied in literature. Chandramo-
han et al. [33] proposed a co-adaptation framework for di-
alog systems by jointly optimizing the policies for multiple
agents. Georgila et al. [34] discussed applying multi-agent
RL for policy learning in a resource allocation negotiation
scenario. Barlier et al. [35] modeled non-cooperative task
dialog as a stochastic game and learned jointly the strategies
of both agents. Comparing to these previous work, our pro-
posed framework focuses on task-oriented dialogs where the
user and the agent positively collaborate to achieve the user’s
goal. More importantly, we work towards building end-to-
end models for task-oriented dialogs that can handle noises
and ambiguities in natural language understanding and belief
tracking, which is not taken into account in previous work.

3. PROPOSED FRAMEWORK

In this section, we first provide a high level description of our
proposed framework. We then discuss each module compo-
nent and the training methods in detail.

In the supervised pre-training stage, we train the dialog
agent and the user simulator separately using task-oriented
dialog corpora. In the RL training stage, we simulate dialogs
between the two agents. The user simulator starts the con-
versation based on a sampled user goal. The dialog agent at-
tempts to estimate the user’s goal and complete the task with
the user simulator by conducting multi-turn conversation. At
the end of each simulated dialog, a reward is generated based
on the level of task completion. This reward is used to further
optimize the dialog policies of the two agents with RL.

3.1. Dialog Agent

Figure 1 illustrates the design of the dialog agent. The dia-
log agent is capable of tracking dialog state, issuing API calls
to knowledge bases (KB), and producing corresponding sys-
tem actions and responses by incorporating the query results,
which are key skill sets [27] in conducting task-oriented di-
alogs. State of the dialog agent is maintained in the LSTM
[36] state and being updated after the processing of each turn.
At the kth turn of a dialog, the dialog agent takes in (1) the
previous agent output encoding oAk−1, (2) the user input en-
coding oUk−1, (3) the retrieved KB result encoding oKBk , and
updates its internal state conditioning on the previous agent
state sAk−1. With the updated agent state sAk , the dialog agent

LSTM

Request alternative

Prezzo is a nice place in the
west of town serving tasty Italian food

1 (yes)

2 (No. 2)

west italian dont_care
Entity pointer

KB indicator (0/1)

Area slot

User input encoding

Agent action output

Agent output
utterance 1 La_margherita ...

2 Prezzo ...

5 Caffe_uno ...

Ranked KB query results

...

Food slot Price slot

Offer entity No. 1
Agent input encoding

make_offer NLG Module

Fig. 1. Dialog agent network architecture.

emits (1) a system action aAk , (2) an estimation of the belief
state, and (3) a pointer to an entity in the retrieved query re-
sults. These outputs are then passed to an NLG module to
generate the final agent response.

Utterance Encoding For natural language format in-
puts at turn k, we use bi-directional LSTM to encode the ut-
terance to a continuous vector ok. With Uk representing the
utterance at the kth turn with Tk words, the utterance vector
ok is produced by concatenating the last forward and back-

ward LSTM states: ok = [
−−→
hUk

Tk
,
←−−
hUk
1].

Action Modeling We use dialog acts as system actions,
which can be seen as shallow representations of the utterance
semantics. We treat system action modeling as a multi-class
classification problem, where the agent select an appropriate
action from a predefined list of system actions based on cur-
rent dialog state sAk :

sAk = LSTMA(s
A
k−1, [o

A
k−1, o

U
k−1, o

KB
k]) (1)

P (aAk | oA<k, oU<k, oKB≤k) = ActDistA(s
A
k) (2)

where ActDistA in the agent’s network is a multilayer per-
ceptron (MLP) with a single hidden layer and a softmax ac-
tivation function over all possible system actions.

Belief Tracking Belief tracker, or dialog state tracker
[37, 38], continuously tracks the user’s goal by accumulat-
ing evidence in the conversation. We represent the user’s goal
using a list of slot values. The belief tracker maintains and up-
dates a probability distribution P (lAm,k) over candidate values
for each slot type m ∈M at each turn k:

P (lAm,k |oA<k, oU<k, oKB≤k) = SlotDistA,m(s
A
k) (3)

where SlotDistm is an MLP with a single hidden layer and a
softmax activation function for slot type m ∈M .

KB Operation The proposed dialog agent is able to
access external information by interfacing with a KB or a
database by issuing API calls. Making API call is one of the
dialog acts that can be emitted by the agent, conditioning on
the state of the conversation. An API call command template
is firstly generated with slot type tokens. The final API call
command is produced by replacing slot type tokens with the
corresponding slot values from the belief tracker outputs.

At the kth turn of a dialog, the KB input encoding oKBk
is a binary value informing the availability of the entities that
match the KB query. Corresponding output is the probability
distribution of the entity pointer. We treat the KB results as
a list of structured entities and let the model to maintain an
entity pointer. The agent learns to adjust the entity pointer
when user requests for alternative options.

Response Generation We use a template-based NLG
module to convert the agent outputs (system action, slot val-
ues, and KB entity values) to natural language format.

3.2. User Simulator

Figure 2 shows the design of the user simulator. User simula-
tor is given a randomly sampled goal at the beginning of the
conversation. Similar to the design of the dialog agent, state
of the user simulator is maintained in the state of an LSTM.
At the kth turn of a dialog, the user simulator takes in (1)
the goal encoding gUk , (2) the previous user output encoding
oUk−1, (3) the current turn agent input encoding oAk , and up-
dates its internal state conditioning on the previous user state
sUk−1. On the output side, the user simulator firstly emits a
user action aUk based on the updated state sUk . Conditioning
on this emitted user action and the user dialog state sUk , a set
of slot values are emitted. The user action and slot values
are then passed to an NLG module to generate the final user
utterance.

User Goal We define a user’s goal gU using a list of
informable and requestable slots [39]. Informable slots are
the slots that users can provide a value for to describe their
goal (e.g. slots for food type, area, etc.). Requestable slots
are the slots that users want to request the value for, such as
requesting the address of a restaurant. We treat informable
slots as discrete type of inputs that can take multiple values,
and treat requestable slots as inputs that take binary values
(i.e. a slot is either requested or not). In this work, once the
a goal is sampled at the beginning of the conversation, we fix
the user goal and do not change it during the conversation.

Action Selection Similar to the action modeling in dia-
log agent, we treat user action modeling as a multi-class clas-
sification problem conditioning on the dialog context encoded
in the dialog-level LSTM state sUk on the user simulator side:

sUk = LSTMU(s
U
k−1, [g

U
k , o

U
k−1, o

A
k]) (4)

P (aUk | gU≤k, oU<k, oA≤k) = ActDistU(s
U
k) (5)

LSTM

Request alternative

May I have its address ?

Italian, west, address

none none none

User goal encoding

Area slot

User input encoding

User action output

User output
utterance

Food slot Price slot

Offer entity No. 2
Agent input encoding

req_addr

NLG Module

Fig. 2. User simulator network architecture.

Once user action is generated at turn k, it is used together
with the current user dialog state sUk to generate value for each
informable slot:

P (lUm,k |gU≤k, oU<k, oA≤k) = SlotDistU,m(s
U
k , a

U
k) (6)

Similar to the design of the dialog agent, ActDistU and
SlotDistU,m are MLPs with a single hidden layer and use
softmax activation over their corresponding outputs.

Utterance Generation We use a template-based NLG
module to convert the user simulator’s outputs (action and slot
values) to the natural language surface form.

3.3. Deep RL Policy Optimization

RL policy optimization is performed on top of the supervised
pre-trained networks. The system architecture is shown in
Figure 3. We defines the state, action, and reward in our RL
training setting and present the training details.

State For RL policy learning, states of the dialog agent
and the user simulator at the kth turn are the dialog-level
LSTM state sAk and sUk respectively. Both sAk and sUk cap-
tures the dialog history up till current turn. The user state sUk
also encodes the user’s goal.

Action Actions of the dialog agent and user simulator
are the system action outputs aAk and aUk . An action is sam-
pled by the agent based on a stochastic representation of the
policy, which produces a probability distribution over actions
given a dialog state. Action space is finite and discrete for
both the dialog agent and the user simulator.

Reward Reward is calculated based on the level of task
completion. A turn level reward rk is applied based on the
progress that the agent and user made in completing the pre-
defined task over the past turn. At the end of each turn, a score

scorek is calculated indicating to what extend the agent has
fulfilled the user’s request so far. The turn level reward rk is
then calculated by the difference of the scores received in two
consecutive turns:

scorek = D(gUk , gAk) (7)
rk = scorek − scorek−1 (8)

whereD is the scoring function. gUk and gAk are the true user’s
goal and the agent’s estimation of the user’s goal, both are
represented by slot-value pairs. Alternatively, the turn level
reward rk can be obtained by using the discounted reward
received at the end of the dialog (positive reward for task suc-
cess, and negative reward for task failure).

Policy Gradient RL For policy optimization with
RL, policy gradient method is preferred over Q-learning in
our system as the policy network parameters can be initial-
ized with the ActDist parameters learnied during supervised
pre-training stage. With REINFORCE [40], the objective
function can be written as Jk(θa, θu) = Eθa,θu [Rk] =

Eθa,θu
[∑K−k

t=0 γtrk+t

]
, with γ ∈ [0, 1] being the discount

factor. We optimize parameter sets θa and θu for the dialog
agent and the user simulator to maximize Jk(θa, θu). For
the dialog agent, with likelihood ratio gradient estimator,
gradient of Jk(θa, θu) can be derived as:

∇θaJk(θa, θu) = ∇θaEθa,θu [Rk] (9)

= ∇θa
∑
aak,a

u
k

πθa(a
a
k|sak)πθu(auk |suk)Rk,aak,auk (10)

= Eθa,θu [∇θa log πθa(aak|sak)Rk] (11)

This last expression above gives us an unbiased gradient esti-
mator. We sample agent action and user action at each dialog
turn and compute the policy gradient. Similarly, gradient on
the user simulator side can be derived as:

∇θuJk(θa, θu) = ∇θuEθa,θu [Rk] (12)
= Eθa,θu [∇θu log πθu(a

u
k |suk)Rk] (13)

A potential drawback of using REINFORCE is that the pol-
icy gradient might have high variance, since the agent may
take many steps over the course of a dialog episode. We also
explore using Advantage Actor-Critic (A2C) in our study, in
which we approximate a state-value function using a feed for-
ward neural network.

During model training, we use softmax policy for both
the dialog agent and the user simulator to encourage explo-
ration. Softmax policy samples action from the action prob-
ability distribution calculated by the softmax in the system
action output. During evaluation, we apply greedy policy to
the dialog agent, and still apply softmax policy to the user
simulator. This is to increase randomness and diversity in the
user simulator behavior, which is closer to the realistic dialog
system evaluation settings with human users. This also pre-
vents the two agents from fully cooperating with each other
and exploiting the game.

User Simulator
State

Dialog Agent
State

Reward
Function

Agent Input
Encoder

Knowledge
Base

User’s
Goal

User Input
Encoder

Agent Input
Encoder

User Input
Encoder

Knowledge
Encoder

Goal
Encoder

Fig. 3. System architecture for joint dialog agent and user simulator policy optimization with deep RL

4. EXPERIMENTS

4.1. Dataset

We prepare the data in our study based the corpus from the
second Dialog State Tracking Challenge (DSTC2) [41]. We
converte this corpus to our required format by adding API
call commands and the corresponding KB query results. The
dialogs simulation is based on real KB search results, which
makes the dialog agent evaluation closer to real cases. Dif-
ferent from DSTC2, agent and user actions in our system are
generated by concatenating the act and slot names in the orig-
inal dialog act output (e.g. “confirm(food = italian)”
maps to “confirm food”). Slot values are captured in the
belief tracking outputs. Table 1 shows the statistics of the
dataset used in our experiments.

of train/dev/test dialogs 1612 / 506 / 1117
of turns per dialog in average 7.9
of dialog agent actions 52
of user simulator actions 100
of area / food / pricerange options 5 / 91 / 3

Table 1. Statistics of the dataset

4.2. Training Procedure

In supervised pre-training, the dialog agent and the user sim-
ulator are trained separately against dialog corpus. We use
the same set of neural network model configurations for both
agents. Hidden layer sizes of the dialog-level LSTM for dia-
log modeling and utterance-level LSTM for utterance encod-
ing are both set as 150. We perform mini-batch training using
Adam optimization method [42]. Initial learning rate is set as

1e-3. Dropout [43] (p = 0.5) is applied during model training
to prevent to model from over-fitting.

In deep RL training stage, the policy network parameters
are initialized with ActDist parameters from the SL training.
State-value function network parameters in A2C are initial-
ized randomly. To ameliorate the non-stationarity problem
when jointly training the two agents, we update the two agents
iteratively during RL training. We take 100 episodes as a RL
training cycle, in which we fix one agent and only update the
other, and switch the training agent in the next cycle until con-
vergence. In dialog simulation, we end the dialog if the dialog
length exceeds the maximum turn size (20 in our experiment)
or the user simulator emits the end of dialog action.

4.3. Results and Analysis

We evaluate the system on task success rate, average task re-
ward, and average dialog length on simulated dialogs. A dia-
log is considered successful if the agent’s belief tracking out-
puts match the informable user goal slot values completely,
and all user requested slots are fulfilled. Note that the results
on task success rate in this work should not be directly com-
pared to the numbers in [17, 44], as both the dialog agent and
the user simulator in our study are end-to-end models that take
noisy natural language utterance as input and directly gen-
erate the final dialog act output. Moreover, instead of using
greedy policy on user simulator, we sample user actions based
on the action probability distribution from the user policy net-
work to encourage diversity and variety in user behavior.

Table 2 shows the evaluation results. The baseline model
uses the SL trained agents. REINFORCE-agent and A2C-
agent apply RL training on the dialog agent only, without up-
dating the user simulator. REINFORCE-joint and A2C-joint
apply RL on both the dialog agent and user simulator over the

SL pre-trained models. Figure 4, 5, and 6 show the learning
curves of these five models during RL training on dialog suc-
cess rate, average reward, and average success dialog length.

Success Avg Avg Success
Rate (%) Reward Turn Size

SL Baseline 35.3 2.02 6.46
REINFORCE-agent 50.2 2.96 6.47
REINFORCE-joint 61.1 3.30 5.12
A2C-agent 50.6 3.11 6.03
A2C-joint 64.7 3.23 6.71

Table 2. Evaluation results on the converted DSTC2 dataset.

Fig. 4. Learning curve for task success rate.

Success Rate As shown in Table 2, the SL model
achieves the lowest task success rate. Model trained with
SL on dialog corpus has limited capabilities in capturing the
change in state, and thus may not be able to generalize well
to unseen dialog situations during simulation. RL efficiently
improves the dialog task success rate, as it enables the dialog
agent to explore strategies that are not in the training corpus.
The agent-update-only models using REINFORCE and A2C
achieve similar results, outperforming the baseline model by
14.9% and 15.3% respectively. The jointly optimized models
improved the performance further over the agent-update-
only models. Model using A2C for joint policy optimization
achieves the best task success rate.

Average Reward RL curves on average dialog reward
show similar trends as above. One difference is that the joint
training model using REINFORCE achieves the highest av-
erage reward, outperforming that using A2C by a small mar-
gin. This is likely due to the better performance of our REIN-
FORCE models in earning reward in the failed dialogs. We
find that our user simulator trained with A2C tends to have
sharper action distribution from the softmax policy, making it
easier to get stuck when it falls into an unfavorable state. We
are interested in exploring fine-grained control strategies in
joint RL policy optimization framework in our future work.

Fig. 5. Learning curve for average reward

Fig. 6. Learning curve for average turn size

Average Success Turn Size The average turn size of
success dialogs tends to decrease along the episode of RL pol-
icy learning. This is in line with our expectation as both the
dialog agent and the user simulator improve their policies for
more efficient and coherent strategies with the RL training.

5. CONCLUSIONS

In this work, we propose a reinforcement learning framework
for dialog policy optimization in end-to-end task-oriented di-
alog systems. The proposed method addresses the challenge
of lacking a reliable user simulator for policy learning in task-
oriented dialog systems. We present an iterative policy learn-
ing method that jointly optimizes the dialog agent and the user
simulator with deep RL by simulating dialogs between the
two agents. Both the dialog agent and the user simulator are
designed with neural network models that can be trained end-
to-end. Experiment results show that our proposed method
leads to promising improvements on task success rate and
task reward over the supervised training and single-agent RL
training baseline models.

6. REFERENCES

[1] Lifeng Shang, Zhengdong Lu, and Hang Li, “Neural re-
sponding machine for short-text conversation,” in ACL-
IJCNLP, 2015.

[2] Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau, “Building end-to-
end dialogue systems using generative hierarchical neu-
ral network models,” in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI-16), 2016.

[3] Jiwei Li, Michel Galley, Chris Brockett, Georgios P Sp-
ithourakis, Jianfeng Gao, and Bill Dolan, “A persona-
based neural conversation model,” in ACL, 2016.

[4] Alexander I Rudnicky, Eric H Thayer, Paul C Constan-
tinides, Chris Tchou, R Shern, Kevin A Lenzo, Wei Xu,
and Alice Oh, “Creating natural dialogs in the carnegie
mellon communicator system.,” in Eurospeech, 1999.

[5] Steve Young, “Using pomdps for dialog management,”
in Spoken Language Technology Workshop, 2006. IEEE.
IEEE, 2006, pp. 8–13.

[6] Antoine Raux, Brian Langner, Dan Bohus, Alan W
Black, and Maxine Eskenazi, “Lets go public! taking
a spoken dialog system to the real world,” in in Proc. of
Interspeech 2005. Citeseer, 2005.

[7] Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams, “Pomdp-based statistical spoken dialog
systems: A review,” Proceedings of the IEEE, vol. 101,
no. 5, pp. 1160–1179, 2013.

[8] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, et al., “Using re-
current neural networks for slot filling in spoken lan-
guage understanding,” IEEE/ACM Transactions on Au-
dio, Speech and Language Processing (TASLP), vol. 23,
no. 3, pp. 530–539, 2015.

[9] Yun-Nung Chen, Dilek Hakkani-Tür, Gökhan Tür, Jian-
feng Gao, and Li Deng, “End-to-end memory networks
with knowledge carryover for multi-turn spoken lan-
guage understanding.,” in INTERSPEECH, 2016, pp.
3245–3249.

[10] Bing Liu and Ian Lane, “An end-to-end trainable neu-
ral network model with belief tracking for task-oriented
dialog,” in Interspeech, 2017, pp. 2506–2510.

[11] Bing Liu and Ian Lane, “Joint online spoken language
understanding and language modeling with recurrent
neural networks,” in SIGDIAL, 2016, pp. 22–30.

[12] Matthew Henderson, Blaise Thomson, and Steve Young,
“Word-based dialog state tracking with recurrent neural
networks,” in SIGDIAL, 2014, pp. 292–299.

[13] Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young, “Neural belief
tracker: Data-driven dialogue state tracking,” in ACL,
2017, pp. 1777–1788.

[14] Milica Gasic and Steve Young, “Gaussian pro-
cesses for pomdp-based dialogue manager optimiza-
tion,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 22, no. 1, pp. 28–40, 2014.

[15] Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-Hsien
Wen, and Steve Young, “On-line active reward learning
for policy optimisation in spoken dialogue systems,” in
ACL, 2016.

[16] Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Mil-
ica Gasic, and Steve Young, “Sample-efficient actor-
critic reinforcement learning with supervised data for
dialogue management,” in SIGDIAL, 2017.

[17] Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Mil-
ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young, “A network-based end-to-
end trainable task-oriented dialogue system,” in EACL,
2017.

[18] Bing Liu and Ian Lane, “An end-to-end trainable neu-
ral network model with belief tracking for task-oriented
dialog,” in Interspeech, 2017.

[19] Tiancheng Zhao and Maxine Eskenazi, “Towards end-
to-end learning for dialog state tracking and manage-
ment using deep reinforcement learning,” in SIGDIAL,
2016.

[20] Xuijun Li, Yun-Nung Chen, Lihong Li, and Jianfeng
Gao, “End-to-end task-completion neural dialogue sys-
tems,” arXiv preprint arXiv:1703.01008, 2017.

[21] Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and
Steve Young, “A survey of statistical user simulation
techniques for reinforcement-learning of dialogue man-
agement strategies,” The knowledge engineering review,
vol. 21, no. 2, pp. 97–126, 2006.

[22] Layla El Asri, Jing He, and Kaheer Suleman, “A
sequence-to-sequence model for user simulation in spo-
ken dialogue systems,” in Interspeech, 2016.

[23] Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen, “A user sim-
ulator for task-completion dialogues,” arXiv preprint
arXiv:1612.05688, 2016.

[24] M Gašić, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson, Pirros
Tsiakoulis, and Steve Young, “On-line policy optimi-
sation of bayesian spoken dialogue systems via human
interaction,” in ICASSP. IEEE, 2013, pp. 8367–8371.

[25] Oriol Vinyals and Quoc Le, “A neural conversational
model,” in ICML, 2015.

[26] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jian-
feng Gao, and Dan Jurafsky, “Deep reinforcement learn-
ing for dialogue generation,” in EMNLP, 2016.

[27] Antoine Bordes and Jason Weston, “Learning end-to-
end goal-oriented dialog,” in ICLR, 2017.

[28] Filip Jurčı́ček, Blaise Thomson, and Steve Young, “Re-
inforcement learning for parameter estimation in statisti-
cal spoken dialogue systems,” Computer Speech & Lan-
guage, vol. 26, no. 3, pp. 168–192, 2012.

[29] James Henderson, Oliver Lemon, and Kallirroi
Georgila, “Hybrid reinforcement/supervised learning of
dialogue policies from fixed data sets,” Computational
Linguistics, vol. 34, no. 4, pp. 487–511, 2008.

[30] Jason D Williams, Kavosh Asadi, and Geoffrey Zweig,
“Hybrid code networks: practical and efficient end-to-
end dialog control with supervised and reinforcement
learning,” in ACL, 2017.

[31] Jason D Williams and Geoffrey Zweig, “End-to-
end lstm-based dialog control optimized with super-
vised and reinforcement learning,” arXiv preprint
arXiv:1606.01269, 2016.

[32] Kallirroi Georgila, James Henderson, and Oliver
Lemon, “Learning user simulations for information
state update dialogue systems.,” in Interspeech, 2005,
pp. 893–896.

[33] Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefevre, and Olivier Pietquin, “Co-adaptation in spoken
dialogue systems,” in Natural Interaction with Robots,
Knowbots and Smartphones, pp. 343–353. Springer,
2014.

[34] Kallirroi Georgila, Claire Nelson, and David R Traum,
“Single-agent vs. multi-agent techniques for concur-
rent reinforcement learning of negotiation dialogue poli-
cies.,” in ACL, 2014, pp. 500–510.

[35] Merwan Barlier, Julien Perolat, Romain Laroche, and
Olivier Pietquin, “Human-machine dialogue as a
stochastic game,” in 16th Annual SIGdial Meeting on
Discourse and Dialogue (SIGDIAL 2015), 2015.

[36] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[37] Sungjin Lee, “Structured discriminative model for dia-
log state tracking,” in Proceedings of the SIGDIAL 2013
Conference, 2013, pp. 442–451.

[38] Matthew Henderson, “Machine learning for dialog state
tracking: A review,” in Proc. of The First International
Workshop on Machine Learning in Spoken Language
Processing, 2015.

[39] Jason Williams, Antoine Raux, and Matthew Hender-
son, “The dialog state tracking challenge series: A re-
view,” Dialogue & Discourse, vol. 7, no. 3, pp. 4–33,
2016.

[40] Ronald J Williams, “Simple statistical gradient-
following algorithms for connectionist reinforcement
learning,” Machine learning, vol. 8, no. 3-4, pp. 229–
256, 1992.

[41] Matthew Henderson, Blaise Thomson, and Jason
Williams, “The second dialog state tracking challenge,”
in SIGDIAL, 2014.

[42] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2014.

[43] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfit-
ting.,” Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[44] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina M
Rojas-Barahona, Pei-Hao Su, Stefan Ultes, David
Vandyke, and Steve Young, “Conditional generation
and snapshot learning in neural dialogue systems,” in
EMNLP, 2016.

	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Dialog Agent
	3.2 User Simulator
	3.3 Deep RL Policy Optimization

	4 Experiments
	4.1 Dataset
	4.2 Training Procedure
	4.3 Results and Analysis

	5 Conclusions
	6 References

