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ABSTRACT

Due to the lack of publicly available resources, conversation
summarization has received far less attention than text sum-
marization. As the purpose of conversations is to exchange
information between at least two interlocutors, key informa-
tion about a certain topic is often scattered and spanned across
multiple utterances and turns from different speakers. This
phenomenon is more pronounced during spoken conversa-
tions, where speech characteristics such as backchanneling
and false-starts might interrupt the topical flow. Moreover,
topic diffusion and (intra-utterance) topic drift are also more
common in human-to-human conversations. Such linguistic
characteristics of dialogue topics make sentence-level extrac-
tive summarization approaches used in spoken documents ill-
suited for summarizing conversations. Pointer-generator net-
works have effectively demonstrated its strength at integrating
extractive and abstractive capabilities through neural model-
ing in text summarization. To the best of our knowledge, to
date no one has adopted it for summarizing conversations.
In this work, we propose a topic-aware architecture to ex-
ploit the inherent hierarchical structure in conversations to
further adapt the pointer-generator model. Our approach sig-
nificantly outperforms competitive baselines, achieves more
efficient learning outcomes, and attains more robust perfor-
mance.

Index Terms— Dialogue, summarization, neural net-
works, attention mechanism, conversation technology

1. INTRODUCTION

Automatic summarization condenses lengthy materials into
shorter versions, which focuses on the essential informa-
tion and the overall meaning. Such summaries can enable
users to browse and digest information more effectively and
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efficiently, which is especially useful in the digital era of in-
formation overload. Thus, summarization has attracted much
research attention over the years. When humans generate
summaries, they usually first comprehend the entire content,
and then extract and concatenate the keywords or salient sen-
tences. To obtain more succinct and readable results, they
further distill and rephrase the most important information
[[L]. This gives rise to the two main paradigms in automatic
summarization: extractive and abstractive. Recently, with
sophisticated neural architectures, representation learning of
linguistic elements and large-scale available corpora, data-
driven approaches have made much progress in both two
paradigms [2, 13} 14]. Most work in text summarization focuses
on documents such as news or academic articles [} |6]. On
the contrary, due to the scarcity of publicly available corpora
with ground-truth summaries, the speech summarization task
of human-to-human spoken conversations has received far
less attention even though there is high industry demand and
many potential applications across different domains [[7} 8]].
Different from passages, human-to-human spoken con-
versations are a dynamic flow of information exchange,
which is often informal, verbose and repetitive, sprinkled
with false-starts, backchanneling, reconfirmations, hesita-
tions, and speaker interruptions [9]. The key information
about a certain topic is often at the sub-sentence or sub-
utterance level, and scattered and spanned across multiple
utterances and turns from different speakers, leading to lower
information density, more diffuse topic coverage, and (intra-
utterance) topic drifts. These spoken characteristics pose
technical challenges for sentence-level extractive approaches
that would inevitably include unnecessary spans of words in
the generated summaries. Pointer-generator networks [10], a
neural sequence-to-sequence design [[L1]], produce summaries
via word-level extraction and abstractive generation. Thus,
we propose to exploit its advantages to tackle the aforemen-
tioned challenges. Meanwhile, although conversations are
often less structured than passages, they are inherently orga-
nized around the dialogue topics in a coarse-grained structure
[9]. Topic segmentation has also been shown to be useful in
dialogue-based information retrieval [12]. Such prior analy-
ses and investigations inspire us to augment pointer-generator
networks with a topic-level attention mechanism to more ele-



gantly attend to the underlying (yet often interrupted) topical
flow in human-to-human conversations.

The dialogue setting in this work is based on a real-world
scenario where nurses discuss symptom information with
post-discharge patients to follow-up with their status. The
conversation summarization task here is targeted at auto-
matically generating notes that describe the symptoms the
patients are experiencing. Our proposed topic-aware pointer-
generator framework exploits the inherent hierarchical struc-
ture in dialogues and is able to address the technical chal-
lenges of spoken dialogue summarization: empirical results
outperform competitive baseline architectures significantly,
while achieving more efficient and robust learning outcomes.

2. RELATED WORK

In speech and text summarization, traditional approaches are
studied more on the extractive methods, utilizing rule-based,
statistical [13] and graph-based [14] algorithms with vari-
ous linguistic features like lexical similarity [[15], semantic
structure [7], or discourse relation [[16]]. Recently, end-to-end
neural approaches have been widely adopted in text sum-
marization due to their capability, flexibility and scalability.
Neural extractive models adopt sentence labeling or rank-
ing strategies [[17, [18], semantic vector representations [[19]]
and sequential context modeling [20]. For abstractive tasks,
sequence-to-sequence models use a neural decoder to gener-
ate informative and readable summaries word-by-word [3]].
Various methods have been proposed for improvement: the
attention mechanism helps the decoder concentrate on appro-
priate parts of source content [21]; the pointer mechanism
is effective in handling out-of-vocabulary words [10]; the
coverage mechanism is used to reduce generative repetitions
[22]]. Extractive-abstractive models have also been proposed
to obtain better results [23) [24].

While text summarization focuses on passages such as
news articles [S, 25] and academic publications [6], speech
summarization has been investigated in monologues (such as
broadcasts [260] and lectures [7]) and multi-party dialogues
such as meetings [27]. Recently, neural modeling approaches
have also been adopted: Goo et al. [8] used a sequence-to-
sequence model to write headlines for meetings, and Liu ez al.
[4] used a hierarchical extractive model to summarize mono-
logue spoken documents. In this paper, we propose a topic-
aware pointer-generator architecture for hierarchical context
modeling to generate summary notes of spoken conversations.

3. CONVERSATION CORPUS AND SETUP

We sampled 100k dialogues as the training set and another
distinct 1k dialogues as the validation set according to Section
While the training and validation sets were constructed
using simulated data, the test set was derived from 490 multi-
turn dialogues that took place between nurses and patients in

the healthcare setting. Topic segmentation (Section [3.2)) and
ground-truth summary construction (Section [3.3)) were con-
ducted on all these subsets.

3.1. Nurse-to-Patient Dialogue Data

This corpus was inspired by a pilot set of conversations that
took place in the clinical setting where nurses inquire about
symptoms of patients [28]]. Linguistic structures at the seman-
tic, syntactic, discourse and pragmatic levels were systemi-
cally abstracted from these conversations to construct tem-
plates for automatically simulating multi-turn dialogues [29].
The informal and spontaneous styles of spoken interactions
such as interlocutor interruption, backchanneling, hesitation,
false-starts, repetition, and topic drift were preserved (see Fig-
ure[Th for an example).

A team of linguistically trained personnel refined, sub-
stantiated, and corrected the simulated dialogues by enriching
verbal expressions through considering paraphrasing, differ-
ent regional English speaking styles (American, British, and
Asian) through word usage and sentence patterns, validating
logical correctness through considering if the dialogues were
natural and not disobeying common sense, and verifying the
clinical content by consulting certified nurses. These conver-
sations cover 9 topics/symptoms (e.g., headache, cough).

3.2. Topic Segmentation

In dialogue analysis, a change in topic corresponds to a
change in cognitive attention acknowledged and acted upon
by speakers, which is usually related to content themes [12].
In this work, we specify the dialogue topics according to the
symptoms in nurse-to-patient conversations. Figure [T shows
an example of different topic segments, where each spans
across different utterances and speakers. Note that various
types of spoken characteristics (e.g. false start) could break
up topical congruence.

A rule-based lexical algorithm was used to detect the
boundaries between dialogue topics. Labels (s) and (/s)
were respectively added before and after each topic segment.
Position indices of segment labels are used in Section [4.3]
Human verification was conducted to ensure quality control.

3.3. Ground-Truth Summaries

The goal of this conversation summarization task is to obtain
a concise description characterizing different attributes of a
specified symptom. For this particular clinical scenario, the
summary notes are preferred to be represented in a very struc-
tured format to facilitate indexing, searching, retrieving and
extracting in a variety of downstream workflow applications
(e.g., decision support, medical triage). Thus, paraphrases of
a particular symptom are represented using the same entity,
e.g., "shortness of breath” and "breathlessness” are both rep-
resented as symptom “breathlessness”.



[Nurse] Hi Mr.#name#, you were discharged on #date#. There are some
questions i'd like to check with you.

[Patient] Ok, Ok.

[Nurse] Well, have you been experiencing swelling recently?
[Patient] Swelling? It comes and go, comes and go.

[Nurse] Comes and go ... | see .. #repetition#

[Nurse] ... #pause#... When did it start?

[Patient] Let me see, started from three weeks ago.

[Nurse] Are you experiencing any headache right now as we speak?
[Patient] Umm ... #back-channel#

[Nurse] Let me check, the last time you told me is sometimes at night.
[Patient] Oh, right, only a bit.

[Nurse] Still feel some chest pain or chest discomfort?

[Patient] Yes, my head is... #false-start# no, the pain is much better.
Still feel headache though ... #topic-drift#

[Nurse] Any giddiness or palpitation?

[Patient] Palpitation? Do not have-- #interruption#

[Nurse] Well ... Do you-- #interruption#

[Patient] and no giddiness, no, nothing.

[Nurse] Ok, you need to check your heartrate everyday.

[Nurse] Do you know how to use the device?

[Patient] Yes, yes, no problem.

Swelling: started from three weeks ago, comes and go.
Headache: sometimes, at night, only a bit.

Chest pain: much better.

Dizziness: none.

Fig. 1. a) A dialogue example of multi-turn conversation on
nurse-patient symptom discussion. Colored spans are utter-
ances of the same topic. Spoken characteristics are preserved
and represented in bold font; b) Generated ground-truth sum-
mary. Colored spans indicate corresponding topics in the
given dialogue example.

The summary format is shown in Figure [Ib, where each
symptom is listed separately with corresponding attributes
such as frequency of symptom or severity of symptom that
were mentioned in the conversations. If a symptom was
mentioned, it will be included in the summary. If there is
no signal of a symptom (e.g., “cough”) in the discussion
between the nurse and the patient, the summary for the symp-
tom is represented as “Cough: none”, while the others would
be recorded with key information from the dialogue, e.g.,
“Headache: every night, only a bit”. Human verification was
conducted to ensure quality control.

4. APPROACH

In a sequence-to-sequence (seq2seq) model, the encoder re-
ceives a token sequence of content x = {xg,x1,...,2,} of
length n, and the decoder outputs a token sequence of sum-
mary ¥ = {yo, Y1, .., Ym } Of length m. The decoder gener-
ates words step by step, and previously generated words are
encoded to provide contextual information at each time step.
The task is to learn a function f with a parameter set 6 that
maximizes the probability to generate readable and meaning-
ful output text. In this section, we (1) describe two baselines:
an attentive seq2seq model and a pointer-generator network,
and (2) demonstrate how we integrate topic-level attention
neural mechanisms.

4.1. Attentive Seq2Seq Architecture

The attentive seq2seq model is similar to that in [21]. It adds
an attention layer to a vanilla seq2seq network, to filter out
unnecessary contextual information at each decoding step.

Sequence Encoding: Given a document input = (one-hot
word representation), an embedding layer converts it to vector
representations by a look-up operation using the embedding
matrix, obtaining a vector sequence v = {wvg,V1,...,Up},
where v; € R? and d is the embedding dimension. Then, a
bi-directional long short-term memory (Bi-LSTM) layer [30]
is used to encode v; with forward and backward temporal de-

pendencies, as h; and h;, respectively, and concatenate them

as the hidden representation h = {hg, h1,...,hn} € R"“d/,

where d_is the hidden dimension size.

hi hi1); hi=LSTM(vi, hips) (1)

h; = LSTM(v;, h
hi = [iZ; ) @)

Sequence Decoding with Attention: The decoder is a single-
layer unidirectional LSTM, generating words step by step.
For each decoding step ¢, it receives the word embedding of
the previous token y;_1, then calculates the decoder state s;.
Attention scoring is conducted through concatenation [31]:

a' = softmax(Wtanh(Wtsp [hi; S¢] + baten))  (3)

where W, Wotp, and bayyy, are trainable parameters, and [; | is
the concatenation operation. Attention scores can be viewed
as the importance over the input content, guiding the decoder
to concentrate on the appropriate positions of context for gen-
erating the next word. Next, these attention scores are used
to produce a weighted-pooling of the encoded hidden states,
as a fixed-size representation of what has been read from the
source for this step, namely the context vector hs.

Then, h{ is concatenated with the decoder state s; and
fed through two dense layers to produce a distribution on the
vocabulary:

J— softmax(W”(W/ [st; he] + b/) + b”) )

where W', W, b" and b" are trainable parameters. p! . .
is a probability distribution over all words in the vocabulary,
which will be used to generate decoded tokens.

4.2. Pointer-Generator Networks

Pointer-generator networks are a variant of seq2seq architec-
ture by adding a pointer network [32]. Aside from generat-
ing words over a fixed vocabulary, the model is able to copy
words via pointing to the source content, thus bypassing out-
of-vocabulary issues. In the pointer-generator model, the se-
quence encoding representation h, attention distribution a’
and context vector h{ are calculated as in Section We de-
scribe how the pointer-generator model achieves word-level
extraction and abstractive generation below.
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Fig. 2. The architecture of our proposed topic-aware pointer-generator network.

Pointer Mechanism: To directly copy words from the source
content, the attentive distribution a? in Equation is re-
garded as the copy probability on input sequence x, specif-
ically, the token on position with max probability will be ex-
tracted as the output.

Pointer-Generator Switching: At each decoding step, there
is a switching probability to determine whether to generate a
token from the fixed vocabulary or copy one from the source.
Pgen € [0, 1] for step ¢ is calculated from the context vector
hé, the decoder input ;1 and the decoder state s;:

- U(Wptr [hf;v Yt—15 St] + bptr) (5)

3
pgen

where W, and by, are trainable parameters and o is the sig-
moid function. Then, pf]en is used as a soft switch to choose
between copying a word from the input sequence with atten-
tion distribution a’, or generating a word from the vocabu-
lary distribution p? ., in Equation . For each sample, we
extend the vocabulary with the unique words from the input
content. We obtain the following probability distribution over
the extended vocabulary:

pf)utput = pf]en X pf}ocab(w) + (1 _pgen) X Z CLE (6)

LW, =w

Contrary to the vanilla seq2seq model, which is restricted to
a fixed vocabulary, the ability to copy and generate words is
one of the primary advantages of the pointer-generator de-
sign. Another improvement over vanilla seq2seq is its cover-
age mechanism that avoids repetitions during decoding. More
details can be found in [10]].

4.3. Topic-Aware Attentive Architecture

To exploit topical structure in dialogue modeling with a hi-
erarchical architecture, another attention layer is introduced

to score topic-level attention to obtain a topic-aware context
representation. We delineate how we integrate topic-aware
attention to the baseline models below (see Figure [2).
Topic-Level States: We obtain the representations h*¢Y of
topic segments by collecting hidden states from A in equa-
tion (1) with the topic-level segment position indices t°°9 =
{379, 1%, ...t;77}, where k is the topic segment number of
the dialogue content. For the output of bi-directional LSTM,
we collect the states of forward and backward directions and
then concatenate them into one.

Initial Decode State: In the two baseline models, the last hid-
den state of sequence encoding representation is used as the
initial state sq fed to the decoder. Here, we denote average-
pooling of topic-level states h*°9 as sg.

Topic-Aware Contextual Representation: In each decoding
time step ¢, we calculate topic-level attention and use topic-
aware context vectors as the guide for the fine-grained word-
level prediction. First, the topic-level attention scores are cal-
culated via dense layers and softmax normalization:

a;“? = softmax (W 9tanh(h;Wegst + bseg))  (7)
Next, we multiply the attention score with topic-level
states to obtain the topic-aware context vector:

k

hi = h*9a;" )
Then, the pointing distribution in Equation (3)) and vocab-
ulary distribution in Equation () are influenced by the topic-

aware contextual representation, and final output is produced
as in Equation (6):

a' = softmax(Wetanh(Wysn [hi; hi5 8¢] + baten))  (9)

pfmab = softmax(W“(W/ [s¢; hi; Y] + b/) + b”) (10)



Model ROUGE-1 ROUGE-2 ROUGE-L

F1 Precision Recall F1 Precision Recall F1 Precision Recall
Attn Seq2Seq 0.4494  0.3495 0.8312 0.3444 0.2664 0.6582 0.4074 0.3171 0.7542
Attn Seq2Seq + TA 0.5041 0.3922 0.8230 0.3874 0.2998 0.6491 0.4560 0.3595 0.7482
PG-Net 0.5345 0.4238 0.8653 0.4311 0.3341 0.7220 0.4949 0.3843 0.8159
PG-Net + TA (Proposed) 0.5862 0.4803 0.8703 0.4906 0.3928 0.7550 0.5496 0.4423 0.8260

Table 1. Evaluation results of baselines and the proposed model.

5. EXPERIMENTS

5.1. Training Setup

The experiments are conducted on the nurse-to-patient con-
versation corpus described in Section [3] We implemented an
attentive seq2seq (Attn Seq2Seq) and a pointer-generator net-
work (PG-Net) as baselines, a topic-aware attentive seq2seq
(Attn Seq2Seq+TA) model as control, and our proposed topic-
aware pointer-generator model (PG-Net+TA).

Cross entropy is used to measure the loss between pre-
diction and ground-truth. For time step ¢, the negative log
likelihood of the target word j; is defined as:

lossy = —logPy(y:|x) (11)
and the overall loss is the sum from all the time steps. Teacher
forcing strategy is applied: during training, the input is the
previous word from the ground truth; at test time, the input is
the previous word predicted by the decoder.

In our setup, for both the encoder and decoder, the dimen-
sion of word embeddings and hidden states was set to 200. We
adopted pre-trained word embedding Glove [19], and out-of-
vocabulary words and segment labels were initiated with ran-
dom vectors. Embedding weight sharing strategy was applied
by sharing the same embedding matrix W,,,; for both en-
coder and decoder. This sharing significantly reduced param-
eter size and boosted the performance by reusing the semantic
and syntactic information in one embedding space [22]]. The
learning rate was fixed to 0.0001 and the batch size was set to
32. We adopted gradient clipping with a maximum gradient
norm of 2.0. Adam algorithm [33] was used for stochastic
optimization, with 81 = 0.9, B2 = 0.99. The vocabulary size
was 10K. We limited source contents to 300 tokens and the
decoding length to 100 tokens. We adopted early-stop strat-
egy with validation in each training epoch. During testing, we
set the beam search size to 5.

5.2. Empirical Evaluations
5.2.1. Evaluation I: Effectiveness

Summarization performance is measured using ROUGE-1,
ROUGE-2 and ROUGE-L scores [34], as shown in Table
Between the two baselines, the pointer-generator model ob-
tains higher performance than attentive seq2seq model. Qual-

5.5 | — Attn Seq2Seq
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| PG-Net
44 1

— PG-Net + TA

3.3

2.2

Cross-Entropy Loss (bits)

0 1000 2000 3000 4000 5000 6000 7000

Training Iteration

Fig. 3. Evaluation results of learning efficiency.

itative analysis (Section shows that a certain propor-
tion of generated tokens are directly copied from the source
content, demonstrating the effectiveness of using the pointer
mechanism in our task. Moreover, with topic-aware attentive
modeling, both baseline models obtain significant improve-
ment, and the proposed PG-Net+TA achieves the best perfor-
mance. The gains are more prominent for the precision scores
(see Table[T), indicating that the proposed approach generates
fewer unnecessary tokens while preserving key information in
the generated summary.

5.2.2. Evaluation II: Learning Efficiency

To evaluate the learning efficiency of the models, we recorded
their loss values during training. As shown in Figure [3
in the first 7000 batches of iterations, loss of the pointer-
generator decreases faster than that of attentive seq2seq.
Moreover, by adding topic-level attention, both attentive
seq2seq and pointer-generator are improved, and our pro-
posed PG-Net+TA performs best.

Having demonstrated the strength of pointer-generator net-
works over attentive seq2seq model, we will focus on the for-
mer in the following experiments.

5.2.3. Evaluation IlI: Performance/Model Robustness

Spoken conversations are often verbose with low information
density scattered with topics not central to the main dialogue
theme, especially since speakers chit-chat and get distracted
during task-oriented discussions. To evaluate such scenar-
ios, we adopted model-independent ADDSENT [335]], where
we randomly extracted sentences from SQuAD and inserted
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<s> chest pain : not so serious , when walk a

long way </s> <s> cough :

none </s> <s> swelling : the leg </s> <stop>

B

<s> chest pain : not so serious , when walk a

long way </s> <s> cough :

none </s> <s> swelling : the leg </s> <stop>

Fig. 4. a) Switching between pointer & generator: Tokens with higher switching probability are darker in color and are generated
from the vocabulary. b) Visualizing topic-level attention scores. The darker the shade, the higher the scores.

Model ROUGE-1 ROUGE-2 ROUGE-L

PG-Net 42.33 28.23 38.14
(-11.12) (-14.88) (-11.35)

PG-Net + TA 49.70 39.32 45.37
(-8.92) (-9.74) (-9.59)

Table 2. F1 scores from lengthy-sample evaluation. Brack-
eted values denote absolute decrease of model performance

in Section 3.2.11

them before or after topically coherent segments. The average
length of the augmented test set, is increased from 300 to 900.
As shown in Table 2] topic-level attention helps the pointer-
generator model become more robust to lengthy samples.

5.2.4. Evaluation IV: Low Resource Training

Limited amount of training data is a major pain point for
dialogue-based tasks, as it is time-consuming and labor-
intensive to collect and annotate natural dialogues at a large-
scale. We expect our model to perform better in low resource
scenarios because it can take advantage of the inherently
hierarchical dialogue structure with induction bias. We con-
ducted experiments over a range of training sizes (from 3k to
20Kk). As shown in Figure[3] our proposed PG-Ner+TA lead to
steeper learning curves and always outperforms the baseline.

5.3. Visualization Analysis

In this section, we probe deeper into the proposed neural
architecture to examine the innerworkings of (1) how the
pointer and generator switches, and (2) how topic-level atten-
tion interacts with the decoded sequence.

5.3.1. Pointer-Generator Switching

We illustrate the probability of the pointer-generator switch-
ing pgen in Equation @) that indicates the probability of
words generated from the vocabulary to show how the pro-
posed model summarizes dialogue. One summary example
produced from a dialogue with three topics is shown in Figure
Mh: the attribute information of a symptom and segment tags
are directly copied from the source content, while symptom

ROUGE-1 F1 Score ROUGE-2 F1 Score

40 30
32 24
24 18
16 12
8 6 1
0 0

3k 5k 10k 20k 3k 5k 10k 20k
PG-Net O PG-Net+TA

Fig. 5. Evaluation results of low resource training.

entities and punctuation tokens are generated from the vo-
cabulary lexicon. This generation behavior resonates with
the rationale used in constructing the ground-truth summary
in Section 3.3 enabling the model to normalize symptom
entities and handle out-of-vocabulary words in symptom at-
tributes.

5.3.2. Topic-Level Attention Scoring

To show how the proposed framework conducts topic-aware
contextual modeling, we illustrate topic-level attention scores
a*®? in Equation (7). As shown in Figure @b, during the
summary decoding process of a dialogue with three topics,
at each step, the model concentrates on one topic segment.
We also observe smooth topic transition from the attention
layer, which aligns well with the topical flow of the dialogue
content. Such topic level modeling can help improve sum-
marization performance by filtering out nonessential details
at the word-level modeling layers.

6. CONCLUSION

In this work, we automatically summarized spoken dialogues
from nurse-to-patient conversations. We presented an effec-
tive and efficient neural architecture that integrates topic-level
attention mechanism in pointer-generator networks, utilizing
the hierarchical structure of dialogues. We demonstrated that
the proposed model significantly outperforms competitive
baselines, obtains more efficient learning outcomes, is robust
to lengthy dialogue samples, and performs well when there is
limited training data.
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