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ABSTRACT

Training acoustic models with sequentially incoming data –

while both leveraging new data and avoiding the forgetting ef-

fect – is an essential obstacle to achieving human intelligence

level in speech recognition. An obvious approach to leverage

data from a new domain (e.g., new accented speech) is to first

generate a comprehensive dataset of all domains, by combin-

ing all available data, and then use this dataset to retrain the

acoustic models. However, as the amount of training data

grows, storing and retraining on such a large-scale dataset

becomes practically impossible. To deal with this problem,

in this study, we study several domain expansion techniques

which exploit only the data of the new domain to build a

stronger model for all domains. These techniques are aimed at

learning the new domain with a minimal forgetting effect (i.e.,

they maintain original model performance). These techniques

modify the adaptation procedure by imposing new constraints

including (1) weight constraint adaptation (WCA): keeping

the model parameters close to the original model parame-

ters; (2) elastic weight consolidation (EWC): slowing down

training for parameters that are important for previously es-

tablished domains; (3) soft KL-divergence (SKLD): restrict-

ing the KL-divergence between the original and the adapted

model output distributions; and (4) hybrid SKLD-EWC: in-

corporating both SKLD and EWC constraints. We evaluate

these techniques in an accent adaptation task in which we

adapt a deep neural network (DNN) acoustic model trained

with native English to three different English accents: Aus-

tralian, Hispanic, and Indian. The experimental results show

that SKLD significantly outperforms EWC, and EWC works

better than WCA. The hybrid SKLD-EWC technique results

in the best overall performance.

Index Terms— domain expansion,domain adaptation,

DNN-based acoustic models, speech recognition

1. INTRODUCTION

Current state-of-the-art neural network-based ASR systems

have advanced to nearly human performance in several eval-
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uation settings [1, 2]; however, these systems perform poorly

for domains1 that are not included in the original training

data [3, 4, 5, 6]. For example, if we train an ASR system

using a U.S. English dataset, the performance of the system

significantly degrades for other English accents (e.g., Aus-

tralian, Indian, and Hispanic). In order to improve perfor-

mance of the system for an unseen domain, we can adapt the

previously trained model to capture the statistics of the new

domain. However, adaptation techniques suffer from the for-

getting effect: previously learned information will be lost by

learning the new information. We need an ASR system that

not only performs well for the new domain, but also retains

performance for previously seen domains. This is the goal of

domain expansion methods.

Domain Expansion – In a domain expansion scenario,

we are given a model trained on an initial domain and a

dataset for an unseen domain, the goal is to modify the model

such that it performs well for both domains. The main dif-

ficulty of domain expansion is to preserve the functionality

(input-output mapping) of the original model (mitigating the

forgetting problem). Many approaches have been proposed

to deal with the forgetting problem in neural networks. These

approaches can be divided into three categories: architectural,

rehearsal, and regularization strategies.

1.1. Architectural strategies

In this class of methods, architectures of neural networks are

modified to mitigate the forgetting problem. Progressive neu-

ral network (PNN) [7] is a popular architectural strategy; it

freezes the previously trained network and uses its interme-

diate representations as inputs into a new smaller network.

PNN has been applied in many different applications includ-

ing speech synthesis [8], speaker identification [9] and speech

emotion recognition [9]. However, it has been shown that

PNN is not efficient for long sequences of domains, since the

number of weights in PNN increases linearly with the number

of domains [7].

1In this paper, we use the term ”domain” to refer to a group of utterances

that share some common characteristics.
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1.2. Rehearsal strategies

These approaches store part of the previous training data and

periodically replay them for future training. A full rehearsal

strategy can alleviate the forgetting effect, but it is very slow

and memory intensive. Tylor et al. proposed EXSTREAM,

a new partitioning-based approach, to address the memory

problem of the full rehearsal strategy [10]. In another ap-

proach, [11] proposed to train an encoder-decoder model that

distills information which exists in the previous domains.

Their method uses the trained encoder-decoder to simulate

pseudo patterns of the previous domains and exploits these

pseudo patterns during the training of the new domain.

1.3. Regularization strategies

Regularization refers to a set of techniques that alleviate the

forgetting effect by imposing additional constraints on updat-

ing parameters. A straightforward constraint is weight con-

straint adaptation (WCA) which penalizes the deviation of the

model parameters from the original model parameters; it adds

an l2 distance between the original and adapted weights [12].

Another popular regularization approach is learning without

forgetting (LWF) [13] that tries to learn a sequence of rele-

vant tasks without losing performance for the older ones by

imposing output stability. Jung et al. [14] explored the do-

main expansion problem for image classification tasks. They

used an l2 distance between the final hidden representations of

the original network and the adapted network. Kirkpatrick et

al. [15] introduced elastic weight consolidation (EWC) which

selectively slows down the training for weights that are im-

portant for older domains.

In this study, we explore approaches to address the do-

main expansion problem for the deep neural network (DNN)-

based acoustic models. To the best of our knowledge, this

is the first study that explores domain expansion for speech

recognition. We investigate several existing and proposed

regularization strategies to alleviate the forgetting effect in

domain expansion. We employ WCA and EWC as the base-

line techniques for the domain expansion problem; we also

propose two new domain expansion techniques: soft KL-

divergence (SKLD) and hybrid SKLD-EWC. SKLD penal-

izes the KL-divergence (KLD) between the original model’s

output and the adapted model’s output as a measure of the

deviation of the model. We will demonstrate that the pro-

posed SKLD and EWC are complementary to each other,

and combining them can lead to a better domain expansion

technique which we refer to as SKLD-EWC. We will com-

pare the efficacy of these methods in an accent adaptation

task in which we adapt a DNN acoustic model trained with

native English to three different English accents: Australian,

Hispanic, and Indian. Our results will show that the proposed

hybrid technique, SKLD-EWC, results in the best overall per-

formance and SKLD performs significantly better than EWC

and WCA.

2. DOMAIN EXPANSION APPROACHES

In this section, we explain details of four domain expansion

techniques (i.e., weight constraint adaptation (WCA), elastic

weight consolidation (EWC), soft KL-Divergence (SKLD),

and hybrid SKLD-EWC) that we investigate in this study.

Problem Setup – In the domain expansion task, we are

given an original model Mo, trained on an original domain

Do, and a dataset for an unseen domain Dn, where the goal is

to find a new model Mn that performs well for both Do and

Dn.

2.1. Weight Constraint Adaptation (WCA)

WCA was first proposed in [12] to regularize the adaptation

process for discriminative classifiers. In another study [13],

WCA was employed for continual learning in a sequence of

disjoint tasks. This technique tries to find a solution that per-

forms well for the new domain, Dn, which is also close to the

original model, Mo.

According to [15], for a given neural network architec-

ture, there are many configurations of model parameters that

lead to comparable performance. Therefore, there are many

configurations that can efficiently represent our new domain

Dn. Among such configurations, an effective solution for do-

main expansion is the one that stands closer to the original

model Mo. Different distance metrics can be used to mea-

sure the similarity between models. WCA benefits from the

Euclidean distance between the learnable parameters of Do

and Dn. This idea can be implemented by imposing an addi-

tional L2 constraint on the optimization loss function of the

neural network:

JWCA(θ
n) = Jcross(θ

n) +
λw

2
||θn − θo||2, (1)

where θo and θn are the learnable parameters of Mo and Mn,

respectively; Jcross(θ
n) is the main optimization loss (cross-

entropy loss function); JWCA(θ
n) is the regularized loss with

the WCA technique; ||.||2 is the L2 norm; and λw is a regu-

larization parameter that determines how far the parameters

could diverge from their initial values to learn the new do-

main.

2.2. Elastic Weight Consolidation (EWC)

The WCA technique considers all weights equally. Therefore,

it is unable to find an efficient compromise to maintain the

model performance for the original domain Do and learning

the new domain Dn. However, all weights are not equally im-

portant, and using an approach that takes weight importance

into account would perform better than a naive WCA.

Intuitively, after training a DNN with sufficient iterations,

the model converges to a local minimum point of the opti-

mization landscape. At such a point, the sensitivity of the loss

function w.r.t. the i-th learnable weight, θn
i

, can be calculated



by the curvature of the loss function along the direction spec-

ified by θni changes. High curvature for a weight means that

the loss function is sensitive to small changes to that weight.

Therefore, to preserve the performance of the network for the

previous domain, we must prevent modifying the parameters

with high curvature. On the other hand, parameters with low

curvature values are proper choices to be tuned with new data

without losing the model performance for the original data.

The curvature of the loss function is equivalent to the di-

agonal of the Fisher information matrix F [16]. EWC offers

a straightforward method to incorporate the importance of the

learnable weights (curvature of the loss function w.r.t. the

weights) in the adaptation process. The method is similar to

WCA; the only difference is that EWC employs a weighted

L2 norm instead of the regular L2 norm in WCA:

JEWC(θ
n) = Jcross(θ

n)+
λe

2

∑

i

diag{F}i(θ
n

i −θoi )
2, (2)

where diag{F}i is the i-th element of the diagonal of the

Fisher information matrix F (representing the importance of

the i-th learnable weight); θni and θoi are the i-th weight of the

new and original models, respectively; and the summation is

taken over all learnable weights of the network. diag{F} can

be easily calculated by the variance of the first order deriva-

tives of the loss function w.r.t. the learnable weights (i.e.,

V ar{∂J(θ)/∂θi}) [16].

2.3. Soft KL-Divergence (SKLD)

A major difficulty of the domain expansion task is to preserve

the functionality (input-output mapping) of the original model

Mo. WCA and EWC achieve this by providing a link be-

tween the learnable weights of the new model Mn and the

original model Mo. According to the experiments performed

in [14], linking the learnable parameters is not an efficient

way of preserving the functionality of the parameters, since

applying slight changes to some of the parameters may sig-

nificantly modify the input-output mapping of the network.

Another method for preserving the functionality of Mo is to

impose new constraints on the outputs of the model [17]. By

constraining the outputs of Mn to be consistent with the out-

puts of Mo, we can assure that these two models are similar

to each other. SKLD leverages this idea through two steps:

(1) it takes the original model Mo and the data of the new do-

main Dn; it then generates the output of Mo for all samples

of the dataset. (2) next, SKLD trains the new model Mn by

initializing it from Mo and using a regularized loss function

that can be expressed by:

JSKLD(θ
n) = (1− λs)Jcross(θ

n)+

λs

∑

i∈I

DKL(M
n(xi),M

o(xi)), (3)

where I is the total number of samples; DKL is the KL dis-

tance; xi is the i-th input feature vector; Mo(xi) andMn(xi)

are the outputs of the original and the new models obtained for

the i-th sample xi; and 0 ≤ λs ≤ 1 is a regularization hyper-

parameter that provides a compromise between learning the

new domain (by optimizing Jcross) and preserving the input-

output mapping of the original model (by optimizing DKL).

λs = 0 results in the conventional pre-training/fine-tuning

adaptation. By increasing the value of λs, we can ensure a

balanced trade-off between learning the new domain and mit-

igating the forgetting effect problem. For this study, we tune

λs to achieve the best performance for both domains.

Equation (3) uses the KL divergence between Mo(xi)
and Mn(xi) to deal with the forgetting problem. However,

some parts of the KL divergence are not related to the learn-

able parameters of Mn. In [18], it is demonstrated that by

removing these parts, the KL divergence will be simplified to

the cross-entropy:

JSKLD(θ
n) = (1− λs)Jcross(θ

n)+

λs

∑

i∈I

Jcross(M
o(xi),M

n(xi)),

Jcross(M
o(xi),M

n(xi)) =
∑

c∈C

Mo

c(xi) log(M
n

c (xi)), (4)

where C is the total number of classes; Mo
c(xi) and Mn

c (xi)
are the probability of the c-th class generated by Mo and Mn

for an input vector xi.

In neural networks, we typically use a softmax with tem-

perature T = 1 to produce the probability for each class.

However, Hinton et al. [19] suggested that using T > 1
that increases the probability of small logits, performs bet-

ter in transferring the functionality of a large network to a

smaller one. Therefore, we also consider tuning the temper-

ature to examine its effects in preserving the functionality of

the model for the original data. We consider using a softmax

with adjustable temperature to produce the output distribution

for both Mo and Mn in the constraint term of equations (4).

Note that we use T = 1 for the tuning loss as well as in the

evaluation phase.

2.4. Hybrid SKLD-EWC

In the previous sections, we explained both SKLD and EWC

approaches. Each one has its advantages and disadvantages.

The advantage of EWC is that it computes the Fisher infor-

mation matrix (that quantifies the importance of the weights)

based on the original data during the initial training. How-

ever, SKLD does not exploit such information about the im-

portance of the weights. On the other hand, EWC uses a fixed

fisher matrix that is estimated for the initial model. How-

ever, fisher matrix changes during the adaptation procedure

and therefore the fixed assumption of the EWC method is not

reliable. The advantage of SKLD is that it is more efficient

in preserving the functionality of the original model as the



efficacy of SKLD does not change during the adaptation pro-

cedure. We propose to combine these two techniques into a

new hybrid approach SKLD-EWC. Our proposed technique

can be implemented by imposing both SKLD and EWC con-

straints on the tuning loss:

JSKLD−EWC(θ
n) = (1− λs)Jcross(θ

n)+

λs

∑

i∈I

Jcross(M
o(xi),M

n(xi))+

λe

∑

i

diag{F}i(θ
n

i − θoi )
2. (5)

This hybrid method requires two regularization parame-

ters: λs and λe defined for regularizing the outputs and

the weights, respectively. These two parameters provide a

more flexible data expansion technique, but at the expense of

more difficult hyper-parameter tuning.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Dataset – We evaluate the efficacy of the domain expansion

techniques for a DNN-HMM-based ASR system. To train

the original model for native English, we use the 100h part

of the LIBRISPEECH corpus (Libri) [20]. This part has

higher recording quality and the speakers’ accents are closer

to the native English compared to the rest of the corpus.

For the domain expansion experiments, we use UT-CRSS-

4EnglishAccent corpus [21] that contains speech data from

3 non-US English accents, namely Hispanic (HIS), Indian

(IND) and Australian (AUS). The data for each accent con-

sists of 100 speakers, with session content that consists of

read and spontaneous speech. In this corpus, for each accent,

there is more than 28h of training data, 5h of development and

5h of evaluation data. We use the standard language model

(LM) provided for Libri to decode the original data (i.e.,

Libri) [20]. However, for the other accents, since we have

spontaneous utterances too, we train a 3-gram and a 4-gram

LM by pooling transcriptions of Fisher, Switchboard, and

UT-CRSS-4EnglishAccent. The decoding procedure used for

Libri and other accents is the same.

Model structure – We implement the domain expan-

sion techniques for a DNN-HMM based ASR system using

Kaldi [22] and Tensorflow [23]. In all experiments, we ex-

tract 40-dimensional Mel-filterbank coefficients [22] for each

25ms frame with a skip rate of 10ms. Each frame is expanded

by stacking 5 frames from each side; therefore, the input to

the network is the Mel-filterbank coefficients of 11 succes-

sive frames. The acoustic model is a 5-layer fully connected

network with 1024 neurons at each hidden layer and 3440

output units that produce a distribution over senones. We

use “ReLU” activation function in intermediate layers and

“softmax” in the output layer that generates the probabilities

Table 1: WERs of different domain expansion methods on

the original (Org) and the new domains (New). For each

approach, among the different settings of regularization pa-

rameters, the one that results in the best overall performance

for both original and new domains (i.e., the lowest average of

WERs) is reported. The relative WER increase of the methods

compared to multi-condition (MC) training is also reported

(Rel-MC)

Method Org New Avg Rel-MC

AUS

MC 8.35 10.7 9.52 —

Original 8.10 23.04 15.57 63.5

Fine-Tuned 20.3 9.64 14.97 57.2

WCA 10.23 12.2 11.22 17.74

EWC 9.27 12.71 11 15.38

SKLD 8.84 11.23 10.03 5.35

SKLD-EWC 8.49 11.48 9.98 4.8

IND

MC 8.29 15.96 12.12 —

Original 8.10 28.68 18.39 51.6

Fine-Tuned 22.54 15.56 19.05 57.1

WCA 10.66 17.61 14.13 16.5

EWC 10.26 17.6 13.93 14.8

SKLD 9.29 16.45 12.87 6.14

SKLD-EWC 8.92 16.61 12.76 5.2

HIS

MC 8.21 11.65 9.93 —

Original 8.10 20.09 14.1 41.9

Fine-Tuned 16.14 11.52 13.83 39

WCA 8.65 12.84 10.74 8.2

EWC 8.72 12.61 10.66 7.4

SKLD 9.26 12.0 10.63 7.0

SKLD-EWC 8.29 12.5 10.39 4.7

of senones. We initialize all weights using the “he-normal”

initialization technique [24]. The loss function for training

the baseline model and also adaptation (i.e., Jcross(θ) in our

equations) is the cross-entropy between the forced aligned

senone labels and the model outputs.

Model training – In all experiments, we use Adam op-

timizer to train or adapt the DNN models [25]. For training

the original model with Libri, we use a learning rate (LR) of

0.001; however, we found that smaller learning rates perform

better for adapting the original model. Our initial experiments

showed that the learning rate of 0.0001 is an effective choice

for the model expansion experiments. To train the original

model, we employ the early-stopping technique to deal with

the over-training problem. Early-stopping is performed by

monitoring the performance of the model on a held-out vali-

dation set [26, 27]. However, applying early-stopping is not

efficient for the domain expansion task [13]; it is because the

data of the original domain is not available and performing

the early-stopping only on the data of the new domain is just

beneficial for the new domain, and it may significantly re-

duce the model performance on the original domain [13]. In
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Fig. 1: Visualizing WER of different techniques on original and new datasets. These curves are generated by changing the

hyper-parameters that control the trade-off between the performance of the original and the new domains.
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Fig. 2: Visualizing the forgetting effect of fine-tuning the

original model to the AUS accent. The performance of SKLD

in the same setting is also reported, which demonstrates the

efficacy of SKLD to preserve the learned knowledge while

adapting to the new domain. FT-Original: performance of the

fine-tuned model on Libri; FT-New: performance of the fine-

tuned model on AUS; FT-Avg: average of FT-Original and

FT-new; SKLD-Original: performance of SKLD on Libri;

SKLD-New: performance of SKLD on AUS; SKLD-Avg: av-

erage of SKLD-Original and SKLD-New

continual learning, a common approach is to perform a fixed

number of iterations to train the new model [28]. In this study,

we found that fine-tuning the original model converges to an

optimum solution in 20 epochs. To investigate the efficacy of

each approach, we evaluate their performance in three inde-

pendent scenarios that consider IND, AUS, and HIS accents

as the new domains.

3.2. Results

We conduct several experiments to evaluate the performance

of the domain expansion methods explored in this study. As

mention in previous sections, each domain expansion tech-

nique has a controlling hyper-parameter that provides a com-

promise between keeping the model performance for the orig-

inal data and learning the new domains. In the first set of

experiments, we tune these hyper-parameters to achieve the

best overall performance for both the original and the new

domains. The results for all approaches are summarized in

Table 1. We also report the results of multi-condition training

[29] in which the model is trained with both original and new

domains by pooling their data. The performance of the multi-

condition system can be considered as an upper bound for the

performance of domain-expansion methods.

In figure 1, we study the effect of changing the above-

mentioned hyper-parameters for three model expansion tech-

niques: WCA, EWC and SKLD. This figure shows which

method is better in proving a trade-off between retaining the

original model and learning the new domain.

Forgetting effect. The original model performs well for

the Libri clean test set that matches the training set condi-

tions; however, for the unseen domains, the performance of

the model degrades significantly. Fine-tuning (FT) this model

to the unseen domains results in a significant improvement in

WER for the new domains, but the model performance for

the original domain drops dramatically (Table 1). Figure 2

shows the rate of forgetting the information of the original

data as we fine-tune the model to AUS accent (FT-Original).

We also show how the SKLD approach performs in the same

setting. SKLD can successfully preserve the model perfor-

mance for the original data while learning the new data. The

overall performance of the model on both old and new do-

mains demonstrates that SKLD performs significantly better

than naive fine-tuning for domain expansion.

The performance of WCA and EWC. WCA as a naive

domain expansion method performs significantly better than

fine-tuning in finding a compromise between the performance

of the original and new domains. For EWC experiments,

since the diagonal of the Fisher information matrix F is zero

for many of the original model’s weights, simply applying

EWC does not preserve the model performance. We found

that adding an empirically determined value of 1 to the ele-

ments of the matrix addresses the problem. EWC outperforms

WCA in all the experiments (Table 1 and Figure 1), which

demonstrates the efficacy of the Fisher information matrix in

preserving the learned information of the original data. For

example, for IND accent in Table 1, both approaches achieve

17.6 WER for the new data, while EWC achieves a relative

WER improvement of +3.8% vs. WCA.

The performance of SKLD and Hybrid SKLD-EWC.

SKLD significantly outperforms all other single domain-

expansion approaches yielding a relative WER improvement

of +8.8% and +7.6% vs. EWC for AUS and IND accent,



respectively (Table 1). For HIS accent, SKLD is still slightly

better than EWC. The hybrid SKLD-EWC that benefits from

both SKLD and EWC results in the best overall performance.

Comparing the performance of domain expansion techniques

with multi-condition training in Table 1 indicates that we

have achieved comparable performance with multi-condition

training which uses the original training data we consider

unavailable for the domain expansion approaches.

4. CONCLUSIONS

In this paper, we explore several continual learning-based do-

main expansion techniques as an effective solution for domain

mismatch problem in ASR systems. We examine the efficacy

of the approaches through experiments on adapting a model

trained with native English to three different English accents:

Australian, Hispanic and Indian. We demonstrate that simply

adapting the original model to the target domains results in

a significant performance degradation of the adapted model

for the original data. However, we demonstrate that SKLD

and hybrid SKLD-EWC are effective in adapting the native

English model to the new accents while retaining the perfor-

mance of the adapted model for native English. The proposed

SKLD-EWC outperformed other existing approaches such as

fine-tuning, WCA, and EWC.
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