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ABSTRACT

Despite the strong modeling power of neural network acoustic mod-

els, speech enhancement has been shown to deliver additional word

error rate improvements if multi-channel data is available. However,

there has been a longstanding debate whether enhancement should

also be carried out on the ASR training data. In an extensive exper-

imental evaluation on the acoustically very challenging CHiME-5

dinner party data we show that: (i) cleaning up the training data

can lead to substantial error rate reductions, and (ii) enhancement

in training is advisable as long as enhancement in test is at least

as strong as in training. This approach stands in contrast and de-

livers larger gains than the common strategy reported in the litera-

ture to augment the training database with additional artificially de-

graded speech. Together with an acoustic model topology consist-

ing of initial CNN layers followed by factorized TDNN layers we

achieve with 41.6% and 43.2% WER on the DEV and EVAL test

sets, respectively, a new single-system state-of-the-art result on the

CHiME-5 data. This is a 8% relative improvement compared to the

best word error rate published so far for a speech recognizer without

system combination.

Index Terms— multi-talker speech recognition, guided source

separation, deep learning, CHiME-5

1. INTRODUCTION

Neural networks have outperformed earlier Gaussian Mixture Model

(GMM) based acoustic models in terms of modeling power and in-

creased robustness to acoustic distortions. Despite that, speech

enhancement has been shown to deliver additional word error rate

(WER) improvements, if multi-channel data is available. This is due

to their ability to exploit spatial information, which is reflected by

phase differences of microphone channels in the Short Time Fourier

Transform (STFT) domain. This information is not accessible by

the Automatic Speech Recognition (ASR) system, at least not if it

operates on the common log mel spectral or cepstral feature sets.

Also, dereverberation algorithms have been shown to consistently

improve ASR results, since the temporal dispersion of the signal

caused by reverberation is difficult to capture by an ASR acoustic

model [1].

However, there has been a long debate whether it is advisable to

apply speech enhancement on data used for ASR training, because it

is generally agreed upon that the recognizer should be exposed to as

much acoustic variability as possible during training, as long as this

variability matches the test scenario [2–4]. Multi-channel speech en-

hancement, such as acoustic beamforming (BF) or source separation,
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would not only reduce the acoustic variability, it would also result in

a reduction of the amount of training data by a factor of M , where

M is the number of microphones [5]. Previous studies have shown

the benefit of training an ASR on matching enhanced speech [6,7] or

on jointly training the enhancement and the acoustic model [8]. Al-

ternatively, the training data is often artificially increased by adding

even more degraded speech to it. For instance, Ko et al. [9] found

that adding simulated reverberated speech improves accuracy sig-

nificantly on several large vocabulary tasks. Similarly, Manohar et

al. [10] improved the WER of the baseline CHiME-5 system by rel-

ative 5.5% by augmenting the training data with approx. 160 hrs of

simulated reverberated speech. However, not only can the genera-

tion of new training data be costly and time consuming, the training

process itself is also prolonged if the amount of data is increased.

In this contribution we advocate for the opposite approach. Al-

though we still believe in the argument that ASR training should see

sufficient variability, instead of adding degraded speech to the train-

ing data, we clean up the training data. We make, however, sure that

the remaining acoustic variability is at least as large as on the test

data. By applying a beamformer to the multi-channel input, we even

reduce the amount of training data significantly. Consequently, this

leads to cheaper and faster acoustic model training.

We perform experiments using data from the CHiME-5 chal-

lenge which focuses on distant multi-microphone conversational

ASR in real home environments [11]. The CHiME-5 data is heavily

degraded by reverberation and overlapped speech. As much as 23%

of the time more than one speaker is active at the same time [12]. The

challenge’s baseline system poor performance (about 80% WER) is

an indication that ASR training did not work well. Recently, Guided

Source Separation (GSS) enhancement on the test data was shown to

significantly improve the performance of an acoustic model, which

had been trained with a large amount of unprocessed and simu-

lated noisy data [13]. GSS is a spatial mixture model based blind

source separation approach which exploits the annotation given in

the CHiME-5 database for initialization and, in this way, avoids the

frequency permutation problem [14].

We conjectured that cleaning up the training data would enable

a more effective acoustic model training for the CHiME-5 scenario.

We have therefore experimented with enhancement algorithms of

various strengths, from relatively simple beamforming over single-

array GSS to a quite sophisticated multi-array GSS approach, and

tested all combinations of training and test data enhancement meth-

ods. Furthermore, compared to the initial GSS approach in [14],

we describe here some modifications, which led to improved per-

formance. We also propose an improved neural acoustic model-

ing structure compared to the CHiME-5 baseline system described

in [10]. It consists of initial Convolutional Neural Network (CNN)

layers followed by factorized TDNN (TDNN-F) layers, instead of a
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homogeneous TDNN-F architecture.

Using a single acoustic model trained with 308 hrs of training

data, which resulted after applying multi-array GSS data cleaning

and a three-fold speed perturbation, we achieved a WER of 41.6%

on the development (DEV) and 43.2% on the evaluation (EVAL)

test set of CHiME-5, if the test data is also enhanced with multi-array

GSS. This compares very favorably with the recently published top-

line in [13], where the single-system best result, i.e., the WER with-

out system combination, was 45.1% and 47.3% on DEV and EVAL,

respectively, using an augmented training data set of 4500 hrs total.

The rest of this paper is structured as follows. Section 2 de-

scribes the CHiME-5 corpus, Section 3 briefly presents the guided

source separation enhancement method, Section 4 shows the ASR

experiments and the results, followed by a discussion in Section 5.

Finally, the paper is concluded in Section 6.

2. CHIME-5 CORPUS DESCRIPTION

The CHiME-5 corpus comprises twenty dinner party recordings

(sessions) lasting for approximately 2hrs each. A session contains

the conversation among the four dinner party participants. Record-

ings were made in kitchen, dining and living room areas with each

phase lasting for a minimum of 30mins. 16 dinner parties were

used for training, 2 were used for development, and 2 were used for

evaluation.

There were two types of recording devices collecting CHiME-5

data: distant 4-channels (linear) Microsoft Kinect arrays (referred to

as units or ‘U’) and in-ear Soundman OKM II Classic Studio bin-

aural microphones (referred to as worn microphones or ‘W’). Six

Kinect arrays were used in total and they were placed such that at

least two units were able to capture the acoustic environment in each

recording area. Each dinner party participant wore in-ear micro-

phones which were subsequently used to facilitate human audio tran-

scription of the data. The devices were not time synchronized dur-

ing recording. Therefore, the W and the U signals had to be aligned

afterwards using a correlation based approach provided by the orga-

nizers. Depending on how many arrays were available during test

time, the challenge had a single (reference) array and a multiple ar-

ray track. For more details about the corpus, the reader is referred

to [11].

3. GUIDED SOURCE SEPARATION

GSS enhancement is a blind source separation technique origi-

nally proposed in [14]1 to alleviate the speaker overlap problem

in CHiME-5. Given a mixture of reverberated overlapped speech,

GSS aims to separate the sources using a pure signal processing ap-

proach. An Expectation Maximization (EM) algorithm estimates the

parameters of a spatial mixture model and the posterior probabilities

of each speaker being active are used for mask based beamforming.

An overview block diagram of this enhancement by source sepa-

ration is depicted in Fig. 1. It follows the approach presented in [13],

which was shown to outperform the baseline version. The system

operates in the STFT domain and consists of two stages: (1) a dere-

verberation stage, and (2) a guided source separation stage. For the

sake of simplicity, the overall system is referred to as GSS for the rest

of the paper. Regarding the first stage, the multiple input multiple

output version of the Weighted Prediction Error (WPE) method was

used for dereverberation (M inputs and M outputs) [15, 16]2 and,

1https://github.com/fgnt/pb_chime5
2https://github.com/fgnt/nara_wpe
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Fig. 1: Overview of speech enhancement system with Weighted

Prediction Error (WPE) dereverberation, Mixture Model (MM) es-

timation, Source Extractor (SE) and Automatic Speech Recognition

(ASR).
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Fig. 2: Visualization of time annotations on a fragment of the

CHiME-5 data. The grey bars indicate source activity, the inner

vertical blue lines denote the utterance boundaries of a segment of

speaker P01, and the outer vertical red lines the boundaries of the

extended utterance, consisting of the segment and the “context”, on

which the mixture model estimation algorithm operates.

regarding the second stage, it consists of a spatial Mixture Model

(MM) [17] and a source extraction (SE) component. The model has

five mixture components, one representing each speaker, and an ad-

ditional component representing the noise class.

The role of the MM is to support the source extraction compo-

nent for estimating the target speech. The class affiliations computed

in the E-step of the EM algorithm are employed to estimate spatial

covariance matrices of target signals and interferences, from which

the coefficients of an Minimum Variance Distortionless Response

(MVDR) beamformer are computed [18]. The reference channel

for the beamformer is estimated based on an SNR criterion [19].

The beamformer is followed by a postfilter to reduce the remaining

speech distortions [20], which in turn is followed by an additional

(optional) masking stage to improve crosstalk suppression. Those

masks are also given by the mentioned class affiliations. For the sin-

gle array (CHiME-5) track, simulations have shown that multiply-

ing the beamformer output with the target speaker mask improves

the performance on the U data, but the same approach degrades the

performance in the multiple array track [14]. This is because the

spatial selectivity of a single array is very limited in CHiME-5: the

speakers’ signals arrive at the array, which is mounted on the wall

at some distance, at very similar impinging angles, rendering sin-

gle array beamforming rather ineffective. Consequently, additional

masking has the potential to improve the beamformer performance.

Conversely, the MM estimates are more accurate in the multiple ar-

ray case since they benefit from a more diverse spatial arrangement

of the microphones, and the signal distortions introduced by the ad-

ditional masking rather degrade the performance. Consequently, for

https://github.com/fgnt/pb_chime5
https://github.com/fgnt/nara_wpe


our experiments we have used the masking approach for the single

array track, but not for the multiple array one.

GSS exploits the baseline CHiME-5 speaker diarization infor-

mation available from the transcripts (annotations) to determine

when multiple speakers talk simultaneously (see Fig. 2). This

crosstalk information is then used to guide the parameter estimation

of the MM both during EM initialization (posterior masks set to

one divided by the number of active speakers for active speakers’

frames, and zero for the non-active speakers) and after each E-step

(posterior masks are clamped to zero for non-active speakers).

The initialization of the EM for each mixture component is very

important for the correct convergence of the algorithm. If the EM

initialization is close enough to the final solution, then it is expected

that the algorithm will correctly separate the sources and source in-

dices are not permuted across frequency bins. This has a major prac-

tical application, since frequency permutation solvers like [21] be-

come obsolete.

Temporal context also plays an important role in the EM initial-

ization. Simulations have shown that a large context of 15 seconds

left and right of the considered segment improves the mixture model

estimation performance significantly for CHiME-5 [14]. However,

having such a large temporal context may become problematic when

the speakers are moving, because the estimated spatial covariance

matrix can become outdated due to the movement [13]. Alterna-

tively, one can run the EM first with a larger temporal context un-

til convergence, then drop the context and re-run it for some more

iterations. As shown later in the paper, this approach did not im-

prove ASR performance. Therefore, the temporal context was only

used for dereverberation and the mixture model parameter estima-

tion, while for the estimation of covariance matrices for beamform-

ing the context was dropped and only the original segment length

was considered [13].

Another avenue we have explored for further source separation

improvement was to refine the baseline CHiME-5 annotations using

ASR output (see Fig. 1). A first-pass decoding using an ASR system

is used to predict silence intervals. Then this information is used

to adjust the time annotations, which are used in the EM algorithm

as described above. When the ASR decoder indicates silence for a

speaker, the corresponding class posterior in the MM is forced to

zero.

Depending on the number of available arrays for CHiME-5, two

flavours of GSS enhancement were used in this work. In the single

array track, all 4 channels of the array are used as input (M = 4),

and the system is referred to as GSS1. In the multi array track, all six

arrays are stacked to form a 24 channels super-array (M = 24), and

this system is denoted as GSS6. The baseline time synchronization

provided by the challenge organizers was sufficient to align the data

for GSS6.

4. EXPERIMENTS

4.1. General configuration

Experiments were performed using the CHiME-5 data. Distant

microphone recordings (U data) during training and/or testing

were processed using the speech enhancement methods depicted

in Table 1. Speech was either left unprocessed, enhanced using

a weighted delay-and-sum beamformer (BFIt) [22] with or with-

out dereverberation (WPE), or processed using the guided source

separation (GSS) approach described in Section 3. In Table 1, the

strength of the enhancement increases from top to bottom, i.e., GSS6

signals are much cleaner than the unprocessed ones.

Table 1: Naming of the speech enhancement methods.

Enhancement Array Label

Unprocessed Single/Multi None

BeamformIt [22] Single BFIt

WPE + BeamformIt [10] Single WPE+BFIt

WPE + GSS1 + BF w/o Context [14] Single GSS1

WPE + GSS6 + BF w/o Context [14] Multi GSS6

Table 2: Comparison of baseline TDNN-F [10] and proposed CNN-

TDNNF AMs in terms of WER for the DEV (EVAL) set.

AM Enh. in trng / hrs Enh. in test WER (%)

TDNNF [10] None / 1416 WPE+BFIt 69.6 (61.7)

CNN-TDNNF None / 1416 WPE+BFIt 67.2 (58.7)

CNN-TDNNF None / 316 BFIt 68.7 (61.3)

The standard CHiME-5 recipes were used to: (i) train GMM-

HMM alignment models, (ii) clean up the training data, and (iii)

augment the training data using three-fold speed perturbation. The

acoustic feature vector consisted of 40-dimensional MFCCs ap-

pended with 100-dimensional i-vectors. By default, the acoustic

models were trained using the Lattice-Free Maximum Mutual Infor-

mation (LF-MMI) criterion and a 3-gram language model was used

for decoding [11]. Discriminative training (DT) [23] and an addi-

tional RNN-based language model (RNN-LM) [24] were applied to

improve recognition accuracy for the best performing systems.

4.2. Acoustic model

The initial baseline system [11] of the CHiME-5 challenge uses a

Time Delay Neural Network (TDNN) acoustic model (AM). How-

ever, recently it has been shown that introducing factorized layers

into the TDNN architecture facilitates training deeper networks and

also improves the ASR performance [25]. This architecture has been

employed in the new baseline system for the challenge [10]. The

TDNN-F has 15 layers with a hidden dimension of 1536 and a bot-

tleneck dimension of 160; each layer also has a resnet-style bypass-

connection from the output of the previous layer, and a “continuous

dropout” schedule [10]. In addition to the TDNN-F, the newly re-

leased baseline3 also uses simulated reverberated speech from worn

microphone recordings for augmenting the training set, it employes

front-end speech dereverberation and beamforming (WPE+BFIt), as

well as robust i-vector extraction using 2-stage decoding.

CNNs have been previously shown to improve ASR robust-

ness [26]. Therefore, combining CNN and TDNN-F layers is a

promising approach to improve the baseline system of [10]. To test

this hypothesis, a CNN-TDNNF AM architecture4 consisting of 6

CNN layers followed by 9 TDNN-F layers was compared against

an AM having 15 TDNN-F layers. All TDNN-F layers have the

topology described above.

ASR results are given in Table 2. The first two rows show that

replacing the TDNN-F with the CNN-TDNNF AM yielded more

than 2% absolute WER reduction. We also trained another CNN-

3
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime5/s5b

4
https://github.com/kaldi-asr/kaldi/tree/master/egs/swbd/s5c
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https://github.com/kaldi-asr/kaldi/tree/master/egs/swbd/s5c


Table 3: WER results on the DEV (EVAL) set and various com-

binations of speech enhancement for ASR training and test (CNN-

TDNNF AM). Amount of training data (hrs) is also specified.

Enh. in trng

(hrs)

Enhancement in test

None BFIt GSS1 GSS6

None (2046) 69.3 (59.9) 69.1 (59.7) 62.2 (58.2) 51.8 (51.6)

BFIt (680) 68.9 (59.1) 68.5 (58.5) 59.9 (57.3) 48.8 (49.9)

GSS1 (791) 74.3 (67.5) 73.7 (66.4) 53.0 (49.6) 48.0 (47.5)

GSS6 (308) 78.5 (73.1) 76.9 (69.2) 58.0 (56.1) 45.4 (45.7)

TDNNF model using only a small subset (worn + 100k utterances

from arrays) of training data (about 316 hrs in total) which has pro-

duced slightly better WERs compared with the baseline TDNN-F

trained on a much larger dataset (roughly 1416 hrs in total). For

consistency, 2-stage decoding was used for all results in Table 2.

We conclude that the CNN-TDNNF model outperforms the TDNNF

model for the CHiME-5 scenario and, therefore, for the remainder

of the paper we only report results using the CNN-TDNNF AM.

4.3. Enhancement effectiveness for ASR training and test

An extensive set of experiments was performed to measure the WER

impact of enhancement on the CHiME-5 training and test data. We

test enhancement methods of varying strengths, as described in Sec-

tion 4.1, and the results are depicted in Table 3. In all cases, the

(unprocessed) worn dataset was also included for AM training since

it was found to improve performance (supporting therefore the argu-

ment that data variability helps ASR robustness).

In Table 3, in each row the recognition accuracy improves mono-

tonically from left to right, i.e., as the enhancement strategy on the

test data becomes stronger. Reading the table in each column from

top to bottom, one observes that accuracy improves with increasing

power of the enhancement on the training data, however, only as long

as the enhancement on the training data is not stronger than on the

test data. Compared with unprocessed training and test data (None-

None), GSS6-GSS6 yields roughly 35% (24%) relative WER re-

duction on the DEV (EVAL) set, and 12% (11%) relative WER

reduction when compared with the None-GSS6 scenario. Compar-

ing the amount of training data used to train the acoustic models,

we observe that it decreases drastically from no enhancement to the

GSS6 enhancement.

4.4. State-of-the-art single-system for CHiME-5

To facilitate comparison with the recently published top-line in [13]

(H/UPB), we have conducted a more focused set of experiments

whose results are depicted in Table 4. As explained in Section 5.1,

we opted for [13] instead of [14] as baseline because the former

system is stronger. The experiments include refining the GSS en-

hancement using time annotations from ASR output (GSS w/ ASR),

performing discriminative training on top of the AMs trained with

LF-MMI and performing RNN LM rescoring. All the above helped

further improve ASR performance. We report performance of our

system on both single and multiple array tracks. To have a fair

comparison, the results are compared with the single-system per-

formance reported in [13].

For the single array track, the proposed system without RNN

LM rescoring achieves 16% (11%) relative WER reduction on the

DEV (EVAL) set when compared with System8 in [13] (row one in

Table 4: Comparison of reference [13] and proposed (single) sys-

tems in terms of WER for the DEV (EVAL) set. Test data enhance-

ment was refined using ASR alignments or oracle alignments.

Track System
Enh. in

trng
Enh. in

test
DT RNN-LM WER (%)

Single

H/UPB [13] None GSS1 w/ ASR X 58.3 (53.1)

Proposed GSS1 GSS1 w/ ASR 50.2 (48.4)

Proposed GSS1 GSS1 w/ ASR X 49.1 (47.3)

Proposed GSS1 GSS1 w/ ASR X X 48.6 (46.7)

Proposed GSS1 GSS1 w/ oracle X X 47.3 (46.1)

Multiple

H/UPB [13] None GSS6 w/ ASR X 45.1 (47.3)

Proposed GSS6 GSS6 w/ ASR 43.2 (44.2)

Proposed GSS6 GSS6 w/ ASR X 42.3 (43.9)

Proposed GSS6 GSS6 w/ ASR X X 41.6 (43.2)

Proposed GSS6 GSS6 w/ oracle X X 39.9 (42.0)

Table 5: Comparison of the reference [13] and proposed systems in

terms of amount of training data.

Track System Amount trng data (hrs) WER (%)

Single
H/UPB [13] 4500 58.3 (53.1)

Proposed 791 48.6 (46.7)

Multiple
H/UPB [13] 4500 45.1 (47.3)

Proposed 308 41.6 (43.2)

Table 4). RNN LM rescoring further helps improve the proposed

system performance.

For the multi array track, the proposed system without RNN

LM rescoring achieved 6% (7%) relative WER reduction on the

DEV (EVAL) set when compared with System16 in [13] (row six in

Table 4).

We also performed a test using GSS with the oracle alignments

(GSS w/ oracle) to assess the potential of time annotation refinement

(gray shade lines in Table 4). It can be seen that there is some, how-

ever not much room for improvement.

Finally, cleaning up the training set not only boosted the recog-

nition performance, but managed to do so using a fraction of the

training data in [13], as shown in Table 5. This translates to sig-

nificantly faster and cheaper training of acoustic models, which is a

major advantage in practice.

5. DISCUSSION

5.1. Temporal context configuration for GSS

Our experiments have shown that the temporal context of some GSS

components has a significant effect on the WER. Two cases are in-

vestigated: (i) partially dropping the temporal context for the EM

stage, and (ii) dropping the temporal context for beamforming. The

evaluation was conducted with an acoustic model trained on unpro-

cessed speech and the enhancement was applied during test only.

Results are depicted in Table 6.

The first row corresponds to the GSS configuration in [14] while

the second one corresponds to the GSS configuration in [13]. First

two rows show that dropping the temporal context for estimating

statistics for beamforming improves ASR accuracy. For the last row,



Table 6: WER results using CNN-TDNNF AM trained on unpro-

cessed (None) when some GSS enhancement (test) components ig-

nore the temporal context.

EM iterations BF WER (%)

20 w/ context [14] w/ context 54.7 (52.3)

20 w/ context [13] w/o context 51.8 (51.6)

20 w/ + 10 w/o context w/o context 52.2 (52.5)

the EM algorithm was run 20 iterations with temporal context, fol-

lowed by another 10 without context. Since the performance de-

creased, we concluded that the best configuration for the GSS en-

hancement in CHiME-5 scenario is using full temporal context for

the EM stage and dropping it for the beamforming stage. Conse-

quently, we have chosen system [13] as baseline in this study since

is using the stronger GSS configuration.

5.2. Analysis of speaker overlap effect on WER accuracy

The results presented so far were overall accuracies on the test set

of CHiME-5. However, since speaker overlap is a major issue for

these data, it is of interest to investigate the methods’ performance

as a function of the amount of overlapped speech. Employing the

original CHiME-5 annotations, the word distribution of overlapped

speech was computed for DEV and EVAL sets (silence portions were

not filtered out). The five-bin normalized histogram of the data is

plotted in Fig. 3. Interestingly, the percentage of segments with

low overlapped speech is significantly higher for the EVAL than for

the DEV set, and, conversely, the number of words with high over-

lapped speech is considerably lower for the EVAL than for the DEV

set. This distribution may explain the difference in performance ob-

served between the DEV and EVAL sets.

Based on the distributions in Fig. 3, the test data was split. Two

cases were considered: (a) same enhancement for training and test

data (matched case, Table 7), and (b) unprocessed training data and

enhanced test data (mismatched case, Table 8). As expected, the

WER increases monotonically as the amount of overlap increases

in both scenarios, and the recognition accuracy improves as the en-

hancement method becomes stronger.

Graphical representations of WER gains (relative to the unpro-

cessed case) in Tables 7 and 8 are given in Figs. 4 and 5. The plots

show that as the amount of speaker overlap increases, the accuracy
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Fig. 3: Word distribution of overlapped speech for the DEV and

EVAL sets of CHiME-5.

Table 7: Breakdown of absolute WER results on the DEV (EVAL)

set for the same training and test enhancement (matched case, CNN-

TDNNF AM).

Enh.
(trng+test)

Amount of overlap (%)

0− 20 20− 40 40− 60 60 − 80 80 − 100

None 48.3 (47.2) 49.0 (49.5) 56.9 (57.4) 64.5 (67.4) 89.5 (84.1)

BFIt 46.6 (45.6) 47.8 (48.4) 54.9 (55.0) 63.6 (66.7) 89.5 (84.2)

GSS1 42.2 (43.3) 41.6 (43.4) 44.8 (47.8) 50.6 (55.3) 69.0 (67.6)

GSS6 36.5 (40.1) 36.4 (40.8) 41.0 (44.6) 43.8 (49.9) 58.8 (62.0)

Table 8: Breakdown of absolute WER results on the DEV (EVAL)

set for unprocessed training data and various test enhancements

(mismatched case, CNN-TDNNF AM).

Enh. (test)
Amount of overlap (%)

0− 20 20− 40 40 − 60 60− 80 80 − 100

None 48.3 (47.2) 49.0 (49.5) 56.9 (57.4) 64.5 (67.4) 89.5 (84.1)

BFIt 47.5 (47.0) 48.4 (49.7) 56.5 (56.6) 64.3 (66.9) 89.3 (83.7)

GSS1 48.8 (51.1) 49.2 (51.4) 53.4 (55.3) 58.5 (63.5) 78.3 (76.2)

GSS1
w/o Mask

44.0 (44.9) 45.8 (46.8) 51.5 (52.9) 57.7 (62.4) 82.4 (78.2)

GSS6 40.3 (45.5) 41.2 (45.1) 45.1 (50.0) 48.2 (54.9) 66.7 (68.9)

GSS6
w/ ASR

38.8 (44.5) 39.8 (43.8) 43.3 (49.2) 46.4 (53.4) 63.5 (67.1)

gain (relative to the unprocessed case) of the weaker signal enhance-

ment (BFIt) drops. This is an expected result since BFIt is not a

source separation algorithm. Conversely, as the amount of speaker

overlap increases, the accuracy gain (relative to None) of the stronger

GSS enhancement improves quite significantly. A rather small de-

crease in accuracy is observed in the mismatched case (Fig. 5) for

GSS1 in the lower overlap regions. As already mentioned in Sec-

tion 3, this is due to the masking stage. It has previously been ob-

served that using masking for speech enhancement without a cross

talker decreases ASR recognition performance. We have also in-

cluded in Fig. 5 the GSS1 version without masking (GSS w/o Mask),

which indeed yields significant accuracy gains on segments with lit-

tle overlap. However, since the overall accuracy of GSS1 with mask-

ing is higher than the overall gain of GSS1 without masking, GSS

w/o mask was not included in the previous experiments.

6. CONCLUSIONS

In this paper we performed an extensive experimental evaluation on

the acoustically very challenging CHiME-5 dinner party data show-

ing that: (i) cleaning up training data can lead to substantial word

error rate reduction, and (ii) enhancement in training is advisable

as long as enhancement in test is at least as strong as in training.

This approach stands in contrast and delivers larger accuracy gains

at a fraction of training data than the common data simulation strat-

egy found in the literature. Using a CNN-TDNNF acoustic model

topology along with GSS enhancement refined with time annota-

tions from ASR, discriminative training and RNN LM rescoring, we

achieved a new single-system state-of-the-art result on CHiME-5,

which is 41.6% (43.2%) on the development (evaluation) set, which

is a 8% relative improvement of the word error rate over a compara-

ble system reported so far.
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Fig. 4: Relative WER gain for the matched case vs unprocessed, Table 7 row one (CNN-TDNNF AM).
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Fig. 5: Relative WER gain for the mismatched case vs unprocessed, Table 8 row one (CNN-TDNNF AM trained on unprocessed).
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