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ABSTRACT

This paper proposes a novel automatic speech recognition (ASR)
framework called Integrated Source-Channel and Attention (ISCA)
that combines the advantages of traditional systems based on the
noisy source-channel model (SC) and end-to-end style systems us-
ing attention-based sequence-to-sequence models. The traditional
SC system framework includes hidden Markov models and connec-
tionist temporal classification (CTC) based acoustic models, lan-
guage models (LMs), and a decoding procedure based on a lex-
icon, whereas the end-to-end style attention-based system jointly
models the whole process with a single model. By rescoring the
hypotheses produced by traditional systems using end-to-end style
systems based on an extended noisy source-channel model, ISCA
allows structured knowledge to be easily incorporated via the SC-
based model while exploiting the complementarity of the attention-
based model. Experiments on the AMI meeting corpus show that
ISCA is able to give a relative word error rate reduction up to 21%
over an individual system, and by 13% over an alternative method
which also involves combining CTC and attention-based models.

Index Terms— DNN-HMM, CTC, sequence-to-sequence, end-
to-end, model combination, ASR

1. INTRODUCTION

Recently, automatic speech recognition (ASR) systems have ob-
tained significant performance improvements due to the rapid devel-
opment of deep learning [[1]. Instead of traditional Gaussian mixture
model (GMM)-based hidden Markov model (HMM) acoustic mod-
els and n-gram language models (LMs), state-of-the-art systems
nowadays often use deep neural networks (DNNs) for acoustic and
language modelling in the statistical ASR framework based on the
modular noisy source-channel model (SC) [2]. Along with the
statistical models, an SC-based system also incorporates acoustic,
phonetic, and lexical knowledge efc. via feature extraction, subword
unit construction and decoding, which have demonstrated their sig-
nificance in improving ASR accuracy and robustness over the years.
Despite its good performance, building SC-based ASR systems is
considered to be complex and usually requires additional resources
such as a phonetic lexicon created by experts.

The attention-based encoder-decoder or sequence-to-sequence
networks (referred to as attention-based models below) provide a
promising alternative to the SC-based models. Shortly after their
success in machine translation [3]], attention-based models have been
applied to ASR [4H7]]. This approach is considered to be end-to-end
because the attention-based model serves as an integrated acoustic
and language model that does not require a lexicon when modelling
with grapheme-based units. As the attention-based end-to-end ap-
proach greatly simplifies construction of an ASR pipeline, various
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ASR-specific techniques have been subsequently proposed to im-
prove performance. Different encoder architectures have been ex-
plored to better handle the input acoustic features [7H11]. Improve-
ments to the loss functions [[12H14]], data augmentation [[15[16]], and
other optimisation related methods [17H20] have been found to be
effective. Meanwhile, some speaker-related knowledge has been in-
tegrated into the end-to-end system [21} [22]. Alternative subword
units have been studied to incorporate richer information [23425]].
Recurrent neural network language models (RNNLMs) trained on
additional text data have been integrated into the attention-based sys-
tems during training or testing [26-28]]. Together, despite having a
large numbers of parameters and requiring a considerable amount
of training data, recent attention-based systems have achieved state-
of-the-art results on some ASR tasks [[16, 29} [30], which makes the
end-to-end approach increasingly competitive and encouraging.

Besides the attention-based systems, end-to-end ASR ap-
proaches also include connectionist temporal classification (CTC)-
based methods [31,132]. CTC is a sequence-level objective function
which does not require frame-level alignments produced by an ex-
isting ASR system for DNN acoustic model training. Hence with
context-independent graphemic output units, these systems are con-
sidered to be end-to-end as lexicons and context-dependent subword
unit clustering are not needed. Since CTC is almost mathemati-
cally equivalent to HMM-based models [33| [34], this paper treats
CTC-based models as one special class of SC-based systems.

In this paper, a framework, Integrated Source-Channel and At-
tention (ISCA), is proposed to combine the advantages from both
the SC-based models and the attention-based models for ASR. By
extending the noisy source-channel model that covers both DNN-
HMMs and CTC models, the attention-based model can be used as
an additional complementary module to rescore each hypothesised
word sequence from the (speech) frame-synchronous decoding pro-
cedure of the SC-based system. This enables the joint use of at-
tention models with phonetic and linguistic knowledge in a simple
way. Inspired by [35}136], the hidden layers of the acoustic model in
the SC-based system and the encoder of the attention-based system
can be shared via multi-task learning. Alternatively, the two systems
can be constructed independently, which makes ISCA a general ap-
proach that combines a traditional ASR system with an attention-
based end-to-end system. First, commonly used setups of both the
attention-based model and the CTC model baselines are improved by
drawing techniques from DNN-HMM acoustic models. Then, exper-
imental results using the augmented multi-party interaction (AMI)
dataset show that ISCA improves the word error rates (WERs) over
both component systems by significant margins.

This paper is organised as follows. Sections[2]and 3| describe the
SC and attention-based frameworks. Section [ presents the details
of the ISCA framework. Experimental setup and results are given in
Sec.[Bland Sec.[@ with conclusions in Sec.[7}
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2. NOISY SOURCE-CHANNEL MODEL

Speech recognition can be viewed as a noisy source-channel mod-
elling problem [2]] where speech is produced and encoded via a
noisy channel and the recogniser is to find the most probable source
text W* given the output of the noisy channel O. According to
Bayes’ rule, decoding follows the maximum a posteriori (MAP) rule
to search over each possible hypothesis WV by

PWI[O) o p(OW)P(W), (D

where p(O|WW), estimated by an acoustic model, is the likelihood
of generating the observation through the channel; P(W), approxi-
mated by an LM, describes the underlying probabilistic distribution
of the source. In this way, an SC-based ASR system consists of sev-
eral independent modules.

2.1. HMM Acoustic Models

In acoustic modelling, HMMs, together with GMMs or DNNs, are
used to model the generative process of the observation sequences
with respect to the subword units. The parameters of the HMMs are
estimated using the maximum likelihood (ML) criterion:
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where [s1, S2,...,s7] is a possible HMM state sequence for the
given transcription W™ of an utterance, whose observation O is
[01,02,...,07]. The observation probability p(o¢|s;) is estimated
by a GMM or a DNN, and P(s¢+1]s¢) is the transition probability.

The GMM-HMM parameters are often trained at the sequence-
level by using the forward-backward procedure to find the align-
ments between time steps and all possible state sequences S corre-
sponding to W™ [[1}[37]. For DNN-HMMs, the DNN is often trained
as a classifier to estimate the state posterior probability P(s¢|o¢),
whose training alignments are generated by a pre-trained system.
Such frame-level DNN training allows better data shuffling which
was found to be important for efficient training with stochastic gra-
dient descent (SGD) [38]. The log-likelihood log p(o|s¢) is calcu-
lated according to Bayes’ rule by

Inp(ot|st) = In P(s¢|ot) — In P(s¢) + Inp(oy), 3)

where P(s:) is the prior probability estimated by the frequency of
s¢ from the training alignments and p(o;) is the observation prior.
Alternatively, the forward-backward procedure can also be applied
to train DNN-HMMs at the sequence-level [39}40].

Since phones often serve as natural units to define word pro-
nunciations, phonetic-based units are commonly used in conjunc-
tion with a lexicon. Although the first-order Markovian property
of HMMs assumes the transition to each HMM state only depends
on its immediate preceding one, the effect of the assumption can
be reduced by introducing more contextual information, e.g. DNN
models taking the current and adjacent frames as input [411 142], and
context-dependent phones clustered by phonetic decision trees [43].
Minimum error rate discriminative sequence training is also useful
for acoustic models to learn information beyond the scope of individ-
ual frames [44} 45]. LMs provide word-level contextual information
estimated using a text corpus where supplementary text data is often
available in addition to speech transcriptions. Many state-of-the-art
ASR systems are SC-based that combines information from all the
aforementioned sources [46]].

2.2. CTC Acoustic Model

CTC is a method that trains a DNN acoustic model with a blank out-
put symbol at the sequence-level without any explicit HMM struc-
ture [31]. The training objective function is
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where S are all possible symbol sequences that can map to W™ by
removing repeated symbols and the blanks. During training, align-
ments and losses are computed by the forward-backward procedure.

Fig. 1: A CTC-equivalent HMM topology. The white and grey cy-
cles are emission and non-emission states. & is the blank symbol.

By comparing Eqn. @) to Eqns. () and (3), CTC is equivalent
to a special instantiation of the 2-state HMM structure when P(s;),
p(o:), and P(s¢y1|s¢) are ignored [34]. As shown in Fig.[I] the first
emission state of the HMM is the skippable blank state (&) with a
self-loop and the second one corresponds to the subword unit. The
blank state is shared across all HMMs.

In practice, p(o¢) is a constant and P(s¢+1|s:) makes little dif-
ference when being forced to set to 1.0 [37]. At test time, the pos-
terior probability of the CTC blank symbol can be penalised by an
extra empirical value [47] 48], which can be seen as a rough approx-
imation of the prior P(s:). As a result, it is reasonable to view CTC
as an acoustic modelling method in the SC framework, which com-
bines the HMM topology in Fig. |1} the ML training criterion and the
forward-backward procedure. In addition, the RNN-transducer [32]
can be viewed as an SC-based system, since it extends CTC by in-
troducing an extra prediction network as a language model trained
in parallel with the CTC acoustic model.

3. ATTENTION-BASED MODEL

3.1. Attention-based Sequence-to-sequence Model

Originating from machine translation, the attention-based sequence-
to-sequence model maps from the input sequence of a source lan-
guage to the output sequence of a target language [3]. For ASR,
the attention model maps a 7-length input observation sequence O
to an I-length output subword unit sequence C. Instead of decom-
posing into an acoustic model and a language model as in Sec. [2]
attention-based models compute the posterior distribution P(C|O)
directly following the chain rule of conditional probability:

P(C|O) = P(c1|O)P(c2le1, O) ... Pcrler, ..., cr—1,0), (5)
where C is converted from W™ for training. Compared to Eqn. ,
the attention-based systems hold some theoretical advantages over
the SC-based systems: they do not necessarily rely on the first-order
Markovian assumption during decoding, and the acoustic and lan-
guage information is jointly learned using a single model without
making any independence assumptions.

The attention-based model consists of a neural encoder, a neu-
ral decoder, and an attention mechanism. The neural encoder maps
the variable-length input sequence O to an intermediate embedding



E. At each decoding step i, the encoded information £ is first trans-
formed into a context vector h; based on the annotation vector a;
produced by the attention mechanism. Then, the neural decoder
transforms the hidden information h; to the posterior distribution
on the current subword unit ¢; based on the previous output and the
previous decoder state d;_1. The procedure stops when the end-of-
sentence symbol is decoded, which allows output sequences to have
variable lengths. More specifically,

& = NeuralEncoder(O) (6)
a; = AttentionMechanism(a;—1,d;—1, ) @)
hi=¢a; ®)
¢i, d; = NeuralDecoder(c;—1,di—1, h;). 9)

Despite the elegance of this framework, there are some differ-
ences when applying it to ASR. For machine translation, the atten-
tion mechanism is particularly effective because the input and output
sequences generally have similar lengths and irregular alignments.
For ASR, the input observation sequence is often much longer than
the output subword unit sequence, and their alignment is relatively
local and strictly monotonic [49]]. Thus the strength of the attention
mechanism may not be brought fully into play, while making it chal-
lenging to process streaming data [SO]. Furthermore, the attention-
based systems often require more training data and model parame-
ters than the SC-based systems [[16}|30] since it is not straightforward
to incorporate rule-based knowledge such as a lexicon [S1]. More-
over, since the previous decoding output needs to be fed into the
neural decoder to obtain the probability distribution over the next
subword unit, it is very expensive to search over a large hypothe-
sis space and store rich decoding results in the form of a lattice. As
described in Sec. |1} various changes have been made to the attention-
based end-to-end framework to address some of the issues above.

3.2. Multi-task Training of Hybrid CTC and Attention Models

Within the scope of end-to-end speech recognition, a hybrid CTC
and attention architecture has been proposed to take advantage of
both CTC and attention models during both training and decod-
ing [36]. This architecture adopts the multi-task training method
with one output branch using the CTC loss and the other branch us-
ing the loss of the attention-based decoder. The rest of the acoustic
model and the neural encoder share the same parameters. During
decoding, a beam search is performed on the attention branch, where
the prefix score of the current partial hypothesis is obtained from
the CTC branch. The CTC prefix score and the attention score are
then interpolated for ranking and pruning during the search [36].
A score from a multi-leve]l RNNLM or a look-ahead word-based
RNNLM [26] can also be added to the joint score during the beam
search. The benefits of this architecture are that each branch pro-
vides a certain degree of regularisation for the other branch and the
score interpolation during decoding refines the search space. How-
ever, this framework requires both branches to use identical subword
units as well as the same encoder parameters, which reduces their
complementarity to some extent. Optimising the interpolation co-
efficients for both training and decoding is very important for the
performance, which requires the model to be re-trained and the dev
set to be decoded multiple times to achieve near-optimal results.

4. INTEGRATED SOURCE-CHANNEL AND ATTENTION

The proposed ISCA framework that combines both an SC-based
model and an attention-based model is described in this section.
Compared to the hybrid CTC and attention architecture reviewed in
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Fig. 2: Integrated source-channel and attention (ISCA) framework.
Modules in rounded boxes are trainable.

Sec.[3.2] ISCA performs frame-synchronous decoding using the SC-
based model first and then rescores hypotheses with the attention-
based model. This integration of an SC-based model means ISCA
both easily incorporates extra phonetic and linguistic knowledge,
and is capable of handling streaming data in the first decoding pass.

4.1. Framework Overview

In the system described in Sec.[3.2] the decoding process is based
on the attention-based model where the CTC branch plays an aux-
iliary role. Owing to the advantages of SC-based models, espe-
cially the relative ease of integrating structured knowledge into the
pipeline, the ISCA framework focuses on the SC-based system and
then establishes the dependence between the SC-based model and
the attention-based model. Given an SC-based model that maximises
the posterior probabilities of a word sequence VW with an acoustic
model p(O|W) and a language model P(W), ISCA is an extended
noisy source-channel model that includes an extra attention-based
model trained to maximise the probability of the corresponding cor-
rect subword unit sequence C. The posterior probabilities given by
the extended SC can be obtained as follows:

PW|O) => " P(W,C|O)
C

= P(CIW,0)P(W|0)
C

x p(OW)P(W) > P(CIW, 0). (10)
C

Since an attention-based model directly computes P(C|O)
from Eqn. (3), it can be further conditioned on W to compute
P(C|W, O) by rescoring W with the attention model. If C is a
subword unit sequence obtained by converting VV using a lexicon,
there is P(C|W, O) = P(C|O); otherwise P(C|[W,0) = 0. If
the subword units are graphemic, then there is often only one C for
each W. If the subword units are phonetic, there are often multiple
Cs due to multiple pronunciations, and ). P(C|O) is the sum of
posteriors of all possible phonetic sequences for a given VW. The
attention-based model can also be viewed as a special language
model conditioned on acoustics.

In contrast to ISCA, standard combination methods, such as con-
fusion network combination [52]] and ROVER [53]], are not suitable
for attention-based models, since they normally require decoding lat-
tices or confidence scores from both systems, in order to work well.



4.2. Subword Unit Selection

Although graphemic lexicons are very easy to construct, phonetic
lexicons often help reduce the acoustic modelling complexity,
especially for languages like English with irregular orthography.
Context-dependent modelling can be applied to both graphemes and
phones, and due to a large number of possible context-dependent
units, decision-tree-based clustering is often needed to reduce the
number of classes [43]].

Compared to the multi-task trained CTC and attention-based
framework where the subword units from both branches have to
be identical, the ISCA framework allows the SC-based model and
the attention-based system to have different modelling units, either
graphemic or phonetic, context-independent or -dependent, and the
scores from the two models are integrated at the word-level regard-
less of their respective lexicons. It is predictable that for SC-based
models, context-dependent modelling is more significant since it re-
duces the effect of the first-order Markovian assumption by condi-
tioning on the preceding and/or succeeding subword units. For the
attention-based models, the effectiveness of using context-dependent
units is questionable as it has already conditioned on all previous
subword units from Eqn. (3).

4.3. Training

As shown in Fig. 2] the SC-based model and the attention-based
model can be trained separately or together in a multi-task fashion by
sharing the neural encoder parameters with the hidden layers of the
acoustic model. For multi-task trained models, the total number of
parameters in the entire system may be much smaller due to param-
eter sharing. Although multi-task training can be an effective type
of regularisation, setting the interpolation weights between the two
losses and configuring the learning rate to achieve good performance
for both models may not be straightforward. For separately trained
models, each one can have an individual configuration for model
architecture and training hyperparameters. Some advanced training
techniques more suitable for one type of model can be applied to
its training procedure independently. For example, discriminative
sequence training for the SC model [44, 45] and sequence-level ob-
jectives for the attention model [12} [14].

4.4. Decoding

The MAP decoding rule still applies to ISCA to find the 1-best de-
coding result W* based on Eqn. (I0),

W* = arg max {p((’)D/\/)P(W) > pew, 0)} (11)
w c
A2 arg max { Inp(O|W) + aln P(W) + ,BanP(CD/V, O)},
w c

where « is the language model scaling factor and f is the attention
model scaling factor. The use of these scaling factors are necessary
for these log-scores to fall within reasonable dynamic ranges. To
simplify the implementation of ISCA, only a limited number of hy-
potheses (n-best) obtained from the SC-based model are combined
with scores from the attention-based model in this paper.

5. EXPERIMENTAL SETUP

5.1. Data and Features

In this paper, the individual headset microphone (IHM) from the
AMI meeting corpus [54] is used. The dataset contains around 80
hours of speech for training, and 8 hours for both development (dev)

and evaluation (eval). The inputs used are 80-dim filter-bank features
at a 10ms frame rate concatenated with 3-dim pitch features.

5.2. Model Configurations

The pipeline is based on the ESPnet setup [35,155]. The default con-
figurations for the acoustic model for the SC model and the encoder
of the attention model are both 8-layer bi-directional long short-term
memory models (BLSTMs) with a projection layer. The BLSTM
has 320 units in each direction and the projection size is also 320.
For the SC model, an additional fully connected layer of size 320 is
added before softmax output. The attention model uses a location-
aware attention mechanism connecting to the decoder with a one-
layer 300-unit LSTM. The n-gram LMs are trained using both AMI
and Fisher data. The RNNLM is trained purely based on the text
transcriptions of AMI data. The RNNLM has one LSTM layer with
1000 hidden units, whose perplexities on the dev and eval data are
73 and 64 respectively.

5.3. Training and Decoding Setups

To train the HMM-based model, the CE objective function is used
with alignments produced by a pre-trained DNN-HMM system. Un-
igram label-smoothing [56] is applied before computing the CE loss
of the attention model. The numbers of graphemes, monophones and
tied triphones are 31, 48 and 4016. The ADADELTA [57] optimiser
is used and the batch size is 30 utterances for all models.

For decoding of SC-based models, PyHTK [58]] is used to set
up the corresponding HMM structures and the decoding pipeline.
HTK [39] tools are used for lattice generation, lattice rescoring with
a trigram LM, and n-best list generation. For decoding of attention
models, the width of the beam search is 30.

6. EXPERIMENTS

In this section, several improvements to the CTC and attention-based
model baselines are made to narrow the gap between the traditional
DNN-HMM models and the end-to-end models. Next, within the
scope of SC-based models, different subword units and objective
functions are compared. Under the ISCA framework, both multi-
task training and separate training performance are reported. After
the exploratory experiments on the AMI dev set, key findings are
summarised and the models are tested on the AMI eval set.

6.1. Improvements on Multi-task Trained Baseline Systems

In the baseline setup [35], both the CTC model and the attention-
based model use the same set of graphemes as their output units
and the effective frame rate is 1/4. Frame rate reduction is achieved
by skipping some time steps in the LSTM layer. The first LSTM
layer has a full frame rate and the next two layers skip one step at
every other frame. Statistics on the training data shows that the in-
put/output length ratio is more than four for 95.0% of all utterances
but is more than three for 99.4% of the data. For phones, 99.9% of
the utterances have an input/output length ratio higher than four. For
attention-based models where frame-synchronicity is not required, a
higher ratio of frame rate reduction may be appropriate. However,
for SC-based models, the frame rate should not be less than 1/3 of
the full frame rate.

In experiments shown in Table[I] the frame rate is reduced at the
input feature level, which is more similar to the setup from SC-based
systems [60}61]]. By sampling one in every three frames, the perfor-
mance of the model improves despite two-thirds of training data not
being used. Offsets on the starting point of the input sequence by one
or two frames allow the model to be trained on every frame, which



| Att. At + CTC
multi-task baseline | 37.6 345
+ 1/3 frame rate 34.9 322
+ training on every frame | 32.7 30.1
+ stacking input frames | 30.6 28.1

Table 1: AMI dev set WERs for graphemic multi-task (CTC & at-
tention) systems with RNNLM.

reduces the WER by another 2% absolute. By stacking two adjacent
frames with the current as the input, the WER is further reduced by
2% since the test-time unused frames are covered [62]]. Overall, a
6-7% absolute reduction of WER is observed over the baseline.

6.2. Improvements on CTC Models

By treating CTC models as a class of SC-based models, the decod-
ing procedure of the traditional HMM-based systems can be used,
where various sources of structured information are incorporated.
The baseline uses the prefix search decoding procedure and improve-
ments are made using the lexical-tree-based decoding procedure.

| WER
standalone CTC baseline ‘ 47.6

+ graphemic lexicon 43.9
+ trigram LM 38.5
+ prior 33.2

+ multi-task training 32.1

Table 2: AMI dev set WER of the standalone CTC model and and
several improvements by incorporating structured information dur-
ing decoding and multi-task training. RNNLM is not used.

As shown in Table 2] the addition of a graphemic lexicon that
prevents decoding words with incorrect spelling reduces the WER
by 2.7% absolute. However, some words in the lexicon can be de-
composed into shorter word-pieces, which happen to also be legal
words in the lexicon. The introduction of the trigram LM greatly
reduces the fragmentation of words and reduces the WER signifi-
cantly (5.4% absolute). One of the many assumptions made by CTC
is that all output units have equal prior probabilities. Computed by
accumulating the output posteriors from the DNN, the estimated pri-
ors are very imbalanced. For example, in the case of 1/3 frame rate,
the priors for the blank symbol, the letter ‘A’ and ‘Z’ are 0.43, 0.03,
0.0001 respectively. By using the graphemic unit priors similarly to
HMMs as in Eqn. (3), the WER improves by another 5.3% absolute.
Finally, by training the CTC model and the attention-based model in
a multi-task fashion (c.f. the same system as the last row in Table,
the CTC WER is further reduced to 32.1%, whereas the performance
of the attention-based model alone is not improved. Narrowing the
performance gap between the CTC model and the attention-based
model facilitates the use of ISCA framework.

6.3. ISCA for Multi-task Trained Models

Following the multi-task training scheme where the acoustic model
(SC-based model) and the encoder (attention-based model) are
shared, the following experiments vary the modelling units and ob-
jective functions of the SC-based model, while keeping those of the
attention-based model unchanged. In the following ISCA results,
20-best hypotheses from the SC-based models are used as an approx-
imation to Eqn. (TI). This simplified ISCA ranks the 20-best list by

optimally interpolating the acoustic scores, trigram LM scores, the
attention-based model scores, and optionally the RNNLM scores.
A derivative-free stochastic global search algorithm, named covari-
ance matrix adaptation evolution strategy (CMA-ES) [63]], is used
to optimise the interpolation weights.

subword units  loss ‘ SC Att.  ISCA (+RNNLM)
grapheme  CTC | 321 317 286 (284)
Lo CIC| 288 316 267 (263)
P CE | 288 318 265 (26.0)
. CTC | 283 314 262 (256)
triphond] g ‘ 264 316 253 (24.7)

Table 3: AMI dev set WERs of multi-task trained systems. CE sys-
tems use single-state HMMs. A trigram LM is used for SC-based
model decoding. RNNLM is not used except for results in brackets.

The model in the first row in Table [3| corresponds to the model
of the last rows in both Tables [1] and For this multi-task trained
grapheme/CTC and attention-based model, the performance of the
ISCA framework is similar to the joint decoding result in Table[T]

Given that the joint decoding method only applies to a CTC
model and an attention-based model with the same graphemic units,
one of the major advantages of the ISCA framework is that the SC
model can have any subword units and any loss functions. The next
two rows change the modelling units of SC-based systems to mono-
phones, and the WER of the SC-based system reduces by 10.3%
relative to the grapheme/CTC model. This is mainly due to the or-
thographic irregularity in English where phonetic-based units reduce
the difficulty of modelling significantly. The mapping between pro-
nunciation and text is achieved by the lexicon embedded in the de-
coding graph. For these two monophone SC models, improved CTC
and CE models have similar performance. However, this observation
does not hold for triphone systems. This is possibly because triphone
systems are more sensitive to the quality of the training alignments
since there are many more confusing triphone units than the mono-
phone units. On the scale of AMI data set, the CTC system requires
more training data to learn the triphone alignments properly by it-
self, whereas the CE system shows its advantage whose alignments
were produced by a pre-trained high-performance system.

Further experiments show that multi-task trained SC-based
models perform marginally better than their standalone counter-
parts. However, the expected benefits of multi-task training are not
observed for the attention-based models. The last column in Table
shows that the ISCA approach yields consistent reduction in WER
while the SC-based model improves, with or without an external
RNNLM. However, as the performance gap between the SC-based
model and the attention-based model widens, the relative improve-
ment w.r.t. the SC-based model shrinks. In the extreme case where
the triphone/CE model outperforms the attention-based model by
15.8% relative, ISCA with 20-best rescoring can still improve the
WER of the SC-based model by 4.8% relative.

1A decision tree is used to tie 93k triphone models (or states) to 4k.

2An HTK acoustic model can yield similar WERs with only a fifth of the
parameters due to better data shuffling, larger batch size etc. For results to be
comparable, all models in this paper are trained using ESPnet.

31t is a multi-task trained model with graphemic CTC and attention. Sys-
tems in Table [[lhave an RNNLM while Tables 2land Bl do not. Tables[I]and
E]shows comparable results for joint decoding (28.1) and ISCA (28.4).



Since the ISCA framework integrates two models at the word-
level, attempts have also been made to change the modelling units
of the attention-based model. Similar to the findings in [S1} [64]],
using monophone for the attention-based model is not as helpful
as graphemes for ISCA, which shows that the complementarity
of graphemic and phonetic models is essential. Since the neural
decoder directly conditions on the previous output as in Eqn. (J),
using context-dependent units for the attention-based model yields
essentially no improvement compared to their context-independent
counterparts as expected. For the attention-based models, mod-
elling context-dependent phones is even a harder task than context-
independent ones as the model also needs to learn the tying results
found by phonetic decision trees. Another issue of using phonetic
units for attention-based models is that, as a result of multiple
pronunciations, there may be an exponential number of possible
sequences C in Eqn. (TT) when the utterance gets longer.

6.4. ISCA for Models Trained Separately

Since the triphone/CE model outperforms the attention-based model
significantly under the multi-task training setup and only 20-best hy-
potheses are used for ISCA, two more questions remain. First, how
ISCA performs when the attention-based model improves. Second,
if the first approximation in Eqn. (TT) becomes more accurate, ie.
the n-best list becomes longer, how much more improvement ISCA
can make. In order to answer these questions, three separate models
are trained whose configurations are listed in Table[d]

model BLSTM config. ‘ WER (+RNNLM)
SC(triphone/CE)  8-layer, 320 units 27.0 (25.8)
Att.(small) 8-layer, 320 units 31.6 (30.2)
Att.(large) 4-layer, 1024 units 26.3 (25.8)

Table 4: Configs. and WERs of three separately trained models.

27 —0— +RNNLM
- 49— +Att.(small) —4—+RNNLM-+Att.(small)
-A- +Att.(large) —&— +RNNLM+Att.(large)

234

1 20 40 60 80 100
length of n-best list

Fig. 3: ISCA between a separately trained triphone/CE model and
attention-based models of different sizes.

As shown in Fig. 3] the reduction in WER by an external
RNNLM stagnates after an n-best list of length 20 is used. How-
ever, the WER of ISCA continues to drop, especially for the large
attention-based model where two systems have similar WERs.
Though the attention-based models the acoustic and language model
jointly, an RNNLM trained using the AMI transcription only is still
useful. The improvement by the RNNLM is expected to be greater

when additional text corpora in similar domains are used for train-
ing. For the 100-best list, small and large attention-based models
with the RNNLM reduces the WER by 7.1% and 10.5% relative to
the triphone/CE model rescored by the RNNLM.

6.5. Summary and Discussions

Key results are summarised in Table[5] The total number of model
parameters and performance on the AMI eval set are also reported
for the following models and setups. By changing the encoder frame

‘ #params. | dev  eval

multi-task baseline [33]] 15.6M | 345 374
improved baseline 16.1IM | 28.1 29.2
Ne (triphone/CEﬂ 16.0M | 25.8 26.8
separate Att.(small) 159M | 30.2 31.0
Att.(large) 84.0M | 25.8 259
multi-task 17.3M | 244 254
ISCA SC + Att.(small) 319M | 24.0 245
SC + Att.(large) 100.0M | 23.1 23.8

Table 5: The number of parameters and WERs of some key models
on both dev and eval sets, with RNNLM included. All ISCA systems
use a 100-best list produced by the triphone/CE SC-based model.

rate and arrangement of input acoustic features, the joint decoding
WER of the multi-task trained CTC and the attention-based model
drops from 37.4% to 29.2%. For standalone SC-based models, tri-
phone/CE models consistently outperform other types of SC-based
models. The standalone attention-based model requires five-fold
more model parameters to reach competitive performance against
the triphone/CE model. Although having more parameters com-
bined, separately trained models outperforms the multi-task trained
model with a similar model size per branch. And the flexibility of
individual optimisation leads to greater improvement when the per-
formance of the two models are closer. Comparing to the improved
baseline, ISCA reduces the WER by 13% relative for the multi-task
trained system. For separately trained models, ISCA achieves rela-
tive WER reductions of 8.6% and 21% w.r.t. the triphone/CE model
and the small attention-based model; 11.2% and 8.1% w.r.t. the tri-
phone/CE model and the large attention-based model. Further im-
provement is expected if longer n-best lists are used or using ISCA
for lattice rescoring [66], and if speaker adaptation is applied to both
SC-based systems [67H69]] and attention-based systems [21]].

7. CONCLUSIONS

In this paper, we have proposed a flexible framework called ISCA
that combines a source-channel model system with an attention-
based system viewed as a special language model conditioned on
acoustic information. Since the two highly complementary models
are integrated at the word-level, each one can be trained indepen-
dently with different objective functions and/or lexicons, or they can
be optimised in a multi-task training fashion. As the performance
gap between attention-based systems and the traditional hybrid
systems narrows, ISCA is expected to yield the state-of-the-art per-
formance when combining the best system from both sides, while
improving the robustness of the overall system.

4The best performing system reported on AMI dev and eval sets is SC-
based with WER about 19%, where speaker adaptive training, sequence train-
ing, speed perturbation and many other techniques have been used [65].
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