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ABSTRACT

Spoken language understanding (SLU) is a key component of
task-oriented dialogue systems. SLU parses natural language
user utterances into semantic frames. Previous work has
shown that incorporating context information significantly
improves SLU performance for multi-turn dialogues. How-
ever, collecting a large-scale human-labeled multi-turn dia-
logue corpus for the target domains is complex and costly. To
reduce dependency on the collection and annotation effort, we
propose a Context Encoding Language Transformer (CELT)
model facilitating exploiting various context information for
SLU. We explore different transfer learning approaches to
reduce dependency on data collection and annotation. In ad-
dition to unsupervised pre-training using large-scale general
purpose unlabeled corpora, such as Wikipedia, we explore
unsupervised and supervised adaptive training approaches for
transfer learning to benefit from other in-domain and out-of-
domain dialogue corpora. Experimental results demonstrate
that the proposed model with the proposed transfer learning
approaches achieves significant improvement on the SLU
performance over state-of-the-art models on two large-scale
single-turn dialogue benchmarks and one large-scale multi-
turn dialogue benchmark.

Index Terms— Transfer Learning, Spoken Language Un-
derstanding, Transformer

1. INTRODUCTION

Spoken language understanding (SLU) is a key component
of task-oriented dialogue systems, which assist user to com-
plete tasks such as booking flight tickets. SLU parses user
utterances into semantic frames, including intents, slots, and
user dialogue acts [1]. The semantic frame for a restaurant
reservation query is shown in Figure 1. Both intents and user
dialogue acts represent the user’s intentions, but intents and
user acts could be defined with different granularities. In this
work, we model both intent and user act classification when
both of them are available in the dialogue corpora.

Previous research in SLU has significantly focused on
single-turn SLU, that is, understanding the current user utter-
ance. However, completing a task usually necessitates mul-
tiple turns of back-and-forth conversations between the user

and the system. Multi-turn SLU imposes different challenges
from single-turn SLU, for example, entities introduced ear-
lier in conversation may be referred later by the user and the
system, information mentioned earlier may be skipped later,
causing ambiguities, as shown in Figure 1. Incorporating
contextual information has been shown useful for multi-turn
SLU [2, 3, 4, 5, 6, 7]. Information from previous intra-
session utterances was explored by applying SVM-HMMs to
sequence tagging for SLU [2]. Contextual information was
incorporated into the recurrent neural network (RNN) struc-
ture [3, 6]. Chen et al. [8] proposed a memory network based
approach for multi-turn SLU by encoding history utterances
and leveraging the memory embeddings through attention.
Bapna et al. [9] enhanced the memory network architecture
by adding a BiRNN session encoder temporally combining
the current utterance encoding and the memory vectors. Su
et al. [10] investigated different time-decay attention mech-
anisms. Gupta el al. [7] proposed an approach to encode
system dialogue acts for SLU, substituting the use of sys-
tem utterances. Also, various models have been proposed
for jointly modeling intent and slot predictions and achieved
significant performance improvement over models that model
these predictions independently [11, 12, 13, 14, 15, 16]. In
this work, we also follow the joint learning paradigm.

Fig. 1. An example user query in a multi-turn conversation
and its semantic frame with slot, intent and user dialogue act
annotations. For user query “5 at sakoon”, “5” could indicate
date, time, number of people, etc; yet with the context, it is
most likely resolved as the number of people.

However, lack of human-labeled data for SLU results in
poor generalization capability. A variety of transfer learning
(TL) techniques were proposed for addressing the data spar-
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sity challenge. One category of TL approaches includes train-
ing general purpose language representation models using a
large amount of unlabeled text, such as ELMo [17], GPT [18],
and BERT [19]. Pre-trained models can be fine-tuned on NLP
tasks and have achieved significant improvement over training
on the task-specific annotated data. Bapna et al. [20] lever-
aged slot name and description encodings within a multi-task
model for domain adaptation. Lee et al. [21] proposed zero-
shot adaptive transfer for slot tagging by embedding the slot
descriptions and fine-tuning a pre-trained model on the target
domain. Siddhant et al. [22] used a light-weight ELMo model
for pre-training and unsupervised and supervised transfer.

Our contribution in this paper is threefold: First, we
propose a Context Encoding Language Transformer (CELT)
model for context-aware SLU. Different from previous work
of exploring various encoding schemes and attention mecha-
nisms to encode context for multi-turn SLU, CELT facilitates
encoding various context information in the dialogue history
for SLU, such as user and system utterances, speaker informa-
tion, system acts, and utilizing these information in a unified
framework through a multi-head self-attention mechanism.
The context information that CELT can exploit is extensible.
For example, for a conversational system that facilitates the
use of a screen for multi-modal interactions, screen-displayed
information can be treated similarly as context in CELT and
help understand user query. Second, we develop a multi-step
TL approach on CELT, namely, unsupervised pre-training to
exploit large-scale general purpose unlabeled text, unsuper-
vised adaptive training and supervised adaptive training to
exploit other in-domain and out-of-domain dialogue corpora.
To our knowledge, the CELT model and the multi-step TL
approach on CELT are first proposed in this work for multi-
turn SLU. Third, we systematically evaluate the efficacy on
SLU from various context information and TL approaches.
The proposed CELT model together with the proposed TL
approaches significantly outperform the state-of-the-art per-
formance on two large-scale single-turn dialogue benchmarks
and one large-scale multi-turn dialogue benchmark.

2. PROPOSED APPROACH

Figure 2 provides a high-level illustration of CELT, which
consists of the input embedding layer, the encoder represen-
tation layer, and the final classifier layer.

2.1. Input Embedding Layer

Given the current query token sequence q = q1, . . . , qT
at turn t, and previous turns in the dialogue session, i.e.,
user turns ui, i = [1, . . . , t − 1], and system turns si, i =
[1, . . . , t − 1], the target is to predict the semantic frame,
including intent, user acts, and slots, for q. We concate-
nate all the previous turns chronologically in a dialogue
session and the current query as the input text x, i.e.,

Fig. 2. A high-level view of the CELT model. It consists of
the input embedding layer, the encoder representation layer,
and the final classifier layer. Details of the input embedding
layer are illustrated in Figure 3. “Trm” denotes Transformer
blocks.

x = (u1, s1, . . . ,ut−1, st−1, q). The first token of ev-
ery input text is always the special classification embedding
([CLS]) which is used to predict the intent and user acts. Each
utterance in the previous turns is inserted an end-of-utterance
([EOU]) token. The previous utterances and the current turn
are separated by a special token ([SEP]).

For a token in the input text, its input embedding is an
element-wise sum of token embeddings, position embed-
dings, segment embeddings, and embeddings of other context
information. In this work, we add speaker embeddings and
system act embeddings into the sum to obtain the final input
embedding. Figure 3 illustrates the input embedding layer.

The learned WordPiece embeddings [23] are used to al-
leviate the out-of-vocabulary (OOV) problem. The learned
position embeddings are used to capture the sequence order
information. The learned segment embeddings are used to
distinguish the previous turns and the current query, hence all
previous turns have the same segment embeddings. Speaker
embeddings are used to distinguish the user’s turns or the
system’s turns, considering that speaker role information has
been shown useful for SLU in complex dialogues [10]. Sys-
tem act embeddings encode the system act information. Each
system act contains an act type and optional slot and value pa-
rameters. The acts are categorized into two broad types: acts
with an associated slot (i.e. request(date), select(time=7pm))
and acts without associated slots (e.g. negate). We keep the
slot type, ignore the slot values, and convert the system acts
into embeddings just like word embeddings. We define an n-
hot binary vector a to represent system acts of the previous
system turn in the system act vocabulary A1, and convert the
n-hot binary vector to a fixed-sized vector by multiplying it
with a system act embedding matrix Ea, that is, ea = Eaa.

1We only use the system acts from the previous system turn instead of
using all system acts in the dialogue history, in order to keep the same setting
as Gupta et al. [7].



Fig. 3. The input embedding layer of CELT.

2.2. Encoder Representation Layer

The encoder representation layer is a multi-layer Trans-
former [24] consisting of multi-head self-attention sub-layer
and feed-forward sub-layer in each layer. The multi-head
self-attention mechanism builds upon scaled dot-product at-
tention, operating on query Q, key K, and value V [24]:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V , (1)

where dk is the dimension of the keys. Multi-head attention
mechanisms obtain h different representations of (Q,K, V ),
compute scaled dot-product attention for each representation,
and concatenate the results. This can be expressed in the same
notation as Equation (1):

headi = Attention(QWQ
i ,KW

K
i , V WV

i ) , (2)

MultiHead(Q,K,V) = Concati(headi)W
O , (3)

where WQ
i ,W

K
i ,WV

i ,W
O are projection matrices [24].

The concatenation is projected with the feed-forward neu-
ral network (FFN) sub-layer. We propose using a two-layered
network with GELU [25] activation. Given trainable weights
W1, W2, b1, b2, this sub-layer is defined as:

FFN(x) =W2GELU(W1x+ b1) + b2 , (4)

After feeding the input embedding sequence into the en-
coder representation layer, the output hidden states are H =
(h1, . . . ,hT ), where h1 corresponds to [CLS].

2.3. Final Classifier Layer

2.3.1. Intent and user act classification

We assume that each user query contains a single intent and
multiple user dialogue acts. Intent classification (IC) pre-
dicts the intent probability distribution pi, using Equation (5).
User act classification (UAC) is defined as a multi-label bi-
nary classification problem. The probability of the presence
of the k-th user act in the user query, pa(k), is calculated by
Equation (6).

pi = softmax(WiFi(h[CLS]) + bi) , (5)
pa = sigmoid(WaFa(h[CLS]) + ba) , (6)

where Fi and Fa are non-linear feed-forward layers with tanh
activation. During inference, the intent label is predicted by
argmax(pi), and user acts are predicted when the probability
pa(k) is greater than the threshold tu, where tu is a hyperpa-
rameter tuned on the validation set.

2.3.2. Slot filling

Slot filling (SF) identifies the values for different slots present
in the user utterance. We use the BIO (begin-inside-outside)
tagging scheme to assign a label to each token. We feed the
final hidden states h2, . . . ,hT into a softmax layer to clas-
sify over the SF labels. To make this procedure compatible
with the WordPiece tokenization, we feed each tokenized in-
put word into a WordPiece tokenizer and use the hidden state
corresponding to the first sub-token as the input to the soft-
max classifier.

psi = softmax(WsFs(hi) + bs) , (7)

where hi is the hidden state corresponding to the first sub-
token of word qi in the current query q, and Fs is a non-linear
feed-forward layer with GELU activation.

For joint learning, the objective is to minimize the sum
of the softmax cross-entropy losses of IC and SF and the sig-
moid cross-entropy loss of UAC. Previous work has shown
that an additional CRF layer on top of a BiLSTM can im-
prove the performance for sequence tagging [26, 27]. Hence
we investigate the efficacy of adding a CRF layer for model-
ing slot label dependencies, on top of the Encoder Represen-
tation Layer, similar to [28].

2.4. Transfer Learning

To improve SLU on the target domains and reduce depen-
dency on data collection and annotation, we explore TL based
on the CELT model, by leveraging large-scale unlabeled text
and other multi-turn dialogue corpora either unlabeled or
labeled with different intent/slot/dialog act labels, from the
same or different domains w.r.t. the target domains. We
develop a multi-step transfer learning approach. In the first
step, to exploit large-scale unlabeled text, we use unsuper-
vised pre-training based on the BERT model with two tasks
trained together, i.e., masked language model (MLM) and
next sentence prediction (NSP) [19]. The resulting model
is denoted θA. Next, to exploit other dialogue corpora, we
propose two TL methods, namely, unsupervised adaptive
training and supervised adaptive training. In the second step,
the unsupervised adaptive training approach trains θA on
other unlabeled dialogue corpora, using the MLM and NSP
losses. The resulting model is denoted θB . In the third step,
given other labeled dialogue corpora, the proposed super-
vised adaptive training approach fine-tunes θB on the labeled



data, based on the combined loss of IC and SF2. The resulting
weights for the input embedding layer and the encoder rep-
resentation layer of CELT are then used to initialize the new
CELT model. This model is denoted θC for the next step fine-
tuning for the target domain SLU. This way, our supervised
adaptive training can exploit labeled data with intent/slot la-
bels different from labels used for the target domains. In the
fourth step, θC is fine-tuned on the target domain labeled data
based on the combined loss of IC, SF, and UAC.

3. EXPERIMENTS AND ANALYSIS

3.1. Data

We conduct two sets of experiments. For the first set of exper-
iments, we evaluate the efficacy of BERT pre-train and joint
modeling of IC and SF in CELT on the single-turn ATIS [29]
and Snips [30] dialogue corpora. ATIS includes audio record-
ings of people making flight reservations. Snips is collected
from the Snips personal voice assistant. We use the same data
division as [15] for both datasets. The data statistics are sum-
marized in Table 1. For these two datasets, system act embed-
dings and user act classifier are not used, because system and
user dialogue acts are not annotated. Speaker embeddings are
not used since there is only the current query in single-turn
dialogues.

Dataset Snips ATIS GSD
Intents 7 21 3*
Slots 72 120 21
User Act - - 22
Training samples 13,084 4,478 8,148
Validation samples 700 500 2,116
Test samples 700 893 4,800

Table 1. Statistics for the Snips, ATIS and GSD data sets, in-
cluding the number of intent types, slot labels (after applying
the BIO scheme on the original slots, including O) and user
acts for the training set, the number of samples in the training,
validation, and test sets, respectively. *: note that for GSD,
intents are quite high-level while the user acts have the same
level of granularity as intents for Snips and ATIS.

For the second set of experiments, we evaluate the pro-
posed model and TL approaches on the multi-turn Google
Simulated Dialogues (GSD)3 [7]. We explore Microsoft Dia-
logue Challenge (MDC)4 [31] and MultiWOZ 2.0 (WOZ)5 [32]
datasets as other dialogue corpora for evaluating the proposed

2Note that in the combined loss, when samples have multiple intent labels,
sigmoid cross-entropy loss is used for IC instead of softmax cross-entropy
loss.

3https://github.com/google-research-datasets/simulated-dialogue
4https://github.com/xiul-msr/e2e dialog challenge
5https://www.repository.cam.ac.uk/handle/1810/280608. Note that WOZ

does not have user act annotations so cannot be directly used for SLU.

TL approaches. We use the same data division as [7]. The
GSD dataset covers restaurant (GSD-Resturant) and movie
(GSD-Moive) domains. The entire GSD dataset (GSD-
Overall) consists of 3 intents, 12 slot types, and 22 user
dialogue act types. The data statistics are summarized in
Table 1. Note that the 3 intents (“BUY MOVIE TICKETS”,
“FIND RESTAURANT”, “RESERVE RESTAURANT”) are
quite high-level; instead, the 22 user dialog act types pro-
vide the user intent information for the SLU task. The MDC
dataset covers restaurant, movie, and taxi domains, with
4103, 2890, and 3094 training dialogues, 11 intents, and 30,
29, and 19 slots for the three domains, respectively. The
WOZ dataset consists of human-human written conversations
spanning 7 domains and 10,438 dialogues in total.

3.2. Training Details

The Transformer block in CELT has 12 layers, 768 hidden
states, 3072 feed-forward size, and 12 self-attention heads.
The size of hidden states in the final classifier layer is 768. For
pre-training, we use the English uncased BERT-Base model6,
pre-trained on the BooksCorpus [33] and English Wikipedia.
For unsupervised/supervised adaptive training on MDC and
WOZ and fine-tuning on the GSD-overall dataset, all hyper-
parameters are tuned on the GSD-overall validation set. For
the first set of experiments on ATIS and Snips, the maximum
sequence length is 50, the batch size is 128, and the number
of training epochs is 30. For the second set of experiments on
multi-turn dialogues, the maximum sequence length is 128
and the batch size is 32. Adam [34] is used for optimization.
The initial learning rate is 5e-5 for the supervised adaptive
training and fine-tuning (in both sets of experiments), and 2e-
5 for the unsupervised adaptive training. The dropout proba-
bility is 0.1. The mask probability of the MLM task is 15% for
the unsupervised adaptive training. We compare using differ-
ent numbers of previous user and system turns in the dialogue
session and observe the best SLU performance from using all
previous turns. The threshold tu for user act classification is
selected from [0.3, 0.4, 0.5] and tuned on the validation set.

3.3. Results and Discussion

3.3.1. Single-Turn SLU

Table 2 shows the SLU performance as SF F1, IC accuracy,
and sentence-level semantic frame accuracy on the Snips and
ATIS datasets. The first group of models is considered as the
baselines and it consists of the state-of-the-art joint IC and SF
models: the sequence-based joint model using BiLSTM [12],
the attention-based model [14], the slot-gated model [15], and
the capsule neural network based model [16].

The second group of models in Table 2 includes the
proposed CELT models. CELT with BERT pre-train signifi-
cantly outperforms the baselines on both datasets. Compared

6https://github.com/google-research/bert



Models Snips ATIS
Intent Slot Frame Intent Slot Frame
(Acc) (F1) (Acc) (Acc) (F1) (Acc)

RNN-LSTM [12] 96.9 87.3 73.2 92.6 94.3 80.7
Atten.-BiRNN [14] 96.7 87.8 74.1 91.1 94.2 78.9
Slot-Gated [15] 97.0 88.8 75.5 94.1 95.2 82.6
Capsule Neural Networks [16] 97.3 91.8 80.9 95.0 95.2 83.4
(1) CELT w/o BERT pre-train 97.8±0.2 90.0±0.6 79.3±1.4 96.9±0.1 92.7±0.1 80.5±0.4
(2) CELT w/o BERT pre-train + CRF 97.9±0.3 90.8±0.2 80.9±0.5 97.0±0.3 93.1±0.2 81.6±0.4
(3) (1) w/ BERT pre-train 98.3±0.3 96.4±0.2 91.9±0.2 97.4±0.4 95.9±0.1 87.9±0.4
(4) (2) w/ BERT pre-train 98.3±0.1 96.5±0.2 91.8±0.5 97.6±0.1 95.7±0.1 87.6±0.2

Table 2. SLU performance on the single-turn Snips and ATIS testsets. Note that since Snips and ATIS are single-turn dialogues,
all models in this table do not use context information. All models are trained and tested on the same training and test partitions
of Snips and ATIS, respectively (no transfer learning is applied). The mean and standard deviation of SLU results from CELT
w/o and with BERT pre-train, w/o and with replacing the softmax layer with a CRF layer, from 5 different models with
different random initialization are given here. The metrics are the intent classification accuracy, slot filling F1, and sentence-
level semantic frame accuracy. The results for the first group of models are cited from [15, 16].

to ATIS, Snips includes multiple domains and has a larger
vocabulary. For the more complex Snips dataset, CELT with
BERT pre-train achieves intent accuracy of 98.3% (from
97.3%), slot F1 of 96.4% (from 91.8%), and sentence accu-
racy of 91.9% (from 80.9%). On ATIS, CELT achieves intent
accuracy of 97.4% (from 95.0%), slot F1 of 95.9% (from
95.2%), and sentence accuracy of 87.9% (from 83.4%). The
gain from CELT with BERT pre-train on Snips over the base-
lines is much more significant on slot F1 and sentence frame
accuracy than intent accuracy. Further analysis shows that
53.4% of slots in the Snips test set can be found in Wikipedia.
Since BERT pre-training data includes English Wikipedia, the
model may have encoded the knowledge in representations
and hence improves slot F1 and sentence accuracy.

Without BERT pre-train, the SLU performance degrades
drastically on both datasets. These results demonstrate the
strong generalization and semantic representation capability
of the BERT pre-train model, considering that it is pre-trained
on large-scale text from mismatched domains and genres
(books and Wikipedia). Without BERT pre-train, replacing
the softmax layer with CRF consistently improves the sen-
tence accuracy (3% and 2.4% relative gains for Snips and
ATIS, respectively); whereas, adding CRF for CELT with
BERT pre-train performs comparably. Hence, the second set
of experiments uses CELT without CRF.

Ablation analysis on Snips shows that when fine-tuning
the BERT pre-train model separately for IC and SF, intent ac-
curacy drops to 97.8 ± 0.4% (from 98.3 ± 0.3%), and slot
F1 drops to 96.3 ± 0.1% (from 96.4 ± 0.2%). These results
demonstrate that joint modeling in CELT improves the per-
formance for both tasks. We compare CELT models with dif-
ferent fine-tuning epochs. The CELT model fine-tuned with
only 1 epoch already outperforms the baselines in Table 2.

3.3.2. Multi-Turn SLU and Transfer Learning

Table 3 shows the IC accuracy, UAC F1, SF F1, and sen-
tence frame accuracy on the GSD test sets. The first group of
models includes the baselines. RNN-NoContext [7] uses two-
layer stacked BiRNN with GRU and LSTM cells respectively,
and no context information is used. RNN-PreviousTurn [7]
is similar to the RNN-NoContext model, with a different Bi-
GRU layer encoding the previous system turn for slot tag-
ging. MemNet [8] uses memory network to encode the dia-
logue history utterances from both user and system. SDEN [9]
uses the dialogue history utterances from both user and sys-
tem through a BiGRU for combining memory embeddings.
HRNN-SystemAct [7] is the previous state-of-the-art (SOTA)
system, using a hierarchical RNN to encode the dialogues acts
of the previous system turn as the context information.

The second group of models includes the proposed CELT
model after applying the proposed TL approaches. CELT
achieves new SOTA results and the absolute gains from CELT
over the previous SOTA user act F1 and sentence frame ac-
curacy are 2.8% and 6.11% on the GSD-Restaurant testset,
0.89% and 10.12% on the GSD-Movie testset, and 2.62% and
7.44% on the GSD-Overall testset. Table 4 shows the ablation
analysis on the GSD-Overall test set. Removing all unsuper-
vised and supervised adaptive training for CELT (CELT-UA-
SA) degrades the sentence accuracy from 95.02% to 93.00%.
Further removing the unsupervised BERT pre-train step de-
grades sentence accuracy to 86.54%. Particularly, user act
F1 decreases from 98.29% to 92.44%, and slot F1 decreases
from 94.99% to 91.12%. These results demonstrate that the
contextual representations learned from the large-scale gen-
eral purpose unlabeled text significantly help improve user
act classification and slot filling. After further removing the
speaker embeddings, slot F1 drops from 91.12% to 90.43%
and sentence accuracy drops from 86.54% to 86.15%, sug-



Models
GSD-Resturant GSD-Movie GSD-Overall

Intent Act Slot Frame Intent Act Slot Frame Intent Act Slot Frame
(Acc) (F1) (F1) (Acc) (Acc) (F1) (F1) (Acc) (Acc) (F1) (F1) (Acc)

RNN-NoContext [7] 83.61 87.13 94.24 65.51 88.51 93.49 86.91 62.17 84.76 89.03 92.01 64.56
RNN-PreviousTurn [7] 99.37 90.10 94.96 86.93 99.12 93.58 88.63 77.27 99.31 91.13 93.06 84.19
MemNet-20 [8] 99.67 95.67 94.28 89.52 98.76 96.25 90.70 80.35 99.29 95.85 93.21 86.92
SDEN-20 [9] 99.84 94.43 94.81 89.46 99.60 97.56 90.93 82.55 99.81 95.38 93.65 87.50
HRNN-SystemAct [7] 99.98 95.42 95.38 89.26 99.71 96.35 91.58 83.36 99.92 95.70 94.22 87.58
CELT 99.88 98.47 97.12 95.63 99.71 98.45 95.74 93.48 99.83 98.47 96.70 95.02

Table 3. SLU performance on different test sets of the multi-turn GSD dialogue corpus, from baselines and our proposed CELT
model, when trained on the GSD-overall training set. The results for the first group of models are cited from [7]. MemNet-20
and SDEN-20 denote models with memory size 20.

Model Intent Act Slot Frame
(Acc) (F1) (F1) (Acc)

a. CELT 99.83 98.47 96.70 95.02
b. a-UA-SA 99.62 98.29 94.99 93.00
c. b+UA(ID) 99.88 98.03 96.64 94.40
d. b+UA(OOD) 99.92 98.18 95.07 93.35
e. b+UA(ID)+SA(ID) 99.90 98.43 96.17 94.60
f. b+UA(ID)+SA(ID+OOD) 99.83 98.47 96.70 95.02
g. b+UA(ID+OOD) 99.90 98.24 95.88 94.25
h. b+UA(ID+OOD) 99.92 96.58 96.58 94.81+SA(ID+OOD)
i. b+UA(ID+OOD+WOZ) 99.92 98.52 95.02 93.71
j. b-BERT pre-train 99.92 92.44 91.12 86.54
k. j-speaker embeddings 99.96 92.22 90.43 86.15
l. k-context utterances 94.52 93.55 91.61 82.35
m. l-system act embeddings 77.33 89.11 90.93 66.88

Table 4. Ablation Analysis on the GSD-overall test set. UA
and SA denote unsupervised and supervised adaptive train-
ing, respectively. ID and OOD denote in-domain and out-
of-domain dialogues in MDC w.r.t. the GSD-overall test set,
i.e., MDC restaurant and movie domain dialogues are ID data,
MDC taxi domain dialogues are OOD data. +WOZ denotes
using MDC+WOZ data for adaptive training.

gesting that CELT is capable of exploiting the additional dis-
criminative information provided by the speaker embeddings.
After further removing the context utterances, intent accuracy
drops from 99.96% to 94.52% and sentence accuracy drops
from 86.15% to 82.35%, indicating that the context utter-
ances play a key role in intent prediction. After further re-
moving system act embeddings, that is, no context is used,
intent accuracy drops from 94.52% to 77.33%, user act F1
drops from 93.55% to 89.11% and sentence frame accuracy
drops from 82.35% to 66.88%. These results show that us-
ing no context information degrades the SLU performance
significantly. It is noticeable that although intent accuracy
and slot F1 of CELT-NoContext (the last row in Table 4) are
both lower than those of RNN-NoContext (the first row in Ta-
ble 3), CELT-NoContxt achieves a better sentence accuracy
(66.88%) than RNN-NoContext (64.56%), demonstrating the

strength of CELT to enforce intent and slot coherence.
We further analyze the efficacy of using in-domain (ID)

and out-of-domain (OOD) data for unsupervised adaptive
(UA) and supervised adaptive (SA) training. As shown in
Table 4, using OOD data for UA (model d) achieves small
SLU improvement over model b. UA(ID) (model c) yields
a significantly larger gain over model b compared to model
d. However, adding OOD data to ID data for UA (model
g) degrades the performance slightly compared to model c.
Adding WOZ to MDC ID+OOD data for UA (model i) fur-
ther degrades the performance over model g. In contrast,
after applying UA(ID) (model c), adding OOD to ID for SA
(model f) outperforms SA(ID) (model e), achieving 95.02%
sentence frame accuracy. These results suggest that SA can
benefit from both ID and OOD data, probably due to the
combined loss of IC and SF. We will explore different losses
for UA other than MLM and NSP losses in order to benefit
from both ID and OOD data.

We also observe fast convergence speed of both CELT-
UA-SA and CELT models on the GSD-overall testset, con-
sistent with previous observations on models using BERT
pre-train. For CELT-UA-SA, the user act F1 and sentence
frame accuracy increase from 87.50 and 52.52 (epoch 1) to
97.19 and 90.31 (epoch 5), and keep improving until epoch
20 (98.29 and 93.00) but degrade from epoch 20 to 40. For
CELT, these two results increase from 92.34 and 62.60 (epoch
1) to 97.17 and 93.79 (epoch 5), and keep improving from
epoch 5 to 40 (98.47 and 95.02).

4. CONCLUSIONS

We propose Context Encoding Language Transformer for
SLU facilitating exploiting various context information and
different transfer learning approaches for leveraging external
resources. Experimental results demonstrate that CELT with
TL achieves new SOTA SLU performance on two large-scale
single-turn dialogue benchmarks and one multi-turn dialogue
benchmark. Future work includes improving supervised and
unsupervised TL and exploring TL on knowledge bases.



5. REFERENCES

[1] Gokhan Tur and Renato De Mori, Spoken language un-
derstanding: Systems for extracting semantic informa-
tion from speech, John Wiley & Sons, 2011.

[2] A. Bhargava, Asli Çelikyilmaz, Dilek Hakkani-Tür, and
Ruhi Sarikaya, “Easy contextual intent prediction and
slot detection,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2013,
Vancouver, BC, Canada, May 26-31, 2013, 2013, pp.
8337–8341.

[3] Puyang Xu and Ruhi Sarikaya, “Contextual domain
classification in spoken language understanding systems
using recurrent neural network,” in IEEE International
Conference on Acoustics, Speech and Signal Process-
ing, ICASSP 2014, Florence, Italy, May 4-9, 2014, 2014,
pp. 136–140.

[4] Yun-Nung Chen, Ming Sun, Alexander I. Rudnicky,
and Anatole Gershman, “Leveraging behavioral pat-
terns of mobile applications for personalized spoken
language understanding,” in Proceedings of the 2015
ACM on International Conference on Multimodal In-
teraction, Seattle, WA, USA, November 09 - 13, 2015,
2015, pp. 83–86.

[5] Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky,
“An intelligent assistant for high-level task understand-
ing,” in Proceedings of the 21st International Confer-
ence on Intelligent User Interfaces, IUI 2016, Sonoma,
CA, USA, March 7-10, 2016, 2016, pp. 169–174.

[6] Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
Mei-Yuh Hwang, and Baolin Peng, “Contextual spo-
ken language understanding using recurrent neural net-
works,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2015,
South Brisbane, Queensland, Australia, April 19-24,
2015, 2015, pp. 5271–5275.

[7] Raghav Gupta, Abhinav Rastogi, and Dilek Hakkani-
Tür, “An efficient approach to encoding context for spo-
ken language understanding,” in Interspeech 2018, 19th
Annual Conference of the International Speech Commu-
nication Association, Hyderabad, India, 2-6 September
2018., 2018, pp. 3469–3473.

[8] Yun-Nung Chen, Dilek Hakkani-Tür, Gökhan Tür, Jian-
feng Gao, and Li Deng, “End-to-end memory networks
with knowledge carryover for multi-turn spoken lan-
guage understanding,” in Interspeech 2016, 17th Annual
Conference of the International Speech Communication
Association, San Francisco, CA, USA, September 8-12,
2016, 2016, pp. 3245–3249.

[9] Ankur Bapna, Gökhan Tür, Dilek Z. Hakkani-Tür, and
Larry P. Heck, “Sequential dialogue context modeling
for spoken language understanding,” in Proceedings
of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, Saarbrücken, Germany, August 15-17, 2017,
2017, pp. 103–114.

[10] Shang-Yu Su, Pei-Chieh Yuan, and Yun-Nung Chen,
“How time matters: Learning time-decay attention
for contextual spoken language understanding in dia-
logues,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA, June
1-6, 2018, Volume 1 (Long Papers), 2018, pp. 2133–
2142.

[11] Puyang Xu and Ruhi Sarikaya, “Convolutional neu-
ral network based triangular CRF for joint intent de-
tection and slot filling,” in 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, Olo-
mouc, Czech Republic, December 8-12, 2013, 2013, pp.
78–83.

[12] Dilek Hakkani-Tür, Gökhan Tür, Asli Çelikyilmaz,
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girone, Thibaut Lavril, Maël Primet, and Joseph Dureau,
“Snips voice platform: an embedded spoken language
understanding system for private-by-design voice inter-
faces,” CoRR, vol. abs/1805.10190, 2018.

[31] Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng
Gao, “Microsoft dialogue challenge: Building end-
to-end task-completion dialogue systems,” CoRR, vol.
abs/1807.11125, 2018.

[32] Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ramadan,
and Milica Gasic, “Multiwoz - A large-scale multi-
domain wizard-of-oz dataset for task-oriented dialogue
modelling,” in EMNLP. 2018, pp. 5016–5026, Associa-
tion for Computational Linguistics.

[33] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler, “Aligning books and movies: Towards
story-like visual explanations by watching movies and
reading books,” in 2015 IEEE International Conference
on Computer Vision, ICCV 2015, Santiago, Chile, De-
cember 7-13, 2015, 2015, pp. 19–27.

[34] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” CoRR, vol. abs/1412.6980,
2014.


	1  Introduction
	2  Proposed Approach
	2.1  Input Embedding Layer
	2.2  Encoder Representation Layer
	2.3  Final Classifier Layer
	2.3.1  Intent and user act classification
	2.3.2  Slot filling

	2.4  Transfer Learning

	3  Experiments and Analysis
	3.1  Data
	3.2  Training Details
	3.3  Results and Discussion
	3.3.1  Single-Turn SLU
	3.3.2  Multi-Turn SLU and Transfer Learning


	4  Conclusions
	5  References

