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ABSTRACT

In this paper, we describe the Maximum Uniformity of Dis-

tribution (MUD) algorithm with the power-law nonlinearity.

In this approach, we hypothesize that neural network train-

ing will become more stable if feature distribution is not too

much skewed. We propose two different types of MUD ap-

proaches: power function-based MUD and histogram-based

MUD. In these approaches, we first obtain the mel filterbank

coefficients and apply nonlinearity functions for each filter-

bank channel. With the power function-based MUD, we ap-

ply a power-function based nonlinearity where power func-

tion coefficients are chosen to maximize the likelihood as-

suming that nonlinearity outputs follow the uniform distri-

bution. With the histogram-based MUD, the empirical Cu-

mulative Density Function (CDF) from the training database

is employed to transform the original distribution into a uni-

form distribution. In MUD processing, we do not use any

prior knowledge (e.g. logarithmic relation) about the energy

of the incoming signal and the perceived intensity by a hu-

man. Experimental results using an end-to-end speech recog-

nition system demonstrate that power-function based MUD

shows better result than the conventional Mel Filterbank Cep-

stral Coefficients (MFCCs). On the LibriSpeech database, we

could achieve 4.02 % WER on test-clean and 13.34 %

WER on test-other without using any Language Mod-

els (LMs). The major contribution of this work is that we de-

veloped a new algorithm for designing the compressive non-

linearity in a data-driven way, which is much more flexible

than the previous approaches and may be extended to other

domains as well.

Index Terms: Deep-Neural Network Model, end-to-end

speech recognition, feature distribution, nonlinearity func-

tion, power function
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1. INTRODUCTION

After the breakthrough of deep learning technology [1, 2, 3, 4,

5, 6, 7, 8], speech recognition accuracy has improved dramat-

ically. Recently, speech recognition systems are widely used

not only in smart phones and Personal Computers (PCs) but

also in standalone devices in far-field environments. Exam-

ples include voice assistant systems such as Amazon Alexa ,

Google Home [9, 10], and Samsung Bixby [11].

In the era of deep neural networks, it has been frequently

observed that the amount and coverage of the training data

seem to be one of the most important factors to obtain bet-

ter speech recognition accuracy [12, 13]. However, it is very

difficult to gather sufficient amount of transcribed data from

various domains. To overcome this problem, data augmen-

tation has been very popular these days [14, 15, 16, 17, 18].

Small Power Boosting (SPB) technique may be considered as

a variation of data augmentation techniques [19]. These kinds

of data augmentation techniques have significantly improved

speech recognition accuracy for commercial products such as

Google Home [9, 10, 20]. However, a still remaining question

is what would be the best way to obtain features as inputs to

the neural network.

Using the capabilities of neural networks, researchers

have explored raw-waveform features [21] or complex Fast

Fourier Transform (FFT) features [9, 10]. However, log-mel

filterbank coefficients or Mel Filterbank Cepstral Coefficients

(MFCCs) [22] still remains the dominant form as features

of the automatic speech recognition systems [5, 23, 24, 25].

This is because the conventional features such as MFCC or

log-mel filterbank coefficients requires less computation than

the neural network-based features such as raw-waveform

features [26] while showing comparable performance. In log-

mel filterbank coefficients and MFCC, the log-nonlinearity is

employed to represent the relationship between the perceived

sound intensity by human and the filterbank energy [27].

In more recent features such as Power Normalized Cepstral

Coefficients (PNCCs), the power-law nonlinearity with the

power coefficient of 1
15 is employed [28, 29]. In our previous

study [30, 31] this power-law nonlinearity has been shown

to be more robust against additive noise. Both the log-law

http://arxiv.org/abs/1912.11041v1


nonlinearity and the power-law nonlinearity with this specific

coefficient of 1
15 were motivated by the rate-intensity relation

of the human auditory system [27, 28].

In this paper, we take a completely different approach. In-

stead of trying to model the human auditory system directly,

we try to find a nonlinearity function which maximizes the

uniformity of distribution. We refer this approach to Max-

imum Uniformity of Distribution (MUD) approach. This

approach is based on the assumption that even though neural

networks have remarkable capabilities in classifying input

features, training would be easier if feature distribution is not

too much skewed and features are not too much concentrated

in an extremely narrow interval. More specifically, we as-

sume that if the distributions of features are difficult to learn,

parameter convergence usually becomes more difficult due to

the erratic surfaces of error functions. In this case, we might

have hard time in fine-tuning learning rates and hyper param-

eters to obtain converged parameters. In this paper, “easier”

training means that the neural network may be trained well

without too much fine-tuning thanks to the well-behaved fea-

ture distribution and the error function surface. It has been

known that the distribution of amplitudes [32] and filterbank

energies [33] is very sharp and skewed. Thus, it is usually not

possible to use mel filterbank energy as features without us-

ing any compressive nonlinearity. We proposed two different

types of MUD approaches: power function-based MUD and

histogram-based MUD. In these approaches, we first obtain

the mel filterbank energy. With the power function-based

MUD, we apply a power-function based nonlinearity where

the power function coefficient is chosen to maximize the like-

lihood assuming that the nonlinearity output is the uniform

distribution. With the histogram-based MUD, the empirical

Cumulative Density Function (CDF) is obtained from the

training database to transform the original distribution into

a uniform distribution. In these two approaches, unlike our

previous study [28, 27], we do not use any prior knowledge

about the rate-intensity relationship which is the relation be-

tween the energy of the incoming signal and the perceived

intensity by a human [27]. However, as will be discussed

in Sec. 3, we may obtain surprisingly similar coefficients to

those obtained from human auditory systems in a data-driven

way. A major contribution of this work is that we developed

a new algorithm for designing the compressive nonlinearity

in a data-driven way, which is much more flexible than the

previous approaches and may be extended to other domains

as well. Experimental results with an end-to-end speech

recognition system demonstrate that Power-function based

MUD shows better result than the conventional Mel Filter-

bank Cepstral Coefficients (MFCCs) while Histogram-based

MUD shows comparable results to the MFCC processing.

The rest of the paper is organized as follows: We develop

the theory of maximizing the uniformity in Sec. 2. We de-

scribe the MUD nonlinearity estimation and the entire end-

to-end speech recognition system in Sec. 3. Experimental

results that demonstrates the effectiveness of the MUD pro-

cessing is presented in Sec. 4. We conclude in Sec. 5.

2. MAXIMIZATION OF DISTRIBUTION

UNIFORMITY

2.1. Power-function based maximization of distribution

uniformity

Consider a random variable X whose range is a closed inter-

val IX = [xmin, xmax]. xmin and xmax are the minimum and

maximum values of the random variable X respectively.

Our objective is to apply a nonlinearity σp(·) in the form

of (1) to X so that the transformed random variable Y closely

follows a uniform distribution:

Y = σp (X) = (X − xmin)
α. (1)

We chose the power function as the nonlinearity, partly be-

cause it has been shown that this function is quite effective

as a compressive nonlinearity in speech feature processing

[28, 29, 30, 31]. We subtract X by xmin, since this will sim-

plify the maximum likelihood estimation of α, which will

be explained shortly. From (1), the range of Y is given by

IY = [0, (xmax − xmin)
α
]. Thus, we expect Y to follow the

following uniform distribution:

Y ∼ U(0, (xmax − xmin)
α
). (2)

The PDF of Y is given by:

pY(y) =

{

1
(xmax−xmin)

α , 0 ≤ y ≤ (xmax − xmin)
α

0, otherwise.
(3)

Using the property of the PDFs of the transformed random

variables [34], we obtain the PDF of the random variable X

by:

pX(x) = pY(y)
dy

dx

= pY(y)
[

α (x− xmin)
α−1

]

=

{

α(x−xmin)
α−1

(xmax−xmin)
α , xmin ≤ x ≤ xmax

0, otherwise.
(4)

Now, suppose that we have the following N samples from the

random variable X:

X = {x0, x1, · · · , xN−1} . (5)

Using (4), we obtain the α value which maximizes the data

likelihood p(X |α). The log likelihood of the data X assum-



ing the PDF in (2) is given by:

L (α;X) =
N−1
∑

i=0

ln pX (xi)

=

N−1
∑

i=0

ln

[

α(xi − xmin)
α−1

(xmax − xmin)
α

]

= N ln(α) + (α− 1)

N−1
∑

i=0

ln (xi − xmin)

−Nα ln (xmax − xmin) . (6)

In (7), the term ln (xi − xmin) is not defined when xi = xmin.

Thus, we apply flooring as shown below:

L (α;X) = N ln(α)

+ (α− 1)

N−1
∑

i=0

ln (max {xi − xmin, δ})

−Nα ln (xmax − xmin) , (7)

where δ is a flooring coefficient. We use δ = 10−100 in our

experiments. By differentiating L (α|X) with respect to α,

we obtain α̂, which maximizes the likelihood as below:

α̂ =
1

ln (max {xi − xmin, δ})−
1
N

∑N−1
i=0 ln (xi − xmin)

.

(8)

2.2. Histogram-based maximization of distribution uni-

formity

Instead of using the power-function based parametric ap-

proach to maximize the uniformity of distribution, we may

also consider the non-parametric approach. In this approach,

we estimate the Cumulative Distribution Function (CDF)

from the samples in (5). This CDF estimation is achieved by

sorting the samples xi in (5) and performing interpolation.

The relation between the original random variable X and the

transformed random variable Y is given by the following

equation:

Y = σnp(X) = F−1
u

(

F̂x(X)
)

(9)

where Fu(·) is the CDF of the uniform distribution. F̂x(X) in

(9) is the estimated CDF of X that is mentioned above. In the

special case of the uniform distribution of U(0, 1), the inverse

of this CDF is given by F−1
u (x) = x, 0 ≤ x ≤ 1. Under

this assumption, the above equation (9) may be simplified to:

Y = σnp(X) = F̂x(X). (10)
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Fig. 1: The structure of the entire end-to-end speech

recognition system with MUD processing. The LSTMs in

the encoder layers may be either bidirectional-LSTMs or

unidirectional-LSTMs. The attention may be either the full

attention or the MOnotonic CHunkwise Attention (MoCha)

[35, 36].

3. END-TO-END SPEECH RECOGNITION WITH

THE MAXIMIZATION OF FEATURE

DISTRIBUTION UNIFORMITY

In this section, we explain how to use the theories we de-

veloped in Sec. 2.1 and 2.2 to train an end-to-end speech

recognition system. The entire block diagram of the system

is shown in Fig. 1. We used two different attention struc-

tures: Bidirectional LSTMs with Full Attention (BFA) [37]

and MOnotonic CHunkwise Attention (MoCha) [35]. Our

MoCha implementation is described in very detail in our an-

other paper [36].

We apply either the power function-based MUD nonlin-

earity in (1) or the histogram-based MUD nonlinearity to each

mel filterbank energy as the first step as depicted in Fig. 1.

The mel filterbank energy is defined by the following equa-



tion:

p[m, l] =

K/2
∑

k=0

∣

∣X [m, ejωk ]
∣

∣

2
Ml[ωk] (11)

where Ml[ωk] is the triangular mel response for the l-th filter-

bank channel, m is the frame index, and K is the Fast Fourier

Transform (FFT) size. ωk is the discrete-time frequency de-

fined by ωk = 2πk
K 0 ≤ k ≤ K − 1. The input feature vector

~x[m] in Fig. 1 is therefore given by:

~x[m] = [p[m, 0], p[m, 1], · · · , p[m,C − 1]] . (12)

where C is the number of mel filter bank channels. In our

experiments, we used the value of C = 40. For the power

function-based MUD, we use (8) for each mel filterbank chan-

nels from the randomly selected 1,000 utterances from the

training set. In order not to be affected by the silence portion,

we removed non-speech portion using a simple energy-based

Voice Activity Detector (VAD).

Fig. 2 shows the estimated α̂ using (8) for each mel fil-

terbank channel. From this Fig. 2, we observe that α̂ values

are surprisingly close to the power coefficient of 1
15 which we

obtained by modeling the rate-intensity curve using a human

auditory system [27, 28]. For the histogram-based MUD, we

also used the same randomly selected 1,000 utterances from

the training set, applied a VAD, and constructed the empirical

CDF to obtain the nonlinearity function in (9).

Fig. 3 shows the Probability Density Functions (PDFs)

of the mel filterbank energy in (a), those of the nonlinearity

output using the power-based MUD in (b), and those of the

nonlinearity output using the histogram-based MUD in (c).

In plotting these PDFs in Fig. 3, we used another 1,000 ut-

terances which are not included in estimating the MUD non-

linearities. These plots are for the third filterbank channel

l = 3 in (11). As shown in Fig. 3b, if we use the power

function-based MUD, the PDF becomes much smoother com-

pared to the original PDF in Fig. 3a. However, this PDF is

not as uniform as the one in Fig. 3c. In Fig. 4, we com-

pared the Power-law nonlinearity of the form of (·)
1

15 used

in PNCC [28, 29], power function-based MUD in (1), and

histogram-based MUD (9) for the third mel filterbank chan-

nel l = 3 in (11). Note that in case of power function-based

MUD and histogram-based MUD, the nonlinearity functions

are different for different filterbank channels. We used

the RETURNN speech recognition system [39, 40, 41]. We

have tried various modifications to the training stratgegy (e.g

[42, 43]). ~x[n] and ~yl are the input mel filterbank energy vec-

tor and the output label , respectively. m is the input frame

index and l is the decoder output step index. ~cl is the at-

tention context vector calculated as a weighted sum of the

encoder hidden state vectors ~henc[m]. The weights used in

this procedure is called the attention weights. They are calcu-

lated by applying softmax to the attention energies [37, 40].
~henc[m] and ~hdec

l are the encoder and the decoder hidden
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Fig. 2: The estimated power coefficients for each mel

filterbank channels using (8).
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Fig. 3: The Probability Density Functions for the third

filterbank channel of (a): the mel filterbank energy

p[m, l], l = 3 in (11), (b): the power-function based MUD

output of this mel filterbank energy in (1), (c) the histogram

based-MUD in (9).

state vectors, respectively. ~βl[m] is the attention weight feed-

back [40]. In [40], the peak value of the speech waveform

is normalized to be one. However, since finding the peak

sample value is not possible for on-line feature extraction,

we did not perform this normalization. We modified the in-

put pipeline so that the on-line feature generation can be per-

formed. We disabled the clipping of feature range between

-3 and 3, which is the default setting in their LibriSpeech

experiment in [40]. We conducted experiments using both



Table 1: Word Error Rates (WERs) obtained with MFCC, Power Mel filterbank coefficients,

power function-based MUD processing, and histogram-based MUD Processing on the LibriSpeech corpus [38].

For each WER number, the same experiment was conducted twice and the results were averaged.

All these results were obtained without using a Language Model (LM).

Neural Network Structure MFCC (·)
1

15

Power Function-

Based MUD

Histogram-

Based MUD

1024 cell

ULSTM

MoCha

test-clean 7.09 % 7.04 % 7.10 % 7.13 %

test-other 20.60 % 19.76 % 19.64 % 20.03 %

average 13.85 % 13.40 % 13.37 % 13.58 %

1536 cell

BLSTM

Full-Attention

test-clean 4.06 % 3.94 % 4.02 % 4.11 %

test-other 13.97 % 13.56 % 13.34 % 14.10 %

average 9.02 % 8.75 % 8.68 % 9.11 %

0
Mel Filterbank Energy

-1.0

1.0

N
o
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tp
u
t

Power Function-Based MUD

Histogram-Based MUD

(·)
1

15

Fig. 4: Comparison of different nonlinearities: Power-law

nonlinearity of the form of (·)
1

15 used in PNCC [28, 29],

power function-based MUD in (1), and histogram-based

MUD (9) for the third mel filterbank channel.

the uni-directional and bi-directional Long Short-Term Mem-

ories (LSTMs) [44]. For on-line processing, we used the

MOnotonic CHunkwise Attention (MoCha) [35]. In online

speech recognition experiments using MoCha, we used the

chunk size of 2. For better stability in the LSTM training,

we used the gradient clipping by global norm [45], which is

implemented as tf.clip by global norm API in Ten-

sorflow [46]. We used six layers of encoders and one layer of

decoder followed by a softmax layer. The training infrastruc-

ture we used is described in more detail in our another paper

[47].

4. EXPERIMENTAL RESULTS

For speech recognition experiments, we used the Librispeech

database [38] for training and evaluation. For training, we

used the entire 960 hours training set consisting of 281,241

utterances. For evaluation, we used the official 5.4 hours

test-clean and 5.1 hours test-other databases.

We conducted experiments using the 40-th order MFCC

feature implemented in [48], power-law nonlinearity of

(·)
1

15 applied to the mel filterbank energy, power function

based MUD processing, and histogram-based MUD pro-

cessing. We conducted experiments using both the online

ULSTM/MoCha [35] structure and the BLSTM with the full-

attention structure. We have conducted Bidirectional Long

Short-Term Memory (BLSTM) experiments with the cell size

of 1536. For the on-line MoCha experiment, we used the Uni-

directional Long Short-term Memory (ULSTM) with the cell

size of 1024. Our MoCha implementation is described in very

detail in [36]. In all of our experiments in this section, we did

not use any external Language Models (LMs). We observed

that external LMs can significantly enhance the speech recog-

nition accuracy of our end-to-end speech recognition system,

which is shown in our other papers [18, 47]. However, in this

paper, just to focus on the effects of nonlinearity, we did not

employ external LMs.

These results are summarized in Table 1. For each WER

number in this table, the same experiment was conducted

twice and these results were averaged to reduce the effect

of random fluctuation in each trial. The best performance

was achieved when we used the power function-based MUD

with the 1536-cell BLSTM layers in the encoder and the full

attention. For the test-clean and test test-other

test sets [38] , we obtained 4.02 % Word Error Rate (WER)

and 13.34 % WER, respectively. On average, the WER was

8.68 %, which is relatively 3.77 % improvement over the

baseline MFCC with 9.02 % WER. From Table. 1, we note

that usually there is no improvement over the baseline MFCC

on the test-clean set. However, improvement on the

test-other was usually more substantial. For the 1536-

cell BLSTM full-attention case, the relative improvement

over the baseline MFCC on the test-other is 4.51 %.

The performance difference between the power-law nonlin-

earity of (·)
1

15 and the power function-based MUD is usually

very small. This was expected since the estimated parameters

using (8) are not very different from 1
15 as shown in Fig. 2.



However, for the test-other database, which is more a

difficult set, the improvement over the power-law nonlinearity

of (·)
1

15 is statistically significant. Histogram-based MUD

shows somewhat worse performance compared to power

function-based MUD. However, this histogram- based MUD

still shows comparable results to the conventional MFCC

processing. For the histogram-based MUD, we also tried

to transform the PDF into a Gaussian distribution. However,

that system showed slightly worse results than the Histogram-

based MUD in Table 1. We hypothesize that the reason why

histogram-based MUD does slightly worse than the power-

function based MUD is that it somewhat obscured the energy

boundary between speech vs non-speech. If we can employ

a very sharp VAD to select only the speech portion very

accurately, we think the performance of the histogram-based

MUD will be comparable to that of the power-funcation based

MUD.

5. CONCLUSIONS

In this paper, we described the Maximum Uniformity of Dis-

tribution (MUD) algorithm. This approach is based on the as-

sumption that neural-network training would be easier and the

converged parameters would show better performance when

feature distribution is not too much skewed or too much con-

centrated in an extremely narrow interval. We proposed two

different types of MUD approaches: power function-based

MUD and histogram -based MUD. In these approaches, we

first obtain the Mel filterbank coefficients. The estimated

parameters using the power function-based MUD using (8)

are surprisingly close to the power coefficient of 1
15 which we

obtained by modeling the rate-intensity curve using a human

auditory system [27, 28]. The histogram-based MUD shows

comparable performance to the conventional MFCC process-

ing, but it was worse than the performacne of the power

function-based MUD. In the end-to-end speech recognition

experiments on the LibriSpeech databases [38], we obtained

4.02 % WER and 13.34 % WER on the test-clean and

test test-other test sets respectively using the power

function-based MUD processing.
The major novelty of this paper is that we proposed a new

way of deriving a suitable nonlinearty from the training data
themselves in a data-driven way. In the case of the previous

power-law nonlinearty with the power coefficients of 1
10 [31]

or 1
15 [29], they were obtained either by curve-fitting from

the rate-intensity curve of the human auditory system [28]
or by performing speech recognition experiments with var-
ious power coefficients to find out the optimal value [27].
Since these steps require significant amount time, we could
not fine-tune the power coefficient for each filter bank chan-
nel in our previous work [28]. In this new MUD approach, we
obtain suitable coefficients for each filterbank channel “with-
out” actually running speech recognition experiments. This is
a significant advantage compared to the previous hand-crafted
fine-tuning. In addition, we believe that this approach is not
only limited to speech recognition, but it can be applied to

other domains in the future. Since the previous power coeffi-

cient of 1
15 was already hand-optimized by performing exper-

iments with different coefficients, it is quite natural that the
additional improvement of MUD over the previous power-
law nonlinearity is relatively small, which is also shown in
Section 4. Nevertheless, the major contribution of this work
is that we proposed a new way of designing the compressive
nonlinearity in a data-driven way, and this approach is much
more flexible and may be extended to other domains as well.
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and H. Ney, “RETURNN: the RWTH extensible training

framework for universal recurrent neural networks,” in IEEE

Int. Conf. Acoust., Speech, and Signal Processing, March 2017,

pp. 5345–5349.
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