
QUERY-BY-EXAMPLE ON-DEVICE KEYWORD SPOTTING

Byeonggeun Kim, Mingu Lee, Jinkyu Lee, Yeonseok Kim, and Kyuwoong Hwang

Qualcomm AI Research
Hakdong-ro, Gangnam-gu, Seoul, Republic of Korea

ABSTRACT

A keyword spotting (KWS) system determines the exis-
tence of, usually predefined, keyword in a continuous speech
stream. This paper presents a query-by-example on-device
KWS system which is user-specific. The proposed system
consists of two main steps: query enrollment and testing.
In query enrollment step, phonetic posteriors are output by
a small-footprint automatic speech recognition model based
on connectionist temporal classification. Using the phonetic-
level posteriorgram, hypothesis graph of finite-state trans-
ducer (FST) is built, thus can enroll any keywords thus avoid-
ing an out-of-vocabulary problem. In testing, a log-likelihood
is scored for input audio using the FST. We propose a thresh-
old prediction method while using the user-specific keyword
hypothesis only. The system generates query-specific nega-
tives by rearranging each query utterance in waveform. The
threshold is decided based on the enrollment queries and
generated negatives. We tested two keywords in English,
and the proposed work shows promising performance while
preserving simplicity.

Index Terms— keyword spotting, user-specific, query-
by-example, on-device, threshold prediction

1. INTRODUCTION

Keyword spotting (KWS) has widely been used in personal
devices like mobile phones and home appliances for detect-
ing keywords which are usually compounded of one or two
words. The goal is to detect the keywords from real-time
audio stream. For practical use, it is required to achieve low
false rejection rate (FRR) while keeping low false alarms
(FAs) per hour.

Many previous works consider predefined keywords to
reach promising performance. Keywords such as “Alexa”,
“Okay/Hey Google”, “Hey Siri” and “Xiaovi Xiaovi” are the
examples. They collect numerous variations of a specific key-
word utterance and train neural networks (NNs) which have
been promising method in the field. [1, 2] have acoustic en-
coder and sequence matching decoder as separate modules.
The NN-based acoustic models (AMs) predict senone-level

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc

posteriors. Sequence matching, traditionally modeled by hid-
den Markov models (HMMs), interprets the AM outputs into
keyword and background parts. Meanwhile, [3, 4, 5, 6] have
end-to-end NN architectures to directly determine the pres-
ence of keywords. They use recurrent neural networks (RNN)
with attention layers [3, 4], dilated convolution network [5],
or filters based on singular value decomposition [6].

On the other hand, there have been query-by-example
approaches which detect query keywords of any kinds. Early
approaches use automatic speech recognition (ASR) pho-
netic posterior as a posteriorgram and exploit dynamic time
warping (DTW) to compare keyword samples and test ut-
terances [7, 8, 9]. [10, 11] also used posteriorgram while
using connectionist temporal classification (CTC) ASR. [10]
used an edit distance metric, and [11] directly used posteri-
ors of ASR. Furthermore, [12] computes a simple similarity
scores of LSTM output vectors between enrollment and test
utterance. Recently, end-to-end NN based query-by-example
systems are suggested [13, 14]. [13] uses a recurrent neural
network transducer (RNN-T) model biased with attention
over keyword. [14] suggests to use text query instead of
audio.

Meanwhile, there have been other groups who explored
keyword spotting problem. [15, 16, 17, 18] solve multiple
keyword detection. [19, 20] focus on KWS tasks with small
dataset. [19] use DTW to augment the data, and [20] suggests
a few-shot meta-learning approach.

In this paper, we propose a simple yet powerful query-
by-example on-device KWS approach using user-specific
queries. Our system provides user-specific model by uti-
lizing a few keyword utterances spoken by a single user.
The system uses posteriorgram based graph matching al-
gorithm using a small-footprint ASR. An ASR based CTC
[21] outputs phonetic posteriors, and we build a hypothe-
sis graph of finite-state transducer (FST). The posteriorgram
consists of phonetic output which frees the model from out-
of-vocabulary problem. On testing, the system determines
whether an input audio contains the keyword or not through
a log-likelihood score according to the graph which includes
constraints of phonetic hypothesis. Despite of the score nor-
malization, score-based query-by-example on-device KWS
systems usually suffer from threshold decision, because there
are not enough negative examples in on-device system. We

ar
X

iv
:1

91
0.

05
17

1v
3

 [
cs

.L
G

]
 1

4
Ja

n
20

20

predict user-specific threshold by keyword hypothesis graphs.
We generate query-specific negatives by rearranging positives
in waveform. Then we predicts a threshold by using positives
and generated negatives. While keeping this simplicity, our
approach shows comparable performances with recent KWS
systems.

The rest of the paper is organized as follows. In Section
2, the KWS system is described including the acoustic model,
the FST in the decoder, and the threshold prediction method.
The performance evaluation results are discussed in Section 3
followed by the conclusion in Section 4.

2. QUERY-BY-EXAMPLE KWS SYSTEM

Our system consists of three parts, acoustic model, decoder,
and threshold prediction part. In subsections, we denote
acoustic model input features as X = x1, x2, · · · , xT where
xt ∈ RM and t is a time frame index. Corresponding labels
are Y = y1, y2, · · · , yK and usually K < T .

2.1. Acoustic model

We exploit a CTC acoustic model [21]. We denote activa-
tion of ASR as O = o1, o2, · · · , oT where ot ∈ RN and let
ont as activation of unit n at time t. Thus ont is a probabil-
ity of observing n at time t. CTC uses a extra blank output
φ. We denote L′ = L ∪ {φ, space} where L is the set of 39
context-independent phonemes. The space output implies a
short pause between words. We let L′(T) as sequence set of
length T, where their elements are in L′. Then, conditional
probability of path P given X is p(P |X) =

∏T
t=1 p(o

Pt
t)

where ∀P ∈ L′(T).
[21] suggests a many-to-one mapping B which maps

activation O to label sequence Y . The mapping collapses
repeats and removes blank output φ, e.g. B(xφyyφz) =
B(xφφyzφ) = xyz. The conditional probability P (Y |X) is
marginalizing of possible paths for Y and is defined as,

p(Y |X) =
∑

P∈B−1(Y)

p(P |X). (1)

2.2. Keyword spotting decoder

The keyword spotting decoder operates in two phases: an en-
rollment step and testing. In the enrollment step, using AM
output of the query utterance, the model finds the hypothesis
and build FSTs for the path. While testing, the model cal-
culates the score and determines whether the input utterance
contains the keyword using the hypothesis.

2.2.1. Query enrollment

In the enrollment step, the system uses a few clean utterances
of a keyword spoken by a single user. We use simple and
heuristic method, max-decoding. We follow the component

Fig. 1: Example of a generated negative from a query utter-
ance, ‘Hey Snapdragon’. The query utterance is divided into
three in waveform and shuffled.

of maximum-posterior at each time frame. For each time step
t, we choose argmax

n
(ont , n = 1, · · · , N) and get a path P. The

hypothesis is defined by the mapping B, as B(P).
A keyword ‘Hey Snapdragon’ gives a hypothesis like

‘HH.EY. .S.N.AE.P.T. .A.AE.G.AH.N’. With the hypothesis
as a sequential phonetic constraint, we generate left-to-right
FST systems.

2.2.2. Keyword spotting

In testing, the system calculates a score of a test utterance for
hypothesis FSTs. Assume that the FST has L distinct possi-
ble states S = [s(i)], i = 1, 2, · · · , L where s(φ) denotes the
blank state. The FST is left-to-right, therefore, has an ordered
label Hypothesis Y ′ = y′1, y

′
2, · · · , y′K where y′k ∈ S, ∀k.

Given the hypothesis, the score is log likelihood of a test in-
put, X ′ = x′1, x

′
2, · · · , x′T .

At time step t, the activation of AM is ot and we denote
the corresponding FST state as qt ∈ S. The transition proba-
bility aij is p(qt = s(j)|qt−1 = s(i)). The hypothesis limits
the transition probability as Eq.(2), where qt−1 = y′l−1. If
qt = sφ, then qt = qt−1, i.e. remaining in the previous state.
Hypothesis Y ′ is usually shorter than X ′ because we use the
mapping B to get Y ′. Therefore it is more likely to remain
at a current state than moving to the next. We naively choose
the transition probabilities to reflect the scenario.

aij(t) =

{
1/3, if qt ∈ {y′l, y′l−1, s(φ)}
0, otherwise.

(2)

A log likelihood is,

Snapdragon is a registered trademark of Qualcomm Incorporated.

Fig. 2: A histogram of query, negative and generated negative
log likelihood scores for hypothesis FSTs of a single speaker.
Colored histogram shows generated negatives.

log p(X ′|Y ′) = log{
∑
q

p(q|Y ′)p(X ′|Y ′, q)}

≈ max
q,t0

[log{π
T∏

t=t0+1

aqt−1qt

T∏
t=t0

p(qt|x′t)p(x′t)
p(qt)

}]

∝ max
q,t0

[log{π
T∏

t=t0+1

aqt−1qt

T∏
t=t0

p(qt|x′t)}], (3)

where π denotes the initial state probability, and π =
p(q1 = y′1) = 1 for a given path. The p(q|Y ′) is product
of transition probabilities, and the likelihood, p(X ′|Y ′, q) is
proportional to the posteriors of the AM. Here p(x′t) and the
state prior p(qt) are assumed to be uniform.

We normalize the score by dividing Eq.(3) by the number
of non-blank states, |{qt|t = 1, · · · , T, qt 6= s(φ)}|. We find q
and t0 which maximize Eq.(3) by beam searching. During the
search, we consider each time step t as a initial time t0. By
doing this, the system can spot the keyword in a long audio
stream.

2.3. On-device threshold prediction

In this section, query set is Q = {X ′1, X ′2, · · · , X ′A}, and
corresponding hypothesis set is H = {Y ′1 , Y ′2 , · · · , Y ′A}.
FY (X) is a mapping from a test utterance, X, to log likeli-
hood score for a hypothesis Y . We denote negative utterances
as Z1, Z2, · · · , ZB . The hypothesis computes positive scores
from each other’s query. A threshold δ is defined as,

δ(Q,H) =
τ

A(A− 1)

∑
(a,a′)

FY ′a(X
′
a′)|a 6=a′

+
(1− τ)
A ·B

∑
(a,b)

FY ′a(Zb)
(4)

Fig. 3: Comparison of baseline, the S-DTW with the FST
constrained by phonetic hypothesis.

where τ is a hyperparameter in [0, 1], a, a′ ∈ [A] and b ∈
[B]. Eq.(4) means the threshold as a score between mean of
positive scores and that of negative scores.

We generate query-specific negatives from queries. Fig-
ure 1 shows an example of a keyword, ’Hey Snapdragon’.
Each positive is divided to sub-parts and shuffled in wave-
form. We overlap 16 samples of each part boundary and ap-
ply them one-sided triangular windows to guarantee smooth
waveform transition and to prevent undesirable discontinu-
ities, i.e. impulsive noises. Figure 2 plots an example of his-
tograms of queries, negatives, and generated negatives of hy-
pothesis FSTs from a single speaker. A probability distribu-
tion is drawn in histogram while assuming Gaussian distribu-
tion for better visualization. We used the generated negatives
as {Zb}.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Query and testing data

Many previous works experiment with their own data which
are not accessible. In some literature, only relative perfor-
mances are reported, thus the results are hard to compare with
each other and are not reproducible. To be free from this is-
sue, we use public and well-known data.

We use two query keywords in English, ‘Hey Snap-
dragon’ and ‘Hey Snips’. The audio data of ‘Hey Snips’ is
introduced at [5]. We select 61 speakers who have at least 11
‘Hey Snips’ utterances each. We use 993 utterances from the
data. ‘Hey Snapdragon’ utterances are from a publicly avail-
able dataset1. There are 50 speakers and each of them speaks
the keyword 22 or 23 times. In total, there are 1,112 ‘Hey

1https://developer.qualcomm.com/project/keyword-speech-dataset

Table 1: FRR (%) at 0.05 FAs per hour for clean and SNR levels {10 dB, 6 dB, 0 dB} of positives.

Method Keyword clean 10 dB 6 dB 0 dB Avg.

S-DTW Hey Snapdragon 1.35 3.84 8.01 21.6 8.70
Hey Snips 10.5 15.8 20.7 32.8 19.9

FST Hey Snapdragon 0.53 0.83 3.22 12.2 4.19
Hey Snips 1.85 5.36 8.59 24.7 10.13

Table 2: Comparison of FRR (%) of various KWS systems at given FAs per hour levels.

Method Keyword Params SNR FRR @ 1 FA/ hr FRR @ 0.5 FA/ hr FRR @ 0.05 FA/ hr
Shan et al. [3] Xiao ai tong xue 84 k - 1.02 - -
Coucke et al. [5] Hey snips 222 k 5 dB2 - 1.60 -
Wang et al. [4] Hai xiao wen - - 4.17 - -
He et al. [13] Personal Name3 - - - - 8.9

S-DTW Hey Snapdragon

211 k 6 dB

3.12 4.46 8.01
Hey Snips 13.30 15.07 20.69

FST Hey Snapdragon 0.62 1.04 3.22
Hey Snips 2.79 3.77 8.58

Snapdragon’. At each user-specific test, 3 query utterance are
randomly picked and rest are used as positive test samples.
We augment the positive utterances using five types of noises,
{babble, car, music, office, typing} at three signal-to-noise
ratios (SNR) {10 dB, 6 dB and 0 dB}.

We use WSJ-SI200 [22] as negative samples. We sampled
24 hrs of WSJ-SI200 and segmented the whole audio stream
into 2 seconds long. We augment each data with one of the
five noise types, {babble, car, music, office, typing} and one
SNR ratio among {10 dB, 6 dB and 0 dB}. Noise type and
SNR are randomly selected.

3.1.2. Acoustic model details

The model is trained with Librispeech [23] data. Noises,
{babble, music, street}, are added at uniform random SNRs
in [−3, 15] dB range. For more generalized model, we dis-
torted the data by speech rate, power and reverberation. We
changeed the speech rate with uniform random rates between
0.9 and 1.2. For reverberation, we used several measured
room impulse responses in a moderately reverberant meeting
rooms in an office building. From the term ‘power’, we meant
the input level augmentation for which we changed the peak
amplitudes of the input waveforms to have a random value
between 0 dB and −40 dB in the normalized full scale.

Input features are 40-dimensional Per-channel energy nor-
malization (PCEN) mel-filterbank energy [24] with 30 ms
window and 10 ms frame shift. The model has two convo-
lutional layers followed by five unidirectional LSTM layers.
Each covolutional layer is followed by batch normalization
and activation function. Each LSTM layer has 256 LSTM
cells. On top, there are a fully-connected layer and a soft-
max layer. Through the trade-off between ASR performance
and network size, the model has 211 k number of parame-
ters and shows 16.61 % phoneme-error-rate (PER) and 48.04

% word-error-rate (WER) on Librispeech test-clean dataset
without prior linguistic information.

3.2. Results

We tested 111 user-specific KWS systems. 50 are from the
query ‘Hey Snapdragon’ and the rest are from ‘Hey Snips’.
We used three queries from a given speaker for an enrollment.
When we use one or two queries instead, the relative increase
of FRR (%) at 0.5 FA per hour are 222.05 % or 2.47 % re-
spectively at 6 dB SNR. The scores from three hypothesis are
averaged for each test.

3.2.1. Baseline

Some previous works exploit DTW to compare the query and
test sample [7, 8, 9]. We exploit DTW as our baseline while
using the CTC-based AM model. We use KL-divergence as
DTW distance, and allow a subsequence as an optmial path,
which refers to subsequence DTW (S-DTW) [25]. The score
is normalized by input length of DTW corresponding to the
optimal path.

3.2.2. FST constrained by phonectic hypothesis

We build 3 hypothesis FST for each system. We tested all 111
user-specific models and average them by keywords. Table
1 compares the baseline, the S-DTW with the FST method,
and we average the performances for the four SNR levels to
plot a ROC curve, shown in Figure 3. The method using
FST consistently outperforms the S-DTW while using a same
query, and ‘Hey Snapdragon’ stands out than ‘Hey Snips’.

2Coucke et al. [5] augmented the positive dev and test datasets by only 5
dB, while our 6 dB is only for positive dev. Our test dataset are augmented
by {10, 6, 0} dB.

3He et al. [13] used queries like ’Olivia’ and ’Erica’.

Fig. 4: Histograms of FRRs (%) at 0.05 FA/ hr per user
model.

The query word, ‘Hey Snips’ is short and false alarms are
more likely to occur. The performance is heavily influenced
by the type of keyword and this result is also specified in [13].

In Figure 4, we plot a histogram which shows the FRR by
users. Most user models show low FRR except some outliers.

Due to the limited data access, direct result comparison
with previous works became difficult. Nevertheless, we com-
pared our results with others in Table 2 to show that the results
are comparable to that of predefined KWS systems [3, 5, 4]
and query-by-example system [13]. Blanks in the table im-
plies unknown information.

3.2.3. On-device threshold prediction

We tested a naive threshold prediction approach as a baseline.
The baseline assumes a scenario that a device stores randomly
chosen 100 general negatives. 50 negatives are from clean and
the rest are from augmented data mentioned in section 3.1.1.
A = 3 and B = 100 in Eq.(4).

The proposed method exploits query-specific negatives.
For each query, we divide the waveform into three parts with
the same lengths, thus there are five ways to shuffle to make
it different from the original signal. There are three queries
for each enrollment and, therefore we have 15 generated neg-
atives. Each hypothesis from a query uses other two queries
as positives and their generated negatives as negatives, thus
A = 3 and B = 10.

Figure 5 shows mean of positive and that of negative

Fig. 5: Comparison of baseline with query-specific generated
negatives. The graphs show relationship between the mean
positives and the mean negatives and their best-fit in lines.

scores for 111 user-specific models. The baseline shows low
and even negative correlation coefficient (R) value. R values
for ‘Hey Snapdragon’ and ‘Hey Snips’ are -0.04 and -0.21
respectively. Meanwhile, the proposed method shows posi-
tive R values, 0.25 for ‘Hey Snapdragon’ and 0.40 for ‘Hey
Snips’. If there is a common tendencies between positives
and negatives across keywords, we can expect useful thresh-
old decision rules from them. Here we tried a simple linear
interpolation introduced in Section 2.3.

We search τ in Eq.(4) leveraging brute-force to get near
0.05 FAs per hour on average for 111 models. We set τ to 0.82
for baseline and 0.38 for the proposed method, and resulting
FAs per hour are 0.049 for baseline and 0.050 for the proposed
method on average.

Both method find the τ and reach target FAs per hour
level, however, these two methods have dramatic difference
in inter keywords. Inter keyword difference should be small
in order to query-by-example system to work on any kind of
keywords. For the baseline, ‘Hey Snapdragon’ shows 0.001

FAs per hour while ‘Hey Snips’ shows 0.088 FA per hour.
Despite of using 6 to 7 times lower B, the proposed method
shows exact same, 0.050 FAs per hour for both keyword ‘hey
Snapdragon’ and ‘Hey Snips’. Baseline shows 17.77 % FRR
at 6 dB noisy positives due to the low FAs per hour while the
proposed method shows 3.95 % FRR for ’hey Snapdragon’.
The result is different from Table 2, because it uses given FAs
per hour level for each model while this session use averaged
FAs per hour.

4. CONCLUSIONS

In this paper, we suggest a simple and powerful approach for
query-by-example on-device keyword spotting task. Our sys-
tem uses user-specific queries, and CTC based AM outputs
phonetic posteriorgram. We decode the output and build left-
to-right FSTs as a hypothesis. The log likelihood is calcu-
lated as a score for testing. For on-device test, we suggest a
method to predict a proper user and query specific threshold
with the hypothesis. We generate query-specific negatives by
shuffling the query in waveform. While many previous KWS
approaches are not reproducible due to the limited data ac-
cess, we tested our methods on public and well-known data.
In the experiments, our approach showed promising and com-
parable performances to the latest predefined and query-by-
example methods. There is a limit to this work due to lack of
public data, and we suggest naive approach for utilizing gen-
erated negatives. As a future work, we will study advanced
way to predict threshold using the query-specific negatives,
and test various keywords.

5. REFERENCES

[1] J. Guo, K. Kumatani, M. Sun, M. Wu, A. Raju,
N. Strom, and A. Mandal, “Time-delayed bottleneck
highway networks using a dft feature for keyword spot-
ting,” in ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings.
IEEE, 2018, pp. 5489–5493.

[2] M. Chen, S. Zhang, M. Lei, Y. Liu, H. Yao, and J. Gao,
“Compact feedforward sequential memory networks for
small-footprint keyword spotting,” in INTERSPEECH
2018 – 19th Annual Conference of the International
Speech Communication Association, 2018, pp. 2663–
2667.

[3] C. Shan, J. Zhang, Y. Wang, and L. Xie, “Attention-
based end-to-end models for small-footprint keyword
spotting,” in INTERSPEECH 2018 – 19th Annual Con-
ference of the International Speech Communication As-
sociation, 2018, pp. 2037–2041.

[4] X. Wang, S. Sun, C. Shan, J. Hou, L. Xie, S. Li, and
X. Lei, “Adversarial examples for improving end-to-
end attention-based small-footprint keyword spotting,”
in ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings. IEEE,
2019.

[5] A. Coucke, M. Chlieh, T. Gisselbrecht, D. Leroy,
M. Poumeyrol, and T. Lavril, “Efficient keyword spot-
ting using dilated convolutions and gating,” in arXiv
preprint arXiv:1811.07684, 2018.

[6] A. Raziel and H. Park, “End-to-end streaming keyword
spotting,” in arXiv preprint arXiv: 1812.02802, 2019.

[7] T.J. Hazen, W. Shen, and C. White, “Query-by-example
spoken term detection using phonetic posteriorgram
templates,” in 2009 IEEE Workshop on Automatic
Speech Recognition & Understanding. IEEE, 2009, pp.
421–426.

[8] Y. Zhang and J.R. Glass, “Unsupervised spoken key-
word spotting via segmental dtw on gaussian posterior-
grams,” in 2009 IEEE Workshop on Automatic Speech
Recognition & Understanding. IEEE, 2009, pp. 398–
403.

[9] X. Anguera and M. Ferrarons, “Memory efficient sub-
sequence dtw for query-by-example spoken term detec-
tion,” in 2013 IEEE International Conference on Multi-
media and Expo (ICME). IEEE, 2013, pp. 1–6.

[10] Y. Zhuang, X. Chang, Y. Qian, and K. Yu, “Unrestricted
vocabulary keyword spotting using lstm-ctc.,” in Inter-
speech, 2016, pp. 938–942.

[11] Loren Lugosch, Samuel Myer, and Vikrant Singh
Tomar, “Donut: Ctc-based query-by-example keyword
spotting,” arXiv preprint arXiv:1811.10736, 2018.

[12] G. Chen, C. Parada, and T.N. Sainath, “Query-by-
example keyword spotting using long short-term mem-
ory networks,” in ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - Pro-
ceedings. IEEE, 2015, pp. 5236–5240.

[13] Y. He, R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin,
and I. McGraw, “Streaming small-footprint keyword
spotting using sequence-to-sequence models,” in 2017
IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU). IEEE, 2017, pp. 474–481.

[14] K. Audhkhasi, A. Rosenberg, A. Sethy, B. Ramabhad-
ran, and B. Kingsbury, “End-to-end asr-free keyword
search from speech,” IEEE Journal of Selected Topics in
Signal Processing, vol. 11, no. 8, pp. 1351–1359, 2017.

[15] S. Myer and V.S. Tomar, “Efficient keyword spotting
using time delay neural networks,” in INTERSPEECH
2018 – 19th Annual Conference of the International
Speech Communication Association, 2018, pp. 1264–
1268.

[16] R. Tang and J. Lin, “Deep residual learning for small-
footprint keyword spotting,” in ICASSP, IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing - Proceedings. IEEE, 2018, pp. 5484–5488.

[17] L. Pandey and K. Nathwani, “Lstm based attentive fu-
sion of spectral and prosodic information for keyword
spotting in hindi language,” in INTERSPEECH 2018
– 19th Annual Conference of the International Speech
Communication Association, 2018, pp. 112–116.

[18] S. Fernández, A. Graves, and J. Schmidhuber, “An ap-
plication of recurrent neural networks to discriminative
keyword spotting,” in International Conference on Arti-
ficial Neural Networks. Springer, 2007, pp. 220–229.

[19] R. Menon, H. Kamper, J. Quinn, and T. Niesler, “Fast
asr-free and almost zero-resource keyword spotting us-
ing dtw and cnns for humanitarian monitoring,” in IN-
TERSPEECH 2018 – 19th Annual Conference of the In-
ternational Speech Communication Association, 2018,
pp. 2608–2612.

[20] Y. Chen, T. Ko, L. Shang, X. Chen, X. Jiang, and Q. Li,
“Meta learning for few-shot keyword spotting,” in arXiv
preprint arXiv: 1812.10233, 2018.

[21] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks,”
in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 369–376.

[22] D.B. Paul and J.M. Baker, “The design for the wall street
journal-based csr corpus,” in Proceedings of the work-
shop on Speech and Natural Language. Association for
Computational Linguistics, 1992, pp. 357–362.

[23] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Librispeech: an asr corpus based on public domain
audio books,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2015, pp. 5206–5210.

[24] Y. Wang, P. Getreuer, T. Hughes, R.F. Lyon, and R.A.
Saurous, “Trainable frontend for robust and far-field
keyword spotting,” in ICASSP, IEEE International Con-
ference on Acoustics, Speech and Signal Processing -
Proceedings. IEEE, 2017, pp. 5670–5674.

[25] M. Müller, “Dynamic time warping,” Information re-
trieval for music and motion, pp. 69–84, 2007.

	1 Introduction
	2 Query-by-example KWS system
	2.1 Acoustic model
	2.2 Keyword spotting decoder
	2.2.1 Query enrollment
	2.2.2 Keyword spotting

	2.3 On-device threshold prediction

	3 Experiments
	3.1 Experimental setup
	3.1.1 Query and testing data
	3.1.2 Acoustic model details

	3.2 Results
	3.2.1 Baseline
	3.2.2 FST constrained by phonectic hypothesis
	3.2.3 On-device threshold prediction

	4 Conclusions
	5 References

