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EMBEDDINGS FOR DNN SPEAKER ADAPTIVE TRAINING

Joanna Rownicka, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, UK

ABSTRACT

In this work, we investigate the use of embeddings for
speaker-adaptive training of DNNs (DNN-SAT) focusing on
a small amount of adaptation data per speaker. DNN-SAT
can be viewed as learning a mapping from each embedding
to transformation parameters that are applied to the shared
parameters of the DNN. We investigate different approaches
to applying these transformations, and find that with a good
training strategy, a multi-layer adaptation network applied to
all hidden layers is no more effective than a single linear layer
acting on the embeddings to transform the input features. In
the second part of our work, we evaluate different embed-
dings (i-vectors, x-vectors and deep CNN embeddings) in an
additional speaker recognition task in order to gain insight
into what should characterize an embedding for DNN-SAT.
We find the performance for speaker recognition of a given
representation is not correlated with its ASR performance; in
fact, ability to capture more speech attributes than just speaker
identity was the most important characteristic of the embed-
dings for efficient DNN-SAT ASR. Our best models achieved
relative WER gains of 4% and 9% over DNN baselines using
speaker-level cepstral mean normalisation (CMN), and a fully
speaker-independent model, respectively.

Index Terms— speaker embeddings, utterance summary
vectors, speaker adaptive training

1. INTRODUCTION

The robustness of an automatic speech recognition (ASR)
system can be enhanced by using various acoustic model
adaptation methods, which aim to modify a general model to-
wards particular testing conditions, or modify testing features
towards a general model. However, as opposed to the adap-
tation of Gaussian mixture model – hidden Markov model
(GMM-HMM) systems, adaptation of deep neural networks
(DNNs) still remains an open research question, due to lack
of interpretability of the model parameters [1].

In a speaker adaptively trained DNN (DNN-SAT), a
speaker representation is usually extracted from a separate
system and appended to the input acoustic features (e.g. mel
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frequency cepstral coefficients – MFCCs), enabling the net-
work to learn speaker-invariant representations [1, 2] and
improving the robustness. Of course, embeddings may be ex-
tracted for any other labelled attribute of the data, and hence
in this paper we refer more generally to attribute embed-
dings or attribute-aware training. Attribute embeddings can
be transformed with a control network prior to the concate-
nation with input features, to better learn attribute specific
feature shifts [3]. Separate shift or scale transformation can
also be learned from the embeddings for each hidden layer,
and applied to internal feature representations at the output of
any hidden layer of the main network to enhance the attribute
invariance for the internal representations [4, 5, 6].

In this work, we explore how the transformation of the at-
tribute embedding influences the attribute-normalization abil-
ity in the main part of the acoustic model, and whether the
transformation to more abstract representations at the hidden
layers is superior to the transformation of input features. We
perform experiments with embeddings extracted at the utter-
ance and speaker levels (extracted per frame), investigating
the effectiveness of DNN-SAT with limited quantity of adap-
tation data. To the best of our knowledge, online i-vectors
have never been previously used for DNN-SAT to generate
layer-wise transformation parameters.

A second contribution of this work is the analysis of the
embeddings used for DNN-SAT. Building on deep speaker
embedding extraction methods proposed for speaker recog-
nition [7, 8, 9, 10], we used different speaker representa-
tions [11, 12, 13], representations capturing different speech
attributes (e.g. noise) [14, 15], and purely utterance-level
summaries [16, 17, 18] for DNN-SAT. The premise is that
with better attribute representations, itis possible to learn
more reliable transformations, enabling the network to oper-
ate in a feature space better normalized with respect to the
attribute. We investigate the characteristics of three types
of embeddings (i-vectors, x-vectors, and deep convolutional
neural network (CNN) embeddings [19]) by evaluating them
for speaker recognition task, and then using the same embed-
dings DNN-SAT ASR. To our knowledge, x-vectors have not
been previously explored for SAT. These experiments enable
us to relate speaker discriminability of each embedding to
the performance in DNN-SAT, in order to better understand
which properties are desirable for efficient adaptation, serving
as guidance for designing new embeddings for this task.



Fig. 1: Embedding-based DNN-SAT using control network
with a skip connection (red) to learn the shift and scale to all
hidden layers of the main part of the acoustic model.

2. EMBEDDINGS INCORPORATION INTO
ACOUSTIC MODEL

We explore different ways of incorporating the embeddings
into the acoustic model to enhance its attribute invariance.
We start from a multi-layer control network (sec. 2.1) used
to map each embedding into shift and scale parameters to
(a) normalize all hidden representations, and (b) to normal-
ize input features. We then reduce the number of parameters
acting on the embeddings with a control layer (sec. 2.2), con-
trol vector (sec. 2.3) and control variable and constant scale
(sec. 2.4). Element-wise addition is denoted with

⊕
(shift-

ing), and
⊙

denotes element-wise product (scaling).

2.1. Control network

Several approaches have been proposed recently to incorpo-
rate an attribute embedding into the network to normalize the
hidden representations. In [6] i-vectors are mapped through
a network to element-wise scaling and bias parameters. Our
first approach to incorporate the embedding into acoustic
model is similar to [6] and is depicted in Figure 1. In our
work, however, attribute-dependent mappings are generated
by a control network from online i-vectors, not speaker i-
vectors, to enable efficient DNN-SAT. During decoding, the
DNN-SAT model is adapted simply by extracting online
i-vectors of each test speaker at the frame level, feeding
the i-vector forward through the adaptation network, and
integrating the generated shift and scale with the internal
representations of the main part of the network. Differently
to [6], we also add a skip connection to the control network,
in order to control the degree of adaptation at each layer.
By doing this, instead of applying a control network just to
one or two bottom layers of the main network, we may in-

sert the control network after every layer without a loss in
performance. Shared layers of the control network have 100
units with ReLU nonlinearity and are applied to an externally
extracted speaker embedding (online i-vector). Scaling and
bias weight layers are used to scale and shift hidden repre-
sentations (hl−1), and are thus constrained to have the same
number of units as the layers in the main part of the network.
The scaling weight layer uses a sigmoid activation function to
enforce positive scaling whilst the bias weight layer employs
a hyperbolic tangent activation, enabling the bias to be posi-
tive or negative. Those layers act on the output of the shared
layers and are applied to hidden representation hl−1 to obtain
normalized hidden representation hl. We apply the control
network at each layer l of the main network to learn the shift
and scale to all of the hidden layers. We also experiment with
applying the control network only to the input features.

2.2. Control layer

Instead of using a multi-layer control network, we reduce
the number of parameters acting on the embeddings by using
a single control layer to transform the representations (Fig-
ure 2a), to avoid overfitting. With a control layer, we apply
the shift or scale to the input features, xin, or all hidden rep-
resentations. The equations and figures in sections 2.2-2.4
show input features transformations. For hidden representa-
tions transformation, xin is replaced with hl−1 and xnorm

with hl. Feature shifts (Eq. 1) or scalings are generated from
the embeddings, e, to obtain normalized features, xnorm, that
are then used in the normalized feature space by the main part
of the network.

xnorm = xin + f(e) (1)

f(e) = act(We
Te+ be) (2)

In our experiments, we use the ReLU, sigmoid, tanh and
linear activation functions (act) to explore the effect of the
linear vs. nonlinear shift, and the direction and value range of
the shifts to the input features. We and be are the weight ma-
trix and bias vector acting on the embeddings. Feature scaling
can be realized by replacing addition with element-wise prod-
uct in Eq. 1 and in Figure 2a.

2.3. Control vector

To further reduce the number of parameters applied to the
embeddings, we estimate just the diagonal elements of the
weight matrix We:

We = diag(we) (3)

The resulting vector we can then be used to scale the em-
bedding e, and shift the input features (Figure 2b). Here, we



(a) Control layer (b) Control vector (c) Control variable or constant
scale

Fig. 2: Approaches to incorporate the embeddings into the acoustic model, reducing the number of parameters acting on the
embeddings compared to the control network.

use the sigmoid activation function to restrict the scaling of
the embeddings to only positive values.

xnorm = xin + sigmoid(we)⊗ e (4)

2.4. Control variable or constant scale

To further simplify the approach and reduce the number of
parameters, a single weight we can be used to scale the em-
bedding prior to shifting the input features (Figure 2c).

xnorm = xin + we · e (5)

Moreover, to eliminate the need to learn any parameters
acting on the embeddings, we also keep the scale constant
(0.1) instead of learning the weight we. Finally, the concate-
nation of the input features and the embeddings can be seen
as weighting the embedding with a constant scale equal to
1. In section 3.2 we show empirical results for all mentioned
approaches to map the online speaker i-vectors to control pa-
rameters used to transform input features as well as hidden
representations.

3. RESULTS AND DISCUSSIONS

3.1. Experimental setup

In all our experiments we use the AMI IHM dataset [20]
which contains around 100 hours of meeting recordings in
English. We use the Kaldi toolkit [21] for input acoustic
feature extraction (40-dim high-resolution MFCC features
with double deltas and 5 frames of context at each side, with
cepstral mean normalisation (CMN) applied except where
specified), i-vector and x-vector extraction, training initial
models for alignment, and decoding. We use the PyTorch-
Kaldi [22] toolkit to implement DNN acoustic models and
Tensorflow [23] to extract deep CNN embeddings.

For our ASR experiments, we use the train/dev/eval set
split defined by Kaldi recipe1. Unlike the recipe we do not

1egs/ami/s5b/local/chain/run_tdnn.sh

employ any speed or volume perturbation to the training set.
The main acoustic model is a 6 layer DNN with 2048 units in
each layer, trained with cross-entropy loss over 3984 context-
dependent tied triphone states. For decoding we use the tri-
gram language model from the standard recipe, which is an
interpolation of the trigram language models trained on the
AMI and Fisher English transcripts.

To explore the characteristics of the embeddings, we
evaluate them in a speaker recognition task. i-vectors used
in this work are extracted from MFCCs in an online fash-
ion or at the utterance level. Online i-vectors are extracted
at each frame; however, the speaker information is carried
over within speakers. We explore both types of i-vectors for
efficient DNN-SAT. i-vectors are designed to capture both
speaker and channel characteristics, as they use a single vari-
ability subspace to model different types of variability in the
speech signal. x-vectors are extracted per utterance; however,
since the x-vector extractor is trained with the use of speaker
labels, they are explicitly designed to capture speaker charac-
teristics. Compared to i-vectors, x-vectors should therefore
be invariant to within-speaker channel variability. Deep
CNN embeddings are also extracted per utterance. Here, the
speaker labels are not used in the embedding extraction. The
model used to extract the embeddings is a very deep CNN
acoustic model [24] (similar to the VGG [25] architecture
but without pooling layers) with 2D 3x3 kernels, trained to
classify senone states.

Principal components analysis (PCA) is used to reduce
the dimensionality of the embeddings. To add speaker dis-
crimination to the embeddings, a linear discriminant analy-
sis (LDA) transform informed by training speaker labels may
be used. It was shown in [19] that PCA CNN embeddings
are much more characteristic of the acoustic condition than
i-vectors (for Aurora4 dataset), and LDA CNN embeddings
are also better speaker representations, compared to i-vectors.
In the speaker recognition experiments, we create our own
split of data for enrollment (enroll) and testing (test). We first
merge the original dev and eval sets (Kaldi ASR split) to max-
imize the number of speakers for evaluation (135), and then
split the set into two parts, such that utterances from every



Embed. mapping shift/scale WER
SI baseline - 28.3
CMN - 27.0
ctrl network

⊕
,
⊙

27.0
ctrl layer

⊙
26.5

ctrl layer
⊕

25.9
ctrl vector

⊕
26.1

ctrl variable
⊕

26.1
ctrl scale

⊕
26.1

embed. concat. 26.5
ctrl network (hidden)

⊕
,
⊙

26.1
ctrl network (hidden)

⊕
26.0

ctrl network (hidden)
⊙

26.0
ctrl layer (hidden)

⊕
26.4

ctrl layer (hidden)
⊙

27.4

Table 1: Comparison of the approaches to generate the pa-
rameters acting on the embeddings for input features and hid-
den representations transformation. All models (except for
the SI baseline) use CMN features.

speaker are found in both enroll and test sets. We use the en-
roll set to obtain speaker-level representations, and we evalu-
ate the utterance-level representations from the test set against
them. We create the trials with non-target proportion 50% and
with the non-matching speaker for the non-target part of trials
chosen at random.

3.2. Embedding incorporation

The results for different embedding mapping and transforma-
tion approaches are presented in Table 1. The first block gives
baseline results, the second one is for input features transfor-
mation, and the third is for hidden representation transforma-
tions. Different patterns can be observed depending on where
in the network the transformation is applied. For input feature
transformation, a multi-layer control network did not outper-
form the CMN baseline. All of the approaches with fewer
parameters were superior to the control network. Since the
control network is the most flexible, this suggests that when
the control network is applied as low in the network as to the
input layer the model may be more vulnerable to overfitting.

For the control layer, shifting the input features was more
important than scaling them with the activations generated
from the embeddings. The input features are already mean-
normalized per speaker, so the transformations are potentially
normalizing different factors of variation in the utterances.
This could explain better performance of shifting rather than
scaling with the control layer – additive noise might be com-
pensated by shifting. For the control layer acting on the
embeddings, we experimented with different activation func-
tions, finding that all of them give similar performance. The
simplest and at the same time the most flexible approach is
to use a linear activation function. It does not restrict the

direction and the value range of the feature shifts. When
using a linear identity activation function we do not benefit
from learning more abstract embedding representations prior
to the input feature transformation – so the advantage of this
approach lies in scaling the embeddings with the weights
learned in the control layer.

Furthermore, we found the training strategy to be impor-
tant. The most effective approach was to initialize the main
part of the network with the parameters from the SI baseline
in the first stage, and in the second stage to train the remaining
control parameters, together with fine-tuning the parameters
of the main part of the network. This approach was much
better than fixing the parameters of the main part of the net-
work in the final stage and only training the control part of the
network. We hypothesize that this is due to the ability to up-
date the parameters of the DNN model in the new, normalized
feature space. The training strategy is the factor differentiat-
ing the embedding concatenation vs. other approaches. It is
therefore important to scale the embedding, as well as to use
a multi-step training approach to generate the control parame-
ters for the input feature transformation in the attribute-aware
DNN-SAT scheme.

The results for the transformations applied to the hidden
layers (third block) show that, overall, transforming hidden
representations is not more effective than transforming the in-
put features. This might be explained by the fact that batch
normalization is used in our experiments, so the hidden rep-
resentations might be already invariant to different speech at-
tributes. Further transformation with control parameters de-
rived from the embeddings is not as effective as transform-
ing the input features, allowing the main part of the network
to operate in the normalized feature space at the first hidden
layer. Interestingly, the hidden layers benefit from a different
mapping approach to the input layers: in this case, the control
network with the most flexibility to generate transformation
parameters is superior to other approaches. We conclude that
learning an abstract layer-wise mapping is important for hid-
den layer transformations.

3.3. Characteristics of the embeddings

To better understand the characteristics of the embeddings
and how they relate to ASR performance, we first evaluate
them for speaker recognition, and then in the DNN-SAT setup
with the control layer to shift the input features. The aim is
to learn if better speaker representations extracted from NNs
correlate with better performance in DNN-SAT.

The results for speaker recognition are presented in Ta-
ble 2. We use the Equal Error Rate (EER) metric. Deep
CNN embeddings extracted with a 800D PCA transformation
are the most accurate speaker representations. Comparing i-
vectors and x-vectors, we find that i-vectors are superior with
all backends. Even when extracted from a pretrained SRE16
x-vector model [7] with LDA and probabilistic LDA (PLDA)



Table 2: EERs (%) for i-vectors (per utt.), x-vectors, and
deep embeddings evaluated in speaker recognition task with
different backends. x-vector uses a model trained on AMI
training data. x-vector (pretrained) uses Kaldi pretrained
SRE16 x-vector model. x-vector (AMI backend) also uses
the pretrained model but the LDA and PLDA transforms are
trained on the AMI training data.

cosine PLDA LDA LDA/
PLDA

400D i-vector 10.05 10.93 10.98 11.88
x-vector 31.47 44.95 43.27 27.85
x-vector (pretrained) - - 43.47 33.83
x-vector (AMI backend) 37.36 13.42 14.65 14.51
400D CNN embed. 20.65 5.10 7.09 5.55
800D CNN embed. 20.62 5.06 6.70 5.34

Fig. 3: EERs (%) for x-vectors, i-vectors and CNN embed-
dings with PLDA scoring for speaker recognition. Enroll and
test recordings are filtered by the minimum length.

transformations trained on matched AMI training data, de-
noted x-vector (AMI backend), x-vectors are still worse for
speaker differentiation on the AMI dataset. However, it can
be seen in Figure 3, that for longer recordings, x-vectors start
to outperform both i-vectors and deep CNN embeddings in
the speaker recognition task. It is interesting to note that the
trend in Figure 3 for deep CNN embeddings is different to
that for i-vectors and x-vectors. For very short utterances (<
1 sec), deep CNN embeddings are able to capture speaker
identity better than for longer utterances.

This behaviour might be explained by the fact that the
extraction of deep CNN utterance-level embeddings from a
fully-convolutional architecture, with kernels spanning over
time and frequency, enables the capture not only of speaker
characteristics, but also of more local time and frequency
acoustic patterns. This hypothesis is supported by the re-
sults in Table 3, where instead of speaker classification, we

Table 3: EERs (%) for i-vectors and deep embeddings evalu-
ated in the “speaker” recognition task with different backends,
where speakers are split such that there is no more than 30 sec
of data per speaker.

cosine PLDA LDA LDA/
PLDA

i-vector (MFCC) 14.99 13.13 12.83 13.54
800D CNN embed. 31.32 3.46 4.36 3.19

perform speaker subset classification. Speaker subsets are
created by splitting within existing speakers into several
groups, with a 30 sec of data per subset restriction. Contigu-
ous utterances are assigned to the subsets. As in the previous
experiment, the opposite trend can be observed for deep
CNN embeddings than for the i-vectors – EERs are lower for
CNN embeddings and higher for i-vectors for speaker sub-
sets, compared to genuine speakers. Therefore, deep CNN
embeddings are not only very good at capturing speaker char-
acteristics, but can also represent more local characteristics of
the utterances, potentially corresponding to different acoustic
conditions, channel characteristics, or phonetic content of
the utterances. In the next section, we analyze how those
characteristics correspond to the performance in DNN-SAT.

3.4. Embeddings for DNN-SAT

We evaluate the influence of the type of embedding and its
characteristics on the DNN-SAT task, using a control layer to
shift the input features. The results are presented in Table 4.
By replacing online i-vectors with offline utterance i-vectors,
we gained 0.1% in WER, thus the frame level variation of
the embeddings did not contribute to better WER in our ex-
periments. On the other hand, online decoding can only be
performed with online representations, and as the loss of per-
formance is not substantial, one may prefer to use online i-
vectors. It is important to bear in mind however, that genuine
speaker labels were used for online i-vector extraction in our
experiments. For the deployment of DNN-SAT with online
representations, an additional diarization or speaker cluster-
ing step would be needed.

The PCA transform in the deep CNN embedding extrac-
tion framework is used simply to reduce the dimensionality
of the embedding in an unsupervised fashion. Since speaker
information is not used in the embedding extraction, PCA
CNN embeddings can be regarded as utterance summaries,
capturing local acoustic characteristics. Their incorporation
into the acoustic model gives a substantial improvement over
the baselines; however, adding speaker discrimination to the
utterance summary (using LDA) further improves the results.
Interestingly, better speaker discriminability does not guaran-
tee better normalization in DNN-SAT. The lowest EER was
achieved with 20D embeddings for speaker recognition, and



Embedding type WER
SI baseline 28.3
CMN 27.0
online i-vectors 25.9
utterance i-vectors 25.8
CNN embeddings (100D PCA) 26.2
CNN embeddings (100D LDA) 25.8
CNN embeddings (20D LDA) 26.1
x-vectors (pretrained, AMI backend) 26.3

Table 4: WERs for DNN-SAT with different embeddings.
Models are trained with a control layer used to shift the input
features.

yet 100D embeddings were optimal for DNN-SAT. It is pos-
sible that by using more dimensions for the embeddings, we
are able to capture more attributes of the utterance, resulting
in better DNN-SAT performance.

x-vectors are extracted from a network trained to classify
speakers, hence they are more invariant to within-speaker
variability, caused by speech attributes other than speaker
identity. We believe that this might the reason for poorer
ASR performance with DNN-SAT.

We also show the WER performance in the DNN-SAT
setup for all three types of embeddings for different lengths
of the utterances used in decoding (Fig. 4). It is interest-
ing to see that even though deep CNN embeddings are bet-
ter speaker representations for short utterances (Fig. 3), this
is not reflected in their performance in DNN-SAT for short
utterances. Regardless of the utterance length, i-vectors and
deep CNN embeddings perform similarly for the task of input
feature normalization. For x-vectors, even though they out-
perform the other embeddings in a speaker recognition task
for longer utterances (> 3.5 sec), they do not outperform the
other embeddings when used for DNN-SAT, regardless of the
utterance length. This result confirms that better speaker rep-
resentations do not correlate with more effective normaliza-
tion in DNN-SAT.

4. CONCLUSIONS

In this paper we investigated embeddings for efficient DNN-
SAT. We evaluated the influence of the flexibility of the map-
ping applied to the embeddings, as well as transforming input
features compared to hidden representations. We show that
transforming hidden layers is not more effective than learning
shifts to the input features. With this simplified approach and
an appropriate training strategy, the main part of the network
is updated in the normalized feature space. Although using a
multi-layer control network to normalize all hidden represen-
tations gave similar performance, the simpler approach of lin-
early shifting the input features with single layer activations
learned from the embeddings should be preferred.

Fig. 4: WERs (eval; %) for x-vectors, i-vectors and CNN em-
beddings used in DNN-SAT with minimum length threshold.

We also evaluated the effect of the embedding type on
DNN-SAT ASR performance. We used different types of
the embeddings for DNN-SAT (with the same strategy for
generating control parameters), and for a speaker recognition
task. This dual analysis of the embeddings provided insight
into the characteristics of the embeddings desirable for DNN-
SAT. We found frame-level variation of the embeddings did
not bring WER improvements – utterance-level summaries
were the most beneficial for DNN-SAT. An utterance sum-
mary has the potential to capture more attributes than just
one (e.g. speaker identity) if it is not explicitly designed
to capture a specific attribute. Adding speaker discrimina-
tion to the utterance summary was useful, but we found that
the best speaker discriminability of the embeddings did not
correlate with the best performance in DNN-SAT. In fact, a
more important characteristic of the DNN-SAT embeddings
is the ability to capture additional utterance attributes, rather
than focusing solely on speaker differentiation. This can be
achieved by i-vectors and deep CNN embeddings, but not by
x-vectors in the current extraction framework. Adding chan-
nel or acoustic condition discriminability to x-vectors, per-
haps using multi-task learning, could improve their perfor-
mance for DNN-SAT.

Analyzing the embeddings used in DNN-SAT with met-
rics other than WER can give insight into the reasons for
differences in performance. This work is a step towards ex-
plaining DNN acoustic model adaptive training using auxil-
iary representations. Understanding why one embedding is
superior to the other is valuable also for designing new em-
beddings. Therefore, we plan to investigate the same embed-
dings in more tasks (e.g. noise or dialect recognition) to re-
late their characteristics to the performance in DNN-SAT, and
also plan to extract alternative embeddings for DNN-SAT us-
ing the knowledge acquired in this work.
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