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Abstract
The short duration of an input utterance is one of the most
critical threats that degrade the performance of speaker veri-
fication systems. This study aimed to develop an integrated
text-independent speaker verification system that inputs utter-
ances with short duration of 2 seconds or less. We propose an
approach using a teacher-student learning framework for this
goal, applied to short utterance compensation for the first time
in our knowledge. The core concept of the proposed system is
to conduct the compensation throughout the network that ex-
tracts the speaker embedding, mainly in phonetic-level, rather
than compensating via a separate system after extracting the
speaker embedding. In the proposed architecture, phonetic-
level features where each feature represents a segment of 130
ms are extracted using convolutional layers. A layer of gated re-
current units extracts an utterance-level feature using phonetic-
level features. The proposed approach also adopts a new ob-
jective function for teacher-student learning that considers both
Kullback-Leibler divergence of output layers and cosine dis-
tance of speaker embeddings layers. Experiments were con-
ducted using deep neural networks that take raw waveforms as
input, and output speaker embeddings on VoxCeleb1 dataset.
The proposed model could compensate approximately 65 % of
the performance degradation due to the shortened duration.
Index Terms: Short utterance compensation, teacher-student
learning, text-independent speaker verification, raw waveform,
speaker embedding

1. Introduction
Recent speaker verification systems generally work based on
utterance-level features such as i-vectors, or speaker embed-
dings from deep neural networks (DNNs) such as x-vector sys-
tem [1–3]. In utterance-level features extracted from short utter-
ances, uncertainty exist owing to the insufficient phonetic infor-
mation, which is a well-known factor of performance degrada-
tion of speaker verification systems [4]. To compensate for this
uncertainty caused by short utterances, Saeidi et al. proposed a
propagation method in the i-vector space [5]. Yamamoto et al.,
proposed a DNN-based compensation system that transforms
an i-vector extracted from a short utterance into an i-vector
corresponding to a long utterance. In Yamamoto’s research, it
was shown that phonetic information can be effectively used for
compensating short utterances [6]. However, only a minor im-
provement in performance could be obtained through this ap-
proach. We assume that this limitation occurred because it is
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difficult to compensate the missing phonetic information using
already extracted utterance-level features [5–7].

Unlike most previous studies that compensate utterance-
level features after they have been extracted, we propose a novel
short utterance compensation system based on phonetic-level
features. The proposed system extracts speaker embeddings di-
rectly from short utterances. The phonetic-level feature in this
study is defined as an intermediate concept between frame-level
and utterance-level features that effectively represents phonetic
information, which covers approximately 130 ms. The duration
of 130 ms is known to be appropriate for representing phonetic
information based on conventional phonetic knowledge [8, 9].
Figure 1-(a) illustrates the concept of the phonetic-level fea-
tures.

To efficiently compensate the short utterances using pho-
netic information, we use the convolutional neural network
long short-term memory (CNN-LSTM) architecture proposed
by Jung et al. with a few modifications [10]. This model di-
rectly extracts utterance-level embeddings from raw waveform,
where the process can be divided into frame-level feature ex-
traction and utterance-level feature aggregation. The CNN is
used to conduct the former and LSTM is used for the latter.
Here, we define the output of the last convolutional layer as the
phonetic-feature. Using this model, teacher-student (TS) learn-
ing framework is conducted where cosine distance of speaker
embeddings from long and short utterances are compared to
efficiently compensate the short utterances using phonetic in-
formation. Resulting proposed system is an integrated short
utterance compensation system that extracts speaker embed-
dings directly from short utterances of 2.05 s duration, text-
independently (overall illustration in Figure 1-(b)).

The remaining paper is organized as follows: Section 2 de-
scribes the speaker embedding system. Section 3 introduces the
teacher-student learning framework. The proposed short utter-
ance compensation system is discussed in Section 4. The ex-
perimental settings and result analysis are described in Section
5 and the study is concluded in Section 6.

2. Speaker embedding model
Recent advances in deep neural networks (DNNs) have resulted
in several successful speaker embedding systems that directly
model raw waveforms [10–12]. These studies have shown that
suitable pre-processing for speaker verification could be per-
formed, yielding comparable or better results than conventional
Mel-energy feature or spectrogram-based systems [10, 13]. In
this study, we use the raw waveform CNN-LSTM (RWCNN-
LSTM) architecture proposed in [10] with the following two
modifications: leaky rectified linear unit (LReLU) activation
was used [14] instead of ReLU activation, and the long short-
term memory layer was replaced with a GRU layer. Compara-
tive experimental results show that these two modifications lead
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Figure 1: (a) Conceptual illustration of various levels of fea-
tures based on CNN-GRU network (b) Workflow of the proposed
teacher-student learning-based short utterance compensation
system.

to an additional decrease of 10 % in terms of equal error rates
(EERs). Note that other DNN systems can also used for the
short utterance compensation scheme proposed in Section 4.

The RWCNN-GRU model comprises convolutional blocks
followed by one GRU layer and two fully-connected layers.
Each convolutional block has a residual connection [15] and
contains a pooling layer at its end, same with the convolutional
block used in [10]. The last convolutional block transforms raw
waveforms into phonetic-level features (addressed in Section 4)
that represent segments of approximately 130 ms. The outputs
of the last convolutional block are fed to the following GRU
layer, which produces fixed low dimensional utterance-level
representations. Then, the last fully-connected layer’s LReLU
activation is used as the speaker embedding. Speaker verifica-
tion is performed by comparing the cosine distance between two
speaker embeddings. In this research, both teacher and student
DNNs have an identical architecture. However, the sequence
length of the output of the last convolutional block (which can
also be thought of the timestep of the GRU input) varies de-
pending on the length of input utterances.

Figure 2: Speaker embeddings visualized using the t-SNE al-
gorithm [19]. The five different colors represent five randomly
selected speakers from the evaluation set. A triangle denotes
the mean of the speaker embeddings extracted from long utter-
ances.

3. Teacher-student learning
Teacher-student (TS) learning uses two DNNs, teacher and stu-
dent, in which the student DNN is trained using soft labels that
the pre-trained teacher DNN provides. In this framework, af-
ter the teacher network is trained, the student network is trained
to have an output distribution similar to that of the teacher net-
work. This framework was first proposed for model compres-
sion and is also widely used for compensating far-field utter-
ances [16–18]. Adoption of the TS framework into short ut-
terance compensation is novel in our knowledge. When TS
learning is used for short utterance compensation, the Kull-
back–Leibler (KL) divergence objective function can be written
as

KLloss = −
J∑
j

I∑
i

pT (si|xj,l) log(pS(si|xj,sh)), (1)

where i and j refer to the speaker and utterance indices, respec-
tively; xl and xsh refer to the long and short crop of the same
utterance, respectively; and pT (si|·) and pS(si|·) are the out-
puts of the teacher and student DNNs, respectively. The above
equation shows that TS learning trains the student DNN’s out-
put layer distribution same as that of the teacher DNN despite
being provided with short utterances.

4. Proposed short utterance compensation
system

The main goal of the proposed system is to conduct the com-
pensation throughout the network, rather than compensating via
a separate system after extracting the speaker embedding. TS
learning addressed in Section 3 is applied to short utterance
compensation for this goal. To compensate more efficiently, we
propose a direct compensation using the speaker embeddings
and the output layer while conventional TS learning only uses
the output layer. This is because the ultimate goal of a short
utterance compensation system is to make the speaker embed-
ding of a short utterance identical to that of a long utterance,



comparison of speaker embeddings would be a more direct ap-
proach. The objective function of the proposed TS learning can
be written as an extension of Equation 1,

Loss =

J∑
j

Dist(pT (e|xj,l), pS(e|xj,sh))

−
J∑
j

I∑
i

pT (si|xj,l) log(pS(si|xj,sh)).

(2)

Here pT (e|xj,l) and pS(e|xj,sh) denote the speaker embedding
of the teacher and student DNNs, respectively, and Dist(·, ·)
denotes the measure of the distance between two embeddings
such as the cosine distance or mean squared error.

The approach presented herein is notably different from ex-
isting short utterance compensation approaches owing to two
aspects. The first is that short utterances are compensated
throughout the entire DNN, mainly phonetic-level and GRU
layer, rather than being compensated after extracting utterance-
level features. Previous researches exploited an additional com-
pensation system to transform speaker embeddings extracted
from short utterances after utterance-level feature extraction.
This is because the uncertainty caused by lacking phonetic in-
formation is observed in utterance-level features. However,
compensating phonetic-level features appears to be a more di-
rect solution, because uncertainty arises in the process of ex-
tracting utterance-level features from phonetic-level features.
We argue that using the proposed approach, although the trans-
formation is performed throughout the network, compensation
is mainly conducted in the GRU layer where it tries to move
the utterance-level features of the short utterances to the op-
timal position derived from the corresponding long utterance
with abundant phonetic information. Plots in Figure 2 is used
to reinforce this argument.

Figure 2 demonstrates the speaker embeddings before (left
column), and after (right column) the GRU layer of the base-
line (w/o TS, upper row) and the proposed model (w TS, lower
row). Because the embeddings are from the evaluation set, un-
seen data, we expect that cohesiveness of each speaker’s em-
beddings directly demonstrates the discriminative power. By
comparing (a), and (b), we can conclude that the GRU layer in-
creases the discriminative power for each speaker in both base-
line and the proposed system. However, Figure 2 shows that the
compensation is mainly conducted in the GRU layer because the
difference of cohesiveness between (b), (d) is more noticeable
than that between (a), (c).

The second difference pertains to the adoption of the ap-
proaches of compensating short utterances and maintaining the
discriminative power simultaneously using the proposed TS
learning approach with the proposed objective function. In [20],
Jiacen et al. reported that when short utterance compensation is
performed, the speaker embedding of the short utterance be-
come close to that of a long utterance. However, even though
the distance between short and long utterances became closer
in terms of a distance measure, the discriminative power of
the compensated embedding could not be ensured. Our ex-
perimental results also confirmed that solely reducing the dis-
tance between two embeddings of long and short utterances did
improve the performance, although not considerably. There-
fore, to maintain the discriminative power of the speaker em-
bedding when short utterance compensation is performed, KL-
divergence term is included in the proposed objective func-
tion. This results in the speaker embedding layers being com-
pared using the cosine distance metric (compensation), while

also using the conventional KL-divergence loss (discriminative
power), which is novel. Superior results were obtained using
both losses as the final objective function. Overall illustration
of the proposed system is depicted in Figure 1-(b).

5. Experiments
5.1. Dataset

In all the experiments described herein, we used the
VoxCeleb1 dataset, which comprises approximately 330
hours of audio of 1,251 speakers, at a sampling rate of 16
kHz [21]. The dataset involves utterances with an average and
minimum duration of 8.2 s and 4 s, respectively, in a text-
independent scenario. Our evaluation trials and training / evalu-
ation subset divisions follow the dataset’s guidelines. To evalu-
ate the performance on the long and short utterances, utterances
of the evaluation set were cropped into lengths of 3.59 s (59,049
samples) and 2.05 s (32,805 samples), both enrollment and test
utterances. We took the center part of each utterance to com-
pose evaluation sets.

5.2. Experiment configurations

The systems were implemented using Keras, which is a python
library with a Tensorflow backend [22–24]. We used the
RWCNN-LSTM system [10] with two modifications for both
teacher and student DNN architectures. The teacher DNN in-
puts the raw waveform corresponding to 59,049 samples (≈
3.59 s). It involves one strided convolutional layer with stride
size of 3 and six residual convolution blocks that do not reduce
the length of the input sequence (the residual block is identi-
cal to that employed in [10]). After each residual convolution
block, a max pooling layer with stride size of 3 is applied. The
output shape of the last convolution block is (27, 512) where 27
is the sequence length and 512 is the number of kernels in the
last convolutional layer. 27 is derived from 59, 049/(3 × 36)
where 59,049 is the number of samples, 3 is for strided con-
volution, and 36 for six max pooling layers. We note that the
number of phonetic-level embeddings extracted using CNN is
fixed to 27 in training phase for batch construction of utterances
of 59,049 samples, but can vary at evaluation phase depending
on the duration of each utterance (e.g. each 2,187 samples yield
one phonetic-level embedding, utterance of 2.05 s duration will
yield 15 phonetic-level embeddings). The GRU layer has 512
units and the two fully-connected layers have 1,024 nodes each.
The multi-step training proposed in [10, 25] is used for training
the teacher DNN. The weights of the teacher DNN are frozen
when the student DNN is trained.

The student DNN is initialized using the weights of the
teacher DNN as this process has been proved to ease the train-
ing in [26]. The architecture of the student DNN is identical
to that of the teacher DNN except that the student DNN inputs
raw waveform with 32,805 samples (≈ 2.05 s), which means
that the output shape of the last convolution block is (15, 512).
When training the student DNN, two mini-batches where one
comprises utterances of 59,049 samples and the other comprises
32,805 samples are respectively fed into teacher and student
DNN. Then, cosine distance and KL-divergence are calculated
using the last hidden layers and output layers of teacher and
student DNN.

The stochastic gradient descent with learning rate of 0.001
and momentum of 0.9 was used as the optimizer when training
the teacher DNN. The same optimizer with a learning rate of
0.01 was used for training the student DNN.



5.3. Results and analysis

The baseline performances are presented in Table 1. Using
VoxCeleb1 evaluation set without duration restriction which
comprises approximately 3 s to 7 s duration, EER of 7.51 %
was obtained. EER increased by 46 % , relatively, when the du-
ration of the evaluation set was changed from 3.59 s to 2.05 s,
which shows performance degradation owing to the short dura-
tion (8.72 % to 12.8 %). The research objective in this study is
to compensate EER of 12.8 % to 8.72 %.

Experimental result of training with short utterances at the
first time, one of the well-known approaches for short utterance
compensation, is shown in the lower row of Table 1. Perfor-
mance did improve, but only minor improvement of 5 % relative
reduction in terms of EER was obtained. This result seems to
have occurred because the duration of the short utterance con-
sidered herein is less than that used in other studies, in a text-
independent scenario (configurations of 5 or 10 s are usually
used) [6].

Table 1: Performance of the baseline systems with different du-
rations. “Full-length eval” corresponds to the use of various
length utterances without modification. The numbers represent
EERs (%).

System full-length 3.59 s 2.05 s
eval eval eval

RWCNN-GRU 7.51 8.72 12.80(3.59 s train)
RWCNN-GRU - - 12.08(2.05 s train)

Table 2 presents the results of the proposed approaches.
Conventional TS learning, which uses the output layer’s KL-
divergence loss, did not show noticeable improvement. The
proposed method that directly compares the speaker embedding
layers demonstrated a better performance (using only the ‘dist’
term in Equation 2), with EER 10.98 % and 10.8 % for mean
squared error and cosine distance as distance metrics, respec-
tively. The best result could be achieved by using both the KL-
divergence of the output layer and cosine distance of speaker
embedding layer, which compensated more than 65 % of the
performance degradation due to shortened input utterance. We
interpret that the reason for additional performance increase by
comparing both output and speaker embedding can be found
in Jiacen et al.’s research [20]. This research suggested that
when compensating short utterances, the compensated feature
can become similar to that of the long utterance in terms of
the distance scale used for compensation (i.e. Euclidean), but
this may not lead to increase in its discriminative power. In
other words, in our interpretation, it means that usage of dis-
tance metric alone cannot consider the manifold structure of the
speaker embedding space. Referring to this argument, compar-
ing speaker embeddings can make the embedding of the stu-
dent DNN equivalent to that of the teacher DNN, and the KL-
divergence between output layers can help maintain its discrim-
inative power.

Additionally, Table 3 shows the evaluation using varying
duration utterances. It is not realistic to fix the duration of ut-
terance in real world applications, which makes less duration
variant systems necessary. To verify how invariant the pro-
posed system is towards varying duration short utterances, ex-
periments with different range of duration have been conducted.
Results demonstrate that EER of both baseline system (w/o TS,

Table 2: Evaluation of various proposed systems using the mod-
ified 2.05 s evaluation set. “Embedding” and “Output” refer to
layers to compare between the teacher and student networks.
Values inside the bracket indicates the metric.

Systems EER (%)
Output (KL-Div) (Original TS) 12.46
Embedding (MSE) 10.98
Embedding (Cos Sim) 10.80
Embedding (Cos Sim)+Output (KL-Div) 10.08

upper) and the proposed system (w TS, lower) are not much
variant to the duration of input utterance. We note that the per-
formance degradation as range widens is considered as the ef-
fect of inclusion of shorter utterances (e.g. duration starts from
1.55 s in “1.55±0.5 s”.

Table 3: Evaluation with varying utterance duration. Perfor-
mance degradation as range widens is due to shorter utterances
(e.g. duration starts from 1.55 s in “2.05±0.5 s”).

System 2.05 2.05 2.05
±0.1 s ±0.5 s

RWCNN-GRU 12.80 12.96 13.28(w/o TS)
RWCNN-GRU 10.08 10.29 10.40(w TS)

6. Discussion and future work
In this paper, we proposed a text-independent short utterance
speaker verification system that works on utterances with dura-
tions of 2.05 s or less. The proposed system does not transform
the utterance-level feature from the short utterance as in conven-
tional approaches. Rather, it directly extracts the compensated
speaker embeddings from short utterances by compensating
throughout the network, focusing on phonetic-level compensa-
tion. This is because we expected that the main key for compen-
sating short utterances corresponds to the phonetic information,
whose absence leads to the uncertainty of the utterance-level
features. To process phonetic information, phonetic-level fea-
tures that represent segments of 130 ms were extracted using
CNN, and then transformed to the utterance-level features using
a GRU layer. The effectiveness of the defined phonetic-level
features was verified by the performance improvement of the
speaker verification system using short utterance compensation
and an illustration of the cohesiveness of speaker embeddings
from the evaluation set. An objective function is also proposed
to conduct a more effective compensation by considering dis-
tance of long and short utterance and concurrently maintain the
discriminative power of speaker embeddings.

In the future, we will analyze the information included in
phonetic-level features and construct phonetic-level features us-
ing speech recognition systems. Additionally, because the pro-
posed compensation scheme can be applied to any DNN-based
speaker embedding extraction schemes, such as Mel-energy
feature-based x-vector or other spectrogram-based systems, we
plan to apply the proposed scheme into other systems.
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