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ABSTRACT

Despite the significant progress in end-to-end (E2E) auto-

matic speech recognition (ASR), E2E ASR for low resourced

code-switching (CS) speech has not been well studied. In

this work, we describe an E2E ASR pipeline for the recog-

nition of CS speech in which a low-resourced language is

mixed with a high resourced language. Low-resourcedness

in acoustic data hinders the performance of E2E ASR sys-

tems more severely than the conventional ASR systems. To

mitigate this problem in the transcription of archives with

code-switching Frisian-Dutch speech, we integrate a desig-

nated decoding scheme and perform rescoring with neural

network-based language models to enable better utilization

of the available textual resources. We first incorporate a

multi-graph decoding approach which creates parallel search

spaces for each monolingual and mixed recognition tasks to

maximize the utilization of the textual resources from each

language. Further, language model rescoring is performed us-

ing a recurrent neural network pre-trained with cross-lingual

embedding and further adapted with the limited amount of

in-domain CS text. The ASR experiments demonstrate the

effectiveness of the described techniques in improving the

recognition performance of an E2E CS ASR system in a

low-resourced scenario.

Index Terms— Code-switching, end-to-end ASR, lan-

guage modeling, multi-graph, under-resourced languages

1. INTRODUCTION

As multilingualism is becoming more common in today’s

globalized world [1], there has been increasing interest in

code-switching (CS) automatic speech recognition (ASR) [2].

Code-switching refers to the phenomenon where two lan-

guages are spoken in contact within one utterance [3].

Code-switching, such as Mandarin-English [4], Spanish-

English [5] and Hindi-English [6], is commonly practiced in

multi-lingual societies.

Traditionally, an ASR system consists of several compo-

nents including acoustic model, pronunciation and language

model that are separately trained and optimized with differ-

ent objectives, thus building an ASR system needs special-

ized expertise in the field. Various end-to-end (E2E) ASR ap-

proaches are emerging quickly because of its simplicity com-

pared to the traditional ASR architecture. An E2E system

predicts phones or characters directly from acoustic informa-

tion without predefined alignment. Some notable architec-

tures include connectionist temporal classification (CTC) [7],

attention based encoder-decoder networks [8, 9], and recur-

rent neural network (RNN) transducers [10]. More recently,

hybrid E2E systems have been successfully implemented and

applied to common ASR benchmarks [11]. These E2E mod-

els have been successfully used in monolingual and multilin-

gual ASR systems by achieving promising results on various

benchmarks [12–16].

E2E ASR approaches enable lexicon-free recognition

which is a key advantage over traditional hybrid hidden

Markov model/deep neural networks (HMM/DNN) approaches

in low-resourced settings, since there are many low-resourced

languages without an available pronunciation lexicon. How-

ever, there is very limited work done for recognizing CS

speech using E2E techniques, especially for low-resourced

language pairs. This is mainly due to the fact that low-

resourcedness in acoustic data hinders the performance of

E2E CS ASR more severely than the conventional ASR sys-

tem. Hiroshi [17] built an encoder-decoder based E2E ASR

system that can recognize the mixed-language speech. How-

ever, the work relies on training data that is generated from

monolingual datasets, rather than natural code-switching

speech. Kim [18] and Toshniwa [19] both used encoder-

decoder model to build multilingual E2E ASR, but their

systems cannot deal with CS scenario. Li [20] incorporate a

frame-level language identification (LID) model to linearly

adjust the posteriors of an E2E CTC model for the high-

resourced Mandarin-English language pair.

In this paper, we integrate a designated decoding scheme

and a code-switch language model (LM) rescoring scheme to

mitigate this problem in our recognition scenario, namely

transcripts of archives with CS Frisian-Dutch speech in

which Frisian is a low-resourced language and Dutch is a

high-resourced language. The code-switch LM [21] is a

recurrent neural network (RNN) that is trained with cross-

lingual embedding and adapted to maximize the use of the

available textual resources. The decoding scheme provides a
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new multi-graph back-end for E2E CS ASR in which paral-

lel search spaces are employed for monolingual and mixed

recognition subtasks. The code-switch RNN LM can both

preserve the cross-lingual correspondence derived from larger

monolingual textual resources and leverage the low-resourced

language on the high-resourced language at the same time.

The rest of this paper is organized as follows. Section

2 introduces the E2E CTC acoustic model. The incorporated

multi-graph decoding strategy and CS RNN LM rescoring are

described in section 3 and 4 respectively. We describe the

experimental setup in section 5 and then present and discuss

the results provided by the described E2E ASR pipeline in

section 6.

2. END-TO-END CTC ACOUSTIC MODEL

Unlike in the traditional hybrid HMM-DNN system, an E2E

CTC acoustic model is not trained using frame-level labels

with respect to the cross-entropy (CE) criterion. Instead, a

CTC model learns the alignments automatically between

speech frames and their label sequences, i.e., phone se-

quences, by adopting the CTC objective. It predicts the

conditional probability of the label sequence by summing

over the joint probabilities of the corresponding set of CTC

symbol sequences. The CTC framework has the output in-

dependent assumption that CTC symbols are conditionally

independent at each frame, which may be more desirable

for dealing with CS speech (though less accurate in general)

as the current output does not explicitly depend on previous

outputs [20]. The conditional probability of the whole label

sequence is:

P (z|x) =
∑

π∈B−1(z)

P (π|x) =
∑

π:π∈Z
′
,B(π1:T )=z

T∏

t=1

ytπt
(1)

where z = (z1, . . . , zu, . . . , zU ) denotes a phone label se-

quence containing U phones, z ∈ Z and Z is the phone set.

x = (x1, . . . , xt, . . . , xT ) denotes a sequence of T speech

frames, with t being the frame index. The length of z is con-

strained to be no greater than the length of the utterance, i.e.,

U ≤ T . π1:T = (π1, . . . , πt, . . . , πT ) is an output symbol

sequence at frame level, named CTC path. Each output sym-

bol π ∈ Z
′

and Z
′

= Z ∪ blank. blank is a special label

in the CTC framework, which maps frames and labels to the

same length. B is a multiple-to-one mapping with first re-

moving the repeated labels and then all blank symbols from

the paths. ytπt
is the posterior probability of output symbol

πt at time t. Equation (1) can be efficiently evaluated and

differentiated using forward-backward algorithm [22]. Given

training utterances, the acoustic model networks are trained

to minimize the CTC objective function:

L = −

Q∑

k=1

ln(P (zk|xk)) (2)

where k is the index of training utterances and Q is the total

number.

3. MULTI-GRAPH DECODING STRATEGY

In modern ASR architectures, weighted finite-state transduc-

ers (WFST) are used to integrate different knowledge sources

and perform search space optimization to achieve the best

search efficiency using highly-optimized FST libraries such

as OpenFST [23, 24]. In E2E CTC ASR framework [25],

individual components, containing CTC labels, lexicons,

and N-gram language models, are encoded into three in-

dividual WFSTs and then composed into a comprehensive

search graph that encodes the mapping from a CTC symbol

sequence emitted from the speech frames to a sequence of

words. The search space is represented as T ◦ L ◦ G in the

Eesen toolkit [25], where T is a token WFST that maps a

sequence of frame-level symbols to a single lexicon unit, L

is a lexicon WFST that encodes the mapping from sequences

of lexicon units to words, and G is a grammar WFST that

encodes the word sequences information in N-gram language

model. Thus, using WFST-based decoding framework, we

can incorporate different word-level language model effi-

ciently to make full use of the available textual resources

and overcome the imbalance in acoustic data between low-

resourced and high-resourced language in our CS scenario.

In our previous work [26], Yilmaz et al. proposed a multi-

graph decoding strategy which creates parallel search spaces

for each monolingual and bilingual recognition tasks for the

conventional CS ASR system. This strategy can be easily

extended to E2E CTC ASR system to address the above-

mentioned data imbalance problem. For the multi-graph

decoding strategy, we use the union operation to create a

larger graph with parallel bilingual and monolingual (Frisian

and Dutch) subgraphs. The parallel graphs used during de-

coding are characterized by the incorporated language model

component, as they share the same token (T) and lexicon (L)

components. This approach has been shown to outperform

standard LM interpolation [26], that makes effective use of

the text resources of the high-resourced language by creating

three different search spaces with an identical acoustic model

(AM). Monolingual and code-mixed utterances are decoded

using best-matching subgraph, yielding improved monolin-

gual recognition performance on the high-resourced language

without any accuracy loss on the code-mixed utterances.

4. CS RNN LANGUAGE MODELING

In language modeling, we face data sparsity both in terms of

availability of CS corpus, and scarcity of CS occurrences in

the corpus. To address these problems, we propose a two-step

approach to language modeling. Firstly, in terms of data aug-

mentation, we boost the size of CS corpus by synthetically



generating CS text using a well-trained long short-term mem-

ory (LSTM) language model. Similar techniques are also pro-

posed in [27, 28]. However, in [27] a sentence level aligned

parallel corpus is available, thus synthetic CS data can be gen-

erated based on word or phrase alignment between the par-

allel sentences and guided by linguistic rules. Unlike [27],

we lack a parallel corpus, thus we cannot explicitly establish

the word-level cross-lingual correspondence between the two

languages. This motivates the second step of our language

model, i.e., to find the cross-lingual mapping of the mono-

lingual word embeddings using an unsupervised self-learning

method proposed by [29]. The method finds the mapping

functions WM ,WN that maximize the cosine similarity be-

tween the monolingual embeddings of source language M

and target language N , based on an iteratively learned dic-

tionary D:

arg max
WM ,WN

∑

i,j∈D

(MiWM ) · (NjWN ) (3)

i, j are paired entries in the dictionary that represent a transla-

tion pair and Mi, Nj are the respective monolingual embed-

dings. Since the transformation matrices and embeddings are

length normalized, cosine similarity is optimized. Thus, the

method explicitly aligns the word based on the monolingual

distributional property and projects both monolingual embed-

ding into the same embedding space. Resultant word embed-

dings of the related words in both languages are grouped to-

gether and at the same time, monolingual syntactic informa-

tion is preserved [21].

yk = LSTM(wk) (4)

pk =
eyk

∑V

j=1 e
yj

(5)

Loss = −
1

Q− 1

Q−1∑

k=1

Yk+1 ln(pk) (6)

This pre-trained cross-lingual embedding is used to initialize

our neural language model and the embedding layer is fixed

during training. The output yk from LSTM with the current

word embedding wk is passed through a softmax function Eq.

(5) to form a distribution pk over the total vocabulary V, which

represents the next word probability. The loss function is the

cross-entropy between the true target Yk+1 and pk in Eq. (6),

where Q is the number of words in the corpus. By freez-

ing the embedding layer, we aim to preserve the cross-lingual

correspondence derived from larger monolingual corpora and

let the low-resourced language leverage on the resource rich

language.

5. EXPERIMENTAL SETUP

5.1. Datasets

The experiments are conducted on the low-resourced Frisian-

Dutch CS corpus from the FAME! project, this project aims to

Table 1. Acoustic data composition used for CTC AM train-

ing (in hours)

Traning data Annot. Frisian Dutch Total

(1) FAME Manual 8.5 3.0 11.5

(2) Frisian Broad. Auto. 125.5 125.5

(3) CGN-NL Manual - 442.5 442.5

develop a spoken document retrieval system for the disclosure

of the archives of Omrop Fryslân (Frisian Broadcast) covering

a large time span and a wide variety of topics which contain

monolingual Dutch and Frisian speech as well as code-mixed

Frisian-Dutch speech. Further details can be found in [30].

It is worth mentioning that proposed approaches can also be

applied to other low-resourced language pairs and scenarios

with more than two languages as in [31].

The training data used in the experiments are summa-

rized in Table 1. Both monolingual and CS data is used

for acoustic model training, since monolingual acoustic data

augmentation has been shown to improve the CS ASR on

both monolingual and code-mixed test utterances [32]. The

manually annotated CS data is from the FAME corpus con-

taining 8.5 hours and 3 hours of orthographically transcribed

speech from Frisian (fy) and Dutch (nl) speakers respec-

tively. The Frisian Broadcast data containing 125.5 hours

of automatically transcribed speech data extracted from the

target broadcast archive. Monolingual Dutch data comprises

442.5 hours Dutch component of the Spoken Dutch Corpus

(CGN) [33] that contains diverse speech materials including

conversations, interviews, lectures, debates, read speech and

broadcast news. The development and test sets consist of

1 hour of speech from Frisian speakers and 20 minutes of

speech from Dutch speakers each. The sampling frequency

of all speech data is 16 kHz.

5.1.1. Text data

Bilingual text corpus (107M words) consisting of generated

CS text (61M words), monolingual Frisian text (37M words)

and monolingual Dutch text (9M words) are used for train-

ing the baseline CS LM. The transcripts of the FAME train-

ing data is the only source of CS text containing 140k words

and textual data augmentation techniques described in [32]

have been applied to increase the amount of CS text. The

Frisian text is extracted from monolingual resources such as

Frisian novels, news and Wikipedia articles. The Dutch text

is extracted from the transcripts of the CGN speech corpus.

We use the larger monolingual subset (300M words) of the

NLCOW text corpus1 together with Dutch text (9M words)

which is used in baseline CS LM to train larger Dutch LM

and create larger monolingual Dutch graph.

1http://corporafromtheweb.org



5.2. Implementation details

All the recognition experiments are performed in the Eesen

E2E CTC ASR toolkit [25]. The 3-fold data augmenta-

tion [34] is applied to the in-domain acoustic training data,

i.e., (1) and (2) in Table 1. The acoustic model is a 6-layer

bidirectional LSTM with 640 hidden units trained without

predefined alignment. The 40-dimensional filterbank features

with their first and second-order derivatives are stacked using

3 contiguous frames to form 360-dimensional spliced features

as inputs. The features are normalized via mean subtraction

and variance normalization on a per-speaker basis. The learn-

ing rates starts at 0.00004 and remains unchanged until the

drop of label error rate on validation set between two consec-

utive epochs falls below 0.5%. From then on, the learning

rate is halved at the subsequent epochs. The conventional

ASR system is trained using the Kaldi ASR toolkit [35]. A

context-dependent Gaussian mixture model-hidden Markov

model (GMM-HMM) system is firstly trained using MFCC

including the deltas and deltas-deltas to obtain the alignments.

Then these alignments are used for training a TDNN-LSTM

acoustic model (1 standard, 6 time-delay and 3 LSTM layers)

with LF-MMI [36] criterion using 40-dimensional MFCC as

features combined with i-vectors for speaker adaptation.

The language models used in the first pass ASR decoding

are standard bilingual 3-grams with interpolated Kneser-Ney

smoothing. The baseline RNN LM with gated recurrent units

(GRU) has 400 hidden units and is trained using noise con-

trastive estimation2 for lattice rescoring. The CS RNN LM

with the same architecture is adapted to the CS transcripts to

reduce the mismatch. The adaptation is performed at the last

5 epochs while following the overall learning rate decay of

0.8. In summary, we have 7 LMs: (1) baseline CS LM (cs)

trained on the bilingual text (107M), (2) baseline monolingual

Frisian LM (fy) trained on monolingual Frisian text (37M),

(3) baseline monolingual Dutch LM (nl) trained on mono-

lingual Dutch text (9M), (4) larger monolingual Dutch LM

(nl++) trained on 309M words, (5) interpolated LM (interp-

nl++) with the interpolation between cs LM and nl++ LM,

whose interpolation weight yields the lowest perplexity on the

development set, (6) baseline RNN LM trained on the corre-

sponding bilingual text (107M) using 1 layer LSTM with 400

hidden units, (7) CS RNN LM trained using the similar pa-

rameters. The RNN LM weight for rescoring is 0.75. The

first five LMs are used in the conventional signal-graph E2E

ASR systems for comparison with the corresponding multi-

graph decoding systems using the same amount monolingual

and bilingual text. The perplexities of the baseline CS and the

Dutch LMs on the monolingual Dutch component of the de-

velopment and test set are shown in Table 2, the perplexities

of two RNN LMs on development and test set show that CS

RNN LM has a lower perplexity than its baseline in Table 3.

2https://github.com/yandex/faster-rnnlm

Table 2. Perplexities obtained on the Dutch component of the

development and test set using different LMs

LM Total # words Dev. Test

Baseline CS LM 107M 188 197

interp-nl++ LM 416M 176 182

Baseline NL LM 9M 150 151

nl++ LM 309M 123 119

Table 3. Perplexities obtained on the different components of

development and test transcripts using different LMs

Dev. Test

fy nl cs fy nl cs

3-gram LM 158 191 272 138 189 227

Base. RNN LM 205 187 330 177 177 283

CS RNN LM 183 164 296 159 156 257

Table 4. WER (%) obtained on the monolingual utterances in

the development and test set of the FAME Corpus

Dev. Test

fy nl fy nl

# of Frisian words 9190 0 10753 0

# of Dutch words 0 4569 0 3475

ASR System Graph

Baseline CS ASR cs 32.9 33.7 30.6 29.0

fy fy 32.5 - 30.8 -

nl nl - 33.6 - 27.9

nl++ nl++ - 30.1 - 25.9

5.3. ASR experiments

Four sets of ASR experiments are conducted to evaluate the

performance of the proposed method. Firstly, the ASR per-

formance of the baseline single-graph ASR systems using cs

and interp-nl++ LMs are presented. Secondly, the results pro-

vided by the bi-graph systems using the cs graph together with

one of the monolingual graphs, namely fy, nl and nl++, are

presented. Thirdly, tri-graph decoding systems with varying

monolingual graphs are evaluated.

After finalizing the multi-graph decoding experiments,

we present the RNN LM rescoring experiment performed

to evaluate the performance of CS RNN LM on CS speech

compared to a baseline RNN LM. For the rescoring of the

multi-graph systems, graph identification tags are used to

identify the graph used for the hypothesized ASR output and

then the rescoring is performed with the corresponding RNN

LM. The CS RNN LMs are trained on the same text data with

the N-gram used in decoding. The monolingual Frisian and

Dutch RNN LMs are trained on Frisian text corpora (fy, 37M)

and the largest Dutch text corpora (nl++, 309M) respectively

using the same parameters as the baseline and CS RNN LMs.

The recognition results are reported separately for Frisian



Table 5. WER (%) obtained on the development and test set of the FAME Corpus

Dev. Test Total

fy nl fy-nl all fy nl fy-nl all

# of Frisian words 9190 0 2381 11 571 10 753 0 1798 12 551 24 122

# of Dutch words 0 4569 533 5102 0 3475 306 3781 8883

ASR System Graph(s) Rescoring

Kaldi CS ASR cs No 26.3 27.6 36.8 28.4 25.1 24.4 39.3 26.7 27.6

Single-graph systems

Base. E2E CS ASR cs No 32.9 33.7 42.6 34.9 30.6 29.0 42.4 31.8 33.4

Base. E2E CS ASR cs Yes 31.6 32.8 42.1 33.9 29.6 27.9 40.7 30.7 32.3

Base. E2E CS ASR cs CS-RNN 30.4 31.2 41.0 32.5 29.0 28.6 41.2 30.6 31.6

interp-nl++ cs-nl++ No 32.6 32.3 42.3 34.3 30.7 28.7 42.6 31.8 33.1

interp-nl++ cs-nl++ Yes 31.3 32.5 41.5 33.4 29.9 28.2 41.0 31.0 32.2

Multi-graph systems

union-fy cs, fy No 32.7 33.0 42.3 34.5 30.7 28.6 42.7 31.9 33.2

union-nl cs, nl No 32.7 32.5 42.8 34.4 30.6 28.0 42.6 31.6 33.0

union-nl++ cs, nl++ No 32.8 30.1 42.5 33.8 30.6 26.7 42.5 31.4 32.6

union-nl++ cs, nl++ Yes 31.9 28.4 42.1 32.8 29.7 23.6 42.4 30.1 31.5

union-fy-nl cs, fy, nl No 32.9 32.4 42.9 34.6 30.8 28.1 42.8 31.8 33.2

union-fy-nl++ cs, fy, nl++ No 32.9 30.1 42.8 33.9 30.8 25.6 43.1 31.3 32.5

union-fy-nl++ cs, fy, nl++ Yes 32.3 28.2 41.7 32.8 30.2 23.1 41.3 30.2 31.6

union-fy-nl++ cs, fy, nl++ CS-RNN 32.3 28.2 40.5 32.6 30.2 23.1 40.5 30.1 31.4

only (fy), Dutch only (nl) and code-mixed (fy-nl) utterances.

The overall performance is also reported to use as an overall

performance indicator. The recognition performance of the

ASR system is quantified using the word error rate (WER).

6. RESULTS AND DISCUSSION

The recognition results obtained by using only monolingual

graphs on the corresponding monolingual utterances are pre-

sented in Table 4. The ASR system using only Frisian (fy)

graph gives similar recognition performance to the baseline

CS system on monolingual Frisian utterances, which indi-

cates that the latter CS system has the ability to recognize

monolingual Frisian speech as well as a monolingual Frisian

ASR system. For monolingual Dutch utterances, the perfor-

mance by using only Dutch (nl) graph is slightly better than

baseline CS system on the test set with a WER of 27.9% com-

pared to 29.0%. Using the largest monolingual Dutch graphs

nl++ yields a WER of 25.9% on the Dutch utterances respec-

tively, revealing that the performance of the baseline CS graph

can be improved by using larger monolingual Dutch graph in

a multi-graph decoding framework.

The ASR results obtained using multi-graph decoding

strategy and the CS RNN LM rescoring are presented in

Table 5. The number of Frisian and Dutch words in each

component of development and test sets are presented in the

upper panel. Then two baseline results using single-graph

systems (cs and interp-nl++) are shown in the middle panel.

The results provided by an equivalent Kaldi [35] ASR system

with conventional architecture is also given as a reference.

Compared to the baseline E2E CS ASR system, using the

interpolated larger Dutch LM brings marginal improvements

from 33.7% (29.0%) to 32.3% (28.7%) on the development

(test) set. This indicates that using interpolated larger LM

in single graph is ineffective in improving the accuracy on

monolingual utterances.

Finally, the ASR results provided by the multi-graph E2E

ASR systems are presented in the bottom panel. According to

these results, using an additional monolingual Frisian graph

during the multi-graph decoding (union-fy and union-fy-nl)

does not improve the ASR performance on the fy utterances,

which is consistent with the previous results reported in [26].

Including the largest monolingual Dutch graph in the union-

fy-nl++ system improves the ASR accuracy on nl utterances

with a WER of 30.1% (25.6%), yielding a 10.7% (11.7%)

relative WER reduction.

For RNN LM rescoring, CS RNN LM provides absolute

overall 0.7% WER reduction from 32.3% to 31.6% over the

baseline RNN LM in single-graph systems and 1.2% (0.8%)

WER reduction on fy-nl utterances for the union-fy-nl++ sys-

tem perhaps due to the fact that the CS RNN LM could pre-

serve more cross-lingual information. The Dutch RNN LM

(trained on 309M Dutch text corpora) provides the best WER

of 28.2% (23.1%) on monolingual Dutch utterances, while



the Frisian RNN LM (trained on 37M Frisian text) and the

baseline RNN LM (trained on 107M bilingual text) give lim-

ited improvements on the corresponding subsets. Finally, the

WER of E2E CTC ASR system is significantly reduced to

31.4%.

7. CONCLUSION

In this paper, we propose an E2E CTC ASR pipeline for

a CS scenario in which a low-resourced language is mixed

with a high-resourced language. We first incorporate a multi-

graph decoding strategy by creating parallel search spaces for

monolingual and code-switching recognition tasks. More-

over, we perform language model rescoring using a recur-

rent neural network pre-trained with cross-lingual embed-

ding and then adapted with the limited amount of in-domain

code-switching text. For evaluating the effectiveness of the

proposed pipeline, ASR experiments are conducted on the

Frisian-Dutch CS speech, in which the target Frisian lan-

guage is low-resourced with limited acoustic and textual

resources while Dutch language is high-resourced. The ex-

perimental results demonstrate that the multi-graph decoding

approach can improve monolingual Dutch recognition perfor-

mance of an E2E CS ASR system without degradation in the

CS performance. The adapted recurrent neural network lan-

guage model further improves the performance on CS speech.

Finally, the proposed pipeline gives 16.3% (20.3%) relative

WER reduction on monolingual Dutch speech and absolute

2.1% (1.9%) WER reduction on code-switching speech.
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