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ABSTRACT
Personal narratives (PN) – spoken or written – are recollec-
tions of facts, people, events, and thoughts from one’s own
experience. Emotion recognition and sentiment analysis tasks
are usually defined at the utterance or document level. How-
ever, in this work, we focus on Emotion Carriers (EC) defined
as the segments (speech or text) that best explain the emo-
tional state of the narrator ("loss of father", "made
me choose"). Once extracted, such EC can provide a
richer representation of the user state to improve natural lan-
guage understanding and dialogue modeling. In previous
work, it has been shown that EC can be identified using lex-
ical features. However, spoken narratives should provide a
richer description of the context and the users’ emotional
state. In this paper, we leverage word-based acoustic and tex-
tual embeddings as well as early and late fusion techniques
for the detection of ECs in spoken narratives. For the acoustic
word-level representations, we use Residual Neural Networks
(ResNet) pretrained on separate speech emotion corpora and
fine-tuned to detect EC. Experiments with different fusion
and system combination strategies show that late fusion leads
to significant improvements for this task.
Index Terms: emotion carrier, speech emotion recognition,
natural language understanding

1. INTRODUCTION

People express and communicate emotions consciously as
well as subconsciously. This is done by modifying the man-
ner of speaking, the content of a conversation or written text,
facial expressions, gestures, or even the way of walking. The
combination of these signals, especially speech and text, has
successfully been used to determine the emotional state of a
person making a statement or telling a narrative [1, 2]. Most
of the emotion research in affective computing aims at cat-
egorical or continuous recognition of emotions. However,
these tasks are not necessarily able to provide an explanation
for the emotional state. Tammewar et al. defined the linguis-
tic carrier of emotions and evaluated an annotation protocol
in the context of PNs [3]. Detecting the fragments from the
narratives that best explain the emotional state of the narra-
tor would provide deeper emotion analysis that has potential

benefits in the context of mental well-being applications, to
analyze a user’s Personal Narratives (PN). This application
of EC is described in [4]. A conversational agent, as part
of a mental well-being application, uses previously extracted
ECs, from the dialogue with the user, and generates a tailored
response. A deeper analysis of the the perceived emotion may
help to ask better questions and get more information from
the user. This additional information in turn may help to bet-
ter understand a user’s emotional state through a conversation
and makes showing empathy towards the user easier.

A previous analysis on how different fragments of PNs
help explain the current mental state of the narrator in terms
of valence can be found in [5]. Not only fragments containing
emotion words but also events (‘‘high school exam”), people
(‘‘grandpa”), and actions (‘‘made me choose”) were proven
to be useful to predict the valence. Following up on this anal-
ysis, Emotion Carriers (EC) for PNs can be defined as the
concepts that best explain and carry the emotional state of the
narrator [3]. ECs thus include not only explicitly emotionally
charged words, such as ‘‘happy”, but also mentions of people,
places, objects, predicates, and events that carry an emotional
weight within the context of a narrative. They performed the
annotation of German PNs from the Ulm State-of-Mind in
Speech (USoMs) corpus [6] with the emotion carriers [3]. In
Figure 1, we explain and differentiate the three different emo-
tion concepts: Emotion State, Emotion Lexicon, and Emotion
carriers.

Further work on the automatic detection of emotion car-
riers from transcriptions of spoken PNs, can be found in [4].
However, relying only on lexical features leaves out the pos-
sibility of the same lexical content conveying different things
based on acoustic context.

Ivanov et al. showed that there is a relationship between
meaning-bearing parts of utterances and their acoustic prop-
erties [7]. Following up on that research, we have found ev-
idence supporting distinct prosodic profiles for emotion vs
non-emotion carriers: Figure 2 compares the spectrograms of
two occurrences of the phrase ‘‘vor die Wahl gestellt”; “made
me choose”; while (a) was annotated as an emotion carrier,
(b) was not. The strong rise in fundamental frequency (f0), as
well as the strong fluctuations at the beginning of Figure 2a,
indicates emotional speech [8]. In contrast, the same phrase
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Fig. 1. This figure explains and differentiates the concepts of Emotion State, Emotion Lexicon, and Emotion Carriers. In the
first example the emotional state ’sad’ is directly described by the emotion lexicon using the word ’sad’, whereas the second
example does not use emotion lexicon to describe the emotional state ’excited’, it is rather implicit and can be explained using
emotion carriers.

that was not marked as an EC has a very flat f0 contour (cf.
Figure 2b). While the figure provides only anecdotal and mo-
tivational evidence, in this paper we provide ample evidence
of the complementarity of acoustic and lexical information.

Our contributions are:

• evidence for the acoustic discriminability of EC

• word-level acoustic embeddings using a modified
ResNet architecture and transfer learning from EmoDB

• analysis of early and late fusion of textual and acoustic
embeddings

• rule-based late fusion based on posterior probabilities
leveraging the strength of the lexical system

2. RELATED WORK

A related concept to EC are affective events (AE) [9]. Af-
fective events are a predefined set of events that have a
stereotipycally (w/o specific context) positive or negative
impact on the people who experience the event. In the set of
AEs, an event is a tuple of subject, verb and object and the
polarity is provided to the entire tuple, while ECs could be
any entity or event, with no strict restriction on the syntactic
categories, that carry the emotional state of the narrator. AEs
are closely linked to the satisfaction or violation of human
needs [10]. While this can be true for EC, it is not a necessity,
as EC can be identified in personal narratives, where only the
recollection of events leads to the current emotional state.
Identifying what moves or creates an emotional reaction in a
personal narrative can for example help a personalized mental
health application ask questions about what is important w.r.t.
the emotional state of the narrator.

To our knowledge, there is no prior work on merging
acoustic and lexical features for detecting AE.

Relevant techniques for utilizing multiple modalities can
be found in the related field of Speech Emotion Recognition
(SER), where the use of multiple modalities is common [11,
12, 13, 14]. Most research on Emotion Recognition (ER) is
focused on classifying the emotion of a writer or narrator into
discrete values such as fear, anger, or joy. This is usually done
on an utterance, dialogue, or narrative level [15].

The SER task is concerned with the direct classification
of a persons’ emotional state whereas EC detection is looking
for events, entities, and people that explain the subject’s cur-
rent emotional state. ECs are the linguistic vehicles of emo-
tions and provide insights into the entities, people, and events
that explain the narrators’ emotional state. Related work fo-
cusing on acoustic cues in meaning structures can be found
in [7] where the authors found a relationship between acous-
tics and meaning. Nastase et al. studied the relation between
words that express emotions and the way they sound. The
study found statistical evidence that phonetic features are use-
ful in determining if words express the same emotion [16].
Batliner et al. used word-level emotional labels and tried clas-
sifying emotional state of children on word and turn level,
using acoustic features as well as a combination of lexical
and acoustic features [17]. Huang et al. combine word-level
acoustic embeddings with Word2Vec for utterance-level emo-
tion recognition [18]

Current fusion approaches for multi-modal emotion
recognition essentially follow a similar approach. The first
step is finding appropriate intermediate representations, usu-
ally produced by using some kind of encoder neural network,
and then, depending on the problem, train a classifier apply-
ing different fusion strategies [11, 12, 13, 14]. For example,
Pepino et al. use CNNs to extract sentence-level embed-
dings from pre-trained word embeddings and utterance-level
embeddings using a CNN on handcrafted acoustic features
comparing different fusion approaches [11].



(a) emotion carrier (b) non emotion carrier

Fig. 2. Spectrograms with f0-contour of the phrase: “vor die Wahl gestellt,”(Translation: “made me choose”). (a) was
marked as an EC, showing signs of emotional speech and the voice cracking in the center part whereas (b) was taken from the
same recording session, but was not marked as EC. While this is an anecdotal example, statistical analysis revealed significant
differences in f0, energy, and shimmer on nouns marked as EC when comparing them with all other nouns in the dataset.

3. DATA

All experiments presented to detect EC and analyses in this
paper were conducted using the dataset and annotations de-
scribed in [3]. The dataset is based on the USoMs corpus
described in the Interspeech 2018 ComParE paralingiustics
challenge [19]. The USoMs dataset consists of spoken PNs
collected from 100 participants; audio data was converted to
16 kHz mono, and a noise profile was removed where nec-
essary. Manual transcriptions were obtained from a profes-
sional transcription service (verbatim approach [20]), with a
vocabulary of 6438 words. The data of 66 participants (239
PNs) was annotated with the ECs by four annotators, select-
ing emotion-carrying text spans using the transcript only [3].
ECs are annotated with the inside–outside (IO) scheme which
is common in natural language processing. Words that belong
to a text span marked as EC are annotated as I others as O.
The resulting dataset is heavily imbalanced with only 6.6 %
of tokens marked as EC.

Accurate time alignment of text to audio was produced by
forced alignment (FA) using a speaker-adaptive HMM-GMM
(Hidden Markov Model, Gaussian Mixture Model) automatic
speech recognition system (ASR) based on [21]. Missing
entries in the pronunciation lexicon were generated using a
grapheme-to-phoneme tool [22] where necessary.

Before running any classification and fusion experiments
for the detection of EC, we performed an in-depth feature
analysis. We focused on prosodic word-level features of
nouns marked as EC, as only they were labeled in a signif-
icant number of cases being an EC (N = 15600, of which
2019 were EC nouns). While Fig. 2 provides anecdotal evi-
dence only, we could identify significant differences between
the nouns marked as EC and those that were not. F0, energy,

and HNR (Harmonic to Noise Ratio) were extracted using
Praat with the Parselmouth library and Jitter and Shimmer
were calculated based on the extracted f0 using the method
described in [23]. Our analysis revealed significant differ-
ences on a word-level for mean f0 (and its derivatives), mean
energy (and its derivatives) as well as shimmer using an
independent two-sample t-test (p = 0.05).

4. METHOD

We follow the approach of finding representations for EC
from different feature spaces. As EC are a word-, and phrase-
level concept, we try to find appropriate representations from
the linguistic and acoustic input feature space. The repre-
sentations are then used in uni-modal experiments as well as
multi-modal fusion experiments for EC recognition.

4.1. Word-based textual embeddings (WTE)

For word-based textual embeddings, we use 100-dimensional
pre-trained GloVe word embeddings trained on the German
Twitter corpus [24]. A total of 656 (10.2%) words were not
present in the pre-trained embeddings. The word-embeddings
where fine-tuned on the actual task inside the cross-validation
loops.

4.2. Word-based acoustic embeddings (WAE)

The previously performed feature analysis revealed differ-
ences between EC and non EC with respect to handcrafted
acoustic features. This motivated us to use embeddings based
on convolutional neural networks (CNN) and handcrafted
acoustic features as described in [11]. Our early stage exper-
iments failed to produce good results on an utterance level



Fig. 3. Overview of the neural network architecture used in the experiments. The left part shows the ResNet classifier
containing the audio embedding layer which is used to extract word-based acoustic embeddings (WAE) for each word. The
central part contains the sequence tagging (ST) architecture that can operate using either word-based textual embeddings (WTE),
WAE, or a combination of WTE and WAE in an early fusion (EF) approach. The right part of the figure is depicting the late
fusion (LF) and decision level fusion (DLF) systems. Inputs for the LF are taken after the fully connected layer in the ResNet
and the ST, using only WTE as inputs, as logits (A1, T1) and for DLF after the Softmax layer (A2, T2) returning normalized
probabilities.

with the German EmoDB dataset [25] on the speech emotion
recognition (SER) task.

The failure to produce good results with CNNs and hand-
crafted acoustic features led us to explore other network archi-
tectures and input features. We decided to use a ResNet archi-
tecture which was successfully applied to a number of speech
applications such as speaker recognition, and SER and has
been shown to produce good embeddings [26, 27]. ResNets
are fully convolutional neural networks (FCN) and can han-
dle inputs of different sizes (or lengths, respectively) due to
a global pooling layer at the end of the convolutional part of
the neural network. The network we use is very similar to the
one described in [28] and consists of 18 convolutional blocks
(ResNet18). Its architecture was adapted by removing the ini-
tial max-pooling layer to keep more features prior to the resid-
ual blocks as the expected inputs are already relatively small.
The dimensionality of the embedding layer was reduced from
1000 to 512 and the final classification layer was altered to
match the number of classes (2).

As acoustic input features for the ResNet, we extract 40-
dimensional Mel-frequency cepstrum coefficients (MFCC)
with a window length of 0.025 s, a frameshift of 0.01 s, along
with 1st and 2nd order moments, stacking them to a tensor
with three dimensions (frequency x time x moments) and ap-
ply z-score normalization. Those acoustic input features are
then used to train the acoustic only classifier and to extract

neural acoustic word embeddings from the trained acoustic
encoder. The word-based acoustic contexts are extracted
using the aforementioned FAs.

The network was pre-trained on short utterances from the
German EmoDB corpus to differentiate between neutral and
emotional speech [25]. This is done to learn filters that are
already primed to extract features from speech that are impor-
tant to classify emotional speech. Both pre-training and train-
ing were done using stochastic gradient descent with a cross
entropy loss function. To overcome the class imbalance prob-
lem, an oversampling strategy was applied as it had proven to
be the best performing technique in our experiments.

To obtain word-based acoustic embeddings (WAE), we
froze to resulting model to act as an acoustic word encoder.
We feed the word-based acoustic context to the model and
extract WAE from the embedding layer of the model.

4.3. Sequence Tagging

We model the task of detecting emotion carriers as a binary
sequence labeling problem using both modalities, with tar-
gets encoded as I if the token is part of an EC and O other-
wise. For this task, we adopt a bidirectional Long Short-Term
Memory (LSTM) neural network with an attention-based se-
quence tagging (ST) architecture previously used for labeling



candidates for emphasis in written text [29].1 An overview of
the architecture is located in the central part of Fig. 3.

4.4. Fusion

There are two main challenges in combining multiple modali-
ties: How to combine features of different dimensionality and
valuation, and at which stage to combine the streams. In gen-
eral, three different kinds of approaches can be differentiated:
early, late, and decision-level fusion.

4.4.1. Early and late fusion

In early fusion (EF), features for each modality are extracted
separately, i.e. each modality represents a view of the same
concept. The resulting feature vectors are then combined,
e.g. by concatenation or stacking, and then treated as a sin-
gle input channel. In late fusion (LF), each modality has its
own model and is often trained independently. The outputs
of those classifiers are used as input to another classifier that
combines them for an overall best prediction. EF as used in
this paper can be found at the center of Figure 3 and the LF
approach can be found at the top right.

4.4.2. Decision Level Fusion

In our experiments the sequence tagger using WTE is trained
as a regression problem with the Kullback–Leibler (KL) di-
vergence, predicting the probability of a token being an emo-
tion carrier. For this, the best decision threshold was exper-
imentally found to be pdb = 0.15 for lexical features only.
This motivated us to explore a rather heuristic late fusion ap-
proach: a rule-based cascaded classifier based on posterior
probabilities. Applying a similar technique to the normal-
ized probabilities in the output of the ResNet classifier, we
can find a decision threshold and then merge the decisions,
defining decision states around these thresholds. This way it
is possible to leverage long-range lexical information as well
as local acoustic information.

We define the lexical-based ST model to be the primary
model and the ResNet classifier to be the disambiguator,
leveraging local acoustic information. In our merging ap-
proach, we define an ε parameter that indicates how certain a
classifier is with the decision if a token is an EC. The decision
boundary (DB) is defined by setting a probability value pdb.

We only consider the probability for the EC to determine
certainty. If the normalized probability of a token being an
EC pec is within the epsilon interval (pdb ± ε) the classifier
is considered to be uncertain regarding a positive decision of
a token being an EC. pec > pdb + ε is considered to be cer-
tain. Those certainty indicators are computed for both models
separately. Merging is then done by checking certainty indi-
cators: If the lexical model is certain, the token is considered

1Implementation: https://tinyurl.com/seqtagging

to be an EC. If the lexical model is uncertain and the acoustic
model is certain, the token is also considered as an EC. In all
other cases, the token is not considered as an EC. We call this
heuristic decision level fusion (DLF).

5. EXPERIMENTS

Results for single modality, fusion experiments, and base-
lines, are reported in Tab. 1. As this is an information re-
trieval task, we report metrics for class I in this unbalanced
task. The equal priors baseline constitutes random guessing
with no knowledge about the actual class distribution with
pI = pO = 0.5, resembling a fair coin toss whereas the
class priors baselines resembles a heavily biased coin with
pI = 0.066 and pO = 0.934.

5.1. Training Details

All experiments were performed using five-fold cross-validation
with consistent folds across all experiments. The folds were
split by speaker to ensure no speaker in the test set was
present in the training set and hyper-parameters were tuned
on separate development folds, as is common when working
with acoustic data and small datasets. Tab. 1 contains results
for single modality classification using a ResNet classifier as
well as ST using either WTE or WAE as inputs. We report one
result for an EF experiment concatenating WTE and WAE to
a single word vector as well as a logit-based LF experiment
combining the ResNet classifier and the ST using WTE as
inputs only. Lastly, we show our overall best results, obtained
with DLF and oracle results. Oracle results are obtained by a
fictitious fusion of classifiers, which is considered to be right,
if at least one of the contributing classifiers (ResNet18 and
ST WTE), predicted the correct label. Details of the proposed
neural network architectures can be found in Fig. 3.

5.2. Results

Direct word-level EC detection using only MFCC features
(ResNet18) improved results compared to both random base-
line classifiers using class priors for both actual class priors
in the dataset as well as equal class priors. It can therefore
be assumed that useful representations can be extracted from
the embedding layer of the ResNet classifier. The analysis of
the word-based acoustic embeddings produced by the ResNet
system also looked promising. Fig. 4 contains a t-distributed
Stochastic Neighbor Embedding (t-SNE) plot of embeddings
marked as EC vs. embeddings not marked as EC. The plot
shows that there is potential to differentiate EC from non-EC
tokens in this low-dimensional projection.

While we achieved good results with the ST using WTE
only, results for the WAE failed to perform better than the
ResNet classifier that solely relied on local acoustic informa-
tion. It barely improved results compared to the random clas-

https://tinyurl.com/seqtagging


sifiers’ expected baseline precision. We, therefore, decided
to not use the ST with WAE in late fusion experiments and
rather use the ResNet classifier in LF.

The EF experiment combining WAE and WTE performed
worse than WTE alone as described in this paper and only
slightly improved previous WTE only results [4]. The LF
experiment using logit outputs from the ResNet classifier
and the ST using WTE improved the ST using WTE only
in terms of recall, but lowered the precision which lead to
overall worse results w.r.t. F1-I. Experiments with Logistic
Regression to model the probability of a word being an EC
using the logit outputs of the ST using WTE and the ResNet
classifier did not improve over the LF experiment with the
FCNN.

Unfortunately, the experiments using the standard EF and
LF approaches couldn’t improve over the already strong tex-
tual system (ST WTE). However as shown in Fig. 2 and the
feature analysis, there definitely is evidence that acoustic in-
formation can help with the detection of EC. Our experiments
with the word-level ResNet classifier could not completely
convince but still beat all statistical baselines as a stand-alone
system. Lastly oracle results presented in Tab. 1 show that the
combination of the ResNet classifier and the ST using WTE
has a lot of room for improvements still.

Fig. 4. t-SNE plot for the word-based acoustic embeddings
of the German word ”Anspannung” (English: tension). Red
dots represent tokens marked as EC while blue are non EC.

This led us to explore the rather heuristic decision level
fusion (DLF) approach described in 4.4.2 and yielded the
best overall results. The decision boundary was tuned for the
ResNet classifier only since the ST using WTE was already
trained using KL divergence with a tuned decision boundary
at pdb = 0.15. The DB for the ResNet classifier was de-
termined using 5-fold cross-validation. Results are reported
in Tab. 1 (DLF). The decision boundary for certainty of the
ResNet classifier was found to be pDB = 0.75 with ε = 0.05.

Table 1. Precision, Recall and F1 scores for class I of EC
detection. We report results for different models trained us-
ing combinations of modalities (acoustics and lexical) with
early (EF), late (LF) and decision level late fusion (DLF) us-
ing posterior probabilities. For LF, only the best performing
experiment using a fully connected neural network (FCNN)
is shown. Baseline results are included for equal priors with
pI = pO = 0.5 representing a fair coin toss and class pri-
ors with pI = 0.066 and pO = 0.934. The results are in the
format: mean(std); computed over the five folds.

Model Features Prec-I Recall-I F1-I
Baseline equal priors 6.6 50.0 0.12
Baseline class priors 6.6 6.6 0.07
ResNet18 MFCCs 19.4 (5.3) 64.6 (14.6) 0.29 (0.05)
ST WAE 7.6 (2.3) 40.3 (9.0) 0.13 (0.03)
ST WTE 37.9 (6.9) 46.7 (6.4) 0.41 (0.03)
ST EF WTE, WAE 35.3 (6.4) 44.3 (5.9) 0.39 (0.04)
FCNN LF logits 25.6 (3.6) 52.5 (9.2) 0.34 (0.01)
DLF post. prob. 42.3 (5.3) 51.2 (6.4) 0.46 (0.05)
Oracle - 70.6 (6.1) 67.4 (4.6) 0.69 (0.03)

6. DISCUSSION AND CONCLUSION

With a strong lexical baseline and the promising results from
previous work, we were convinced that ordinary fusion strate-
gies would help to improve our results. The high recall on the
acoustic ResNet18 system was encouraging. However, the re-
sults for EF and LF experiments suggest that simply adding
the acoustic representations, extracted from the ResNet, adds
a lot of entropy that the system in its current architecture can’t
handle, yielding worse accuracy than the textual system.

The analysis of the extracted representations and our
knowledge about the existence of acoustic cues led us to
explore heuristic ways to combine the modalities. The final
DLF experiments show that the accuracy of the lexical model
with its knowledge about context and content of a narrative
could be improved by relying on local acoustic information
in case of uncertainty.

The task of detecting EC is an important step towards a
deeper understanding and better modeling of a person’s emo-
tional state; ECs can also benefit natural language understand-
ing tasks such as dialog modeling. Combining acoustic and
lexical modalities yields higher accuracy than the uni-modal
approaches to this difficult task if done the right way. We
could show that local acoustic information alone is not reli-
able to detect EC but helps to improve results when combined
with a text-based system that captures long-range semantic
relations.

The research on acoustic cues of emotion carriers is still
in the initial stage. In future work, we will look into more
effective word-level acoustic representations that can be used
in typical fusion approaches.
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ical and prosodic cues for the interspeech 2018 self-
assessed affect challenge.,” in Proc. Annual Conference
of the Int’l Speech Communication Association (INTER-
SPEECH), 2018, pp. 541–545.

[2] Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir
Hussain, “A review of affective computing: From uni-
modal analysis to multimodal fusion,” Information Fu-
sion, vol. 37, pp. 98–125, 2017.

[3] Aniruddha Tammewar, Alessandra Cervone, Eva-Maria
Messner, and Giuseppe Riccardi, “Annotation of emo-
tion carriers in personal narratives,” in Proceedings of
The 12th Language Resources and Evaluation Confer-
ence, 2020, pp. 1517–1525.

[4] Aniruddha Tammewar, Alessandra Cervone, and
Giuseppe Riccardi, “Emotion carrier recognition from
personal narratives,” Accepted for publication at IN-
TERSPEECH, 2021.

[5] Aniruddha Tammewar, Alessandra Cervone, Eva-Maria
Messner, and Giuseppe Riccardi, “Modeling user con-
text for valence prediction from narratives,” in Proc.
Interspeech 2019, 2019, pp. 3252–3256.

[6] Eva-Maria Rathner, Yannik Terhorst, Nicholas Cum-
mins, Björn Schuller, and Harald Baumeister, “State
of mind: Classification through self-reported affect and
word use in speech.,” in Proc. Annual Conference of
the Int’l Speech Communication Association (INTER-
SPEECH), 2018, pp. 267–271.

[7] Alexei V Ivanov, Giuseppe Riccardi, S Ghosh, S Tonelli,
and E A Stepanov, “Acoustic Correlates of Meaning
Structure in Conversational Speech,” in Proc. Annual
Conference of the Int’l Speech Communication Associa-
tion (INTERSPEECH), 2010, p. 4.

[8] A. Paeschke, Miriam Kienast, and W. Sendlmeier, “F0-
contours in emotional speech,” Psychology, 1999.

[9] Haibo Ding and Ellen Riloff, “Acquiring knowledge of
affective events from blogs using label propagation,” in
Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2016, vol. 30.

[10] Haibo Ding, Tianyu Jiang, and Ellen Riloff, “Why is
an event affective? classifying affective events based on
human needs.,” in AAAI Workshops, 2018, pp. 8–15.

[11] Leonardo Pepino, Pablo Riera, Luciana Ferrer, and
Agustin Gravano, “Fusion Approaches for Emotion



Recognition from Speech Using Acoustic and Text-
Based Features,” in ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, May 2020, pp.
6484–6488, IEEE.

[12] Efthymios Georgiou, Charilaos Papaioannou, and
Alexandros Potamianos, “Deep Hierarchical Fusion
with Application in Sentiment Analysis,” in Proc. An-
nual Conference of the Int’l Speech Communication
Association (INTERSPEECH). Sept. 2019, pp. 1646–
1650, ISCA.

[13] Devamanyu Hazarika, Soujanya Poria, Amir Zadeh,
Erik Cambria, Louis-Philippe Morency, and Roger Zim-
mermann, “Conversational Memory Network for Emo-
tion Recognition in Dyadic Dialogue Videos,” in Pro-
ceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
Papers), New Orleans, Louisiana, 2018, pp. 2122–2132,
Association for Computational Linguistics.

[14] Hao Meng, Tianhao Yan, Fei Yuan, and Hongwei Wei,
“Speech Emotion Recognition From 3D Log-Mel Spec-
trograms With Deep Learning Network,” IEEE Access,
vol. 7, pp. 125868–125881, 2019.

[15] Björn W. Schuller, “Speech emotion recognition: two
decades in a nutshell, benchmarks, and ongoing trends,”
Communications of the ACM, vol. 61, no. 5, pp. 90–99,
Apr. 2018.

[16] Vivi Nastase, Marina Sokolova, and Jelber Sayyad
Shirabad, “Do Happy Words Sound Happy? A study
of the relation between form and meaning for English
words expressing emotions,” in Proc. Recent Advances
in Natural Language Processing (RANLP), 2007, p. 5.

[17] Anton Batliner, Stefan Steidl, Bjorn Schuller, Dino
Seppi, Kornel Laskowski, Thurid Vogt, Laurence Dev-
illers, Laurence Vidrascu, Noam Amir, Loic Kessous,
and Vered Aharonson, “Combining Efforts for Improv-
ing Automatic Classification of Emotional User States,”
Proc. IS-LTC 2006, p. 6, 2006.

[18] K. Huang, C. Wu, Q. Hong, M. Su, and Y. Zeng,
“Speech emotion recognition using convolutional neu-
ral network with audio word-based embedding,” in 2018
11th International Symposium on Chinese Spoken Lan-
guage Processing (ISCSLP), 2018, pp. 265–269.

[19] Björn Schuller, Stefan Steidl, Anton Batliner, Peter B.
Marschik, Harald Baumeister, Fengquan Dong, Simone
Hantke, Florian B. Pokorny, Eva-Maria Rathner, Ka-
trin D. Bartl-Pokorny, Christa Einspieler, Dajie Zhang,
Alice Baird, Shahin Amiriparian, Kun Qian, Zhao Ren,

Maximilian Schmitt, Panagiotis Tzirakis, and Stefanos
Zafeiriou, “The INTERSPEECH 2018 Computational
Paralinguistics Challenge: Atypical and Self-Assessed
Affect, Crying and Heart Beats,” in Proc. Annual Con-
ference of the Int’l Speech Communication Association
(INTERSPEECH). Sept. 2018, pp. 122–126, ISCA.

[20] Thorsten Dresing and Thorsten Pehl, Praxisbuch Tran-
skription : Regelsysteme, Software und praktische An-
leitungen für qualitative ForscherInnen, Eigenverlag,
Marburg, 2011.

[21] Benjamin Milde and Arne Köhn, “Open source auto-
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