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ABSTRACT

This paper presents a novel knowledge distillation method for
dialogue sequence labeling. Dialogue sequence labeling is a
supervised learning task that estimates labels for each utter-
ance in the target dialogue document, and is useful for many
applications such as dialogue act estimation. Accurate label-
ing is often realized by a hierarchically-structured large model
consisting of utterance-level and dialogue-level networks that
capture the contexts within an utterance and between utter-
ances, respectively. However, due to its large model size, such
a model cannot be deployed on resource-constrained devices.
To overcome this difficulty, we focus on knowledge distilla-
tion which trains a small model by distilling the knowledge of
a large and high performance teacher model. Our key idea is
to distill the knowledge while keeping the complex contexts
captured by the teacher model. To this end, the proposed
method, hierarchical knowledge distillation, trains the small
model by distilling not only the probability distribution of the
label classification, but also the knowledge of utterance-level
and dialogue-level contexts trained in the teacher model by
training the model to mimic the teacher model’s output in
each level. Experiments on dialogue act estimation and call
scene segmentation demonstrate the effectiveness of the pro-
posed method.

Index Terms— Knowledge distillation, dialogue se-
quence labeling, dialogue act estimation, call scene seg-
mentation

1. INTRODUCTION

With the progress of automatic speech recognition technolo-
gies, expectations for the understanding and utilization of lin-
guistic information present in human-to-human dialogs are
increasing. For example, by understanding contact center
telephone dialogue documents, a service for discovering cus-
tomer needs and issues with the center has been developed
[1H6].

In this paper, we focus on utterance-level dialogue se-
quence labeling, a key component in dialogue document un-
derstanding. Dialogue sequence labeling is often modeled as
a supervised learning task that estimates labels for each utter-
ance when given a dialogue document; it is useful in many

applications such as topic segmentation [/H9]], dialogue act
estimation [10H15], and call scene segmentation [16H18]]. To
understand dialogue documents, it is necessary to consider
who spoke what and in what order. Therefore, these tech-
niques often adopt a hierarchically-structured model consist-
ing of an utterance-level network and a dialogue-level net-
work to capture contexts not only within an utterance but
also between utterances [16]. In addition, an effective self-
supervised pretraining method using only unlabeled data has
been proposed [18].

Capturing dialogue documents precisely demands a large
number of parameters for both the utterance-level and the
dialogue-level networks. However, label inference using such
large models requires a rich computation environment. Un-
fortunately, it is difficult to prepare such an environment,
especially when we need to process multiple inferences in
parallel or process inference on a device with low comput-
ing power such as a mobile device. Therefore, using a large
model hinders the adoption of various services.

To overcome the difficulties created by using large mod-
els, we focus on knowledge distillation; a small student
model with just a few parameters is trained by distilling the
knowledge of a large and high performance teacher model so
replicate the teacher’s performance [19-21]. In recent years,
knowledge distillation techniques have been successful in the
natural language processing field; examples include neural
machine translation [22H24]] and compression of bidirectional
encoder representations from Transformers (BERT) [25530].
The strength of knowledge distillation is that the student
model can be trained to mimic the behavior of the teacher
model. For dialogue sequence labeling, it is especially im-
portant to mimic the behavior of the teacher model faithfully
to keep full performance while reducing the model size be-
cause dialogue sequence labeling is a task in which complex
contexts at the utterance-level and the dialogue-level must be
precisely captured. Knowledge distillation is seen as poten-
tially able to overcome the difficulty of using a large model
for dialogue sequence labeling, but no truly effective knowl-
edge distillation technique for dialogue sequence labeling has
been described so far.

In this paper, we propose a novel knowledge distillation
method for dialogue sequence labeling. Our key idea is to
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train a small student model by distilling the knowledge of
utterance-level and dialogue-level contexts while retaining
the complex contexts captured by the large teacher model. To
this end, our method, hierarchical knowledge distillation, not
only trains the student model so that the probability distribu-
tion of its output labels approaches that of the teacher model,
but also trains the student model so that the outputs of the
utterance-level and the dialogue-level networks of the student
model approach those of the teacher model. By distilling the
knowledge of complex contexts from the large teacher model
via hierarchical knowledge distillation, our method enables
us to train the small student model without losing the ability
to capture contexts within an utterance and between utter-
ances as captured by the teacher model. Our experiments on
dialogue act estimation using the switchboard dialogue act
(SwDA) corpus [31,132] and call scene segmentation using a
simulated Japanese contact center dialogue dataset demon-
strate the effectiveness of the proposed method.
Our contributions are summarized as follows:

* We provide an effective knowledge distillation method
for dialogue sequence labeling that distills not only the
probability distribution of the label classification [20],
but also the knowledge of utterance-level and dialogue-
level contexts. To the best of our knowledge, this is
the first method to achieve knowledge distillation for
dialogue sequence labeling.

* We conduct ablation experiments on dialogue act esti-
mation and call scene segmentation tasks that analyze
the effectiveness of the proposed method. We also pro-
vide the results achieved by combining self-supervised
pretraining [18] and the proposed method.

2. RELATED WORK

2.1. Utterance-level dialogue sequence labeling

Utterance-level dialogue sequence labeling is being used for
topic segmentation [7H9], dialogue act estimation [[LOH15],
and call scene segmentation [16-18]]. Hierarchically struc-
tured models consisting of utterance-level and dialogue-level
neural networks are often used to efficiently capture contexts
within an utterance and between utterances, and an effective
self-supervised pretraining method has been proposed [18]].
If a hierarchical model is used for dialogue sequence label-
ing, a large number of parameters are needed to train a model
that offers high accuracy. In this paper, to train a highly ac-
curate model that has just a few parameters, we introduce a
knowledge distillation technique to utterance-level dialogue
sequence labeling.

2.2. Knowledge distillation

Knowledge distillation is a technique to train a small student
model efficiently by utilizing the knowledge of a large and

high performance teacher model without significant perfor-
mance loss [19]. One of the early methods trains the student
model so that the probability distribution of the output label of
the student model approaches that of the teacher model by uti-
lizing soft target loss [20]. Another method trains the student
model so that the hidden layers’ outputs of the student model
approach those of the teacher model [21]]. Successful knowl-
edge distillation techniques have recently been reported in the
natural language processing field [22-H24,27130]. In this pa-
per, we propose a knowledge distillation method for dialogue
sequence labeling. To retain the ability to capture contexts
within an utterance and between utterances, we train the stu-
dent model so that the outputs of the utterance-level and the
dialogue-level networks of the student model approach those
of the teacher model.

3. UTTERANCE-LEVEL DIALOGUE SEQUENCE
LABELING

This section describes utterance-level dialogue sequence la-
beling in dialogue documents. This task estimates utterance-
level label sequence Y = {yi,---,yr} from input utter-
ance sequence X = {x1,---,2z7} using neural networks,
where the t-th utterance, x;, consists of token sequence
{wy1,-+ ,we K, }5 Ky is number of tokens in the ¢-th utter-
ance. The t-th label, ¥, is an element of )/, where ) is the
set of labels. Label types are task dependent, for example
dialogue act labels for dialogue act estimation and call scene
labels for call scene segmentation.

In our dialogue sequence labeling, y; is estimated from
{1, -+ ,2+} in an online manner. For this, conditional prob-
ability P(y: | 1, - , xt, ©) is modeled, where © represents
a model parameter. The ¢-th label can be categorized by:

J¢ = arg max P(y; | 1, -+ , ¢, ©). 1)
Yyt €Y
In this paper, we assume that P(y; | x1, - - ,2¢, ©) is
modeled by the Transformer encoder [25] and hierarchical
long short-term memory recurrent neural networks (LSTM-
RNNG5). Figure 1 shows the structure of the labeling model.
In the utterance-level network, each token is first con-
verted into a continuous vector representation. The contin-
uous vector representation of the k-th token in the ¢-th utter-
ance is given by:

wy ;, = Embedding(w; x; 0"), @

where Embedding() is a linear transformational function that
embeds a symbol into a continuous vector, and 8" is the train-
able parameter. Continuous vectors w; j are then converted
into g, j, for input to the Transformer encoder block as:

q; ;, = AddPosEnc(w 1), (&)

where AddPosEnc() is a function that adds a continuous
vector in which position information is embedded. The
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Fig. 1. Structure of dialogue sequence labeling model.
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Transformer encoder forms hidden representations Rg ) =

{7“§,L1)7 T TEsz } from Q, = {q; 1, - ,q; k,} by using L
Transformer encoder blocks. The I-th Transformer encoder

block forms the [-th hidden representations Rgl) from the
(1-1)
lower layer outputs R; as
R( ) = TranbformerEnc(R(l 1);OT), 4

where Rgo) = Q,, and TransformerEnc() is a Transformer
encoder block that consists of a scaled dot product multi-head
self-attention layer and a position-wise feed-forward network
[25]]. 8™ represents the trainable parameter. The hidden repre-
sentations are then summarized as an utterance representation
by a self-attention mechanism [33]]. The ¢-th utterance con-
tinuous representation is calculated as:

sy = SelfAttention(rEﬁ), e rgLIA 6%), (5)

where SelfAttention() is a transformational function that
converts into a fixed-length vector by the self-attention mech-
anism; 0% is the trainable parameter.

In the dialogue-level network, interaction information
from start-of-dialogue to the ¢-th utterance is incrementally
embedded into a continuous vector representation. The
t-th continuous vector representation that embeds all dia-
logue context sequential information up to the ¢-th utterance

ugM) is calculated from {sy,---,s:} by using M LSTM-

RNN layers. The m-th LSTM-RNN layer forms the m-th
hidden representations ugm) from the lower layer outputs
{u™ Y amYY as:

™ = LSTM(u{™ ™V, .. u{m Y, gv), (6)

where u§0> = 8¢, LSTM() is a function of the unidirectional
LSTM-RNN layer, and 8" represents the trainable parameter.

In the output layer, predictive probabilities of the la-
bels for the t-th utterance o, are defined using logits vy =

[vt-,la e 7vt,|y‘] as

= FeedForward(ugM) ;0Y), (7

o; = Softmax(v;), ®)

where FeedForward() is a function of a fully-connected
feed forward neural network, 8V is a trainable parameter,
and Softmax() is a softmax function. o; corresponds to
Py | x1,-- , 24, ©).
The model parameters @ = {6™,0",0°, 6", 0V} can be

optimized by preparing training dataset D = {(X*, ?1), e
(XN ,?N)}, where X™ and Y are input utterance se-
quence and reference utterance-level label sequence in the
n-th dialogue, respectively. In this case, cross-entropy loss,

named hard target loss, is computed by:

N T’Vl
5 3] 5 3 3 AN N
n=1 Tn t=1 yey
where 6} = [5?717... ’52‘3}'] and o} = [0217... ’OZIJ’\] are

the reference and estimated probabilities of label y for the ¢-th
utterance in the n-th dialogue, respectively. T, is the number
of utterances in the n-th dialogue. Note that 0} is a one-hot
vector.

When self-supervised pretraining [18] is utilized, parame-
ters {0%,0",0%, 0%} are initialized by pretraining using un-
labeled data, and then parameters ® are optimized with Ly
in the same way as above.

4. PROPOSED METHOD

This section details our proposed knowledge distillation
method for utterance-level dialogue sequence labeling. The
main idea of the proposed method, hierarchical knowledge
distillation, is to train a small student model by distilling



the knowledge of utterance-level and dialogue-level complex
contexts captured by a large teacher model. To this end,
our method trains the student model so that the probability
distribution of the output labels approaches that of the large
teacher model by utilizing soft target loss [20]. Not only that,
our method trains the student model so that the outputs of the
utterance-level and the dialogue-level networks of the student
model approach those of the teacher model. By distilling the
knowledge to capture complex contexts trained in the teacher
model, our method efficiently trains the small student model
so that it offers high accuracy.

Figure 2 outlines the proposed method. Our hierarchical
knowledge distillation proposal trains the student model by
distilling the knowledge of the teacher model by optimizing
the student model using a loss function that is a combina-
tion of four components: hard target loss (9), soft target loss,
utterance-level context loss, and dialogue-level context loss.

4.1. Soft target loss

Soft target loss aims to bring the student model’s probability
distribution of the output labels closer to that of the teacher
model [20]. To calculate soft target loss, the probability dis-
tribution is computed from logits v, by:

z¢ = SoftmaxWithTemperature(vy; 7), (10)

where SoftmaxWithTemperature() is a softmax function
with temperature, and 7 is a hyper-parameter that represents
temperature [20]. Soft target loss is thus defined as:

Lst = Z > zp logz, |, (D)
no= 1 yey
where 2} = [2), -+, 2|yl and 2} = [z, -+, 27"}, | are

the probabilities of label y for the ¢-th utterance in the n-th di-
alogue estimated by the teacher model and the student model,
respectively.

4.2. Utterance-level context loss

The proposed method aims to train the student model so
that the utterance-level network of the student model mimics
that of the teacher model. For this, utterance-level con-
text loss is defined as the difference between the outputs of
the utterance-level networks of the student and the teacher
models. Utterance-level context loss is defined using mean
squared error (MSE) as:

1N
EUC:NZ; Zl\st—stllz, (12)

where 8 and s} are the ¢-th utterance continuous vector rep-
resentations of the teacher model and the student model, re-
spectively. Note that the proposed method assumes that 8}
and s} have equal size.
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Fig. 2. Outline of the proposed method.

4.3. Dialogue-level context loss

The proposed method also aims to train the student model
so that the dialogue-level network of the student model mim-
ics that of the teacher model. For this, dialogue-level context
loss is defined as the difference between the outputs of the
dialogue-level networks of the student and the teacher mod-
els. Dialogue-level context loss is defined using MSE as:

CDC:ii< iHNM)
N —

ul™" ||%> . (13)

~ (M),n (M),n

where u, and u,; are the ¢-th continuous vector rep-
resentations that embed all dialogue context sequential infor-
mation up to the ¢-th utterance, of the teacher model and the
student model, respectively. M is the number of layers for the

teacher model’s dialogue-level network (M > M). Note that

= (M),n (M),n

the proposed method assumes that u, and u,; have

equal size.

4.4. Training

For training, the parameters of the student model ® are op-
timized by using training dataset D with the application of
combined loss. Combined loss is defined as:

L = Lyt + Ast + aLluc + BLpc, (14)

where )\, o, and (8 are hyper-parameters.

When self-supervised pretraining [18] is utilized, param-
eters {6%,0",0° 0"} are initialized in the pretraining using
unlabeled data, and then parameters ® are optimized with £
in the same way as above.



Table 1. Details of the simulated Japanese contact center di-
alogue dataset.

| Business type | #calls #utterances #tokens |
Finance 59 6,081 55,933
Internet provider 57 3,815 47,668
Government unit 73 5,617 48,998
Mail-order 56 4,938 46,574
PC repair 55 6,263 55,101
Mobile phone 61 5,738 51,061
All 361 32,452 305,351

5. EXPERIMENT

5.1. Datasets

We evaluated the proposed knowledge distillation method on
two dialogue sequence labeling tasks: dialogue act estimation
and call scene segmentation.

For dialogue act estimation, we used SwDA corpus
[31,132]. SwDA corpus consists of 1,155 telephone calls
between two people with no specific topic; it holds 205K
utterances and 1.4M tokens. Each utterance is tagged with
one dialogue act label, and each dialogue act label summa-
rizes syntactic, semantic and pragmatic information about
the corresponding utterance. SwDA corpus originally used
over 200 kinds of dialogue act labels, but labels are usu-
ally clustered into 43 label-types such as statement-non-
opinion, acknowledge (backchannel), statement-opinion, and
agree/accept [31]. Following this, we used the clustered 43
dialogue act label-types. We split the SWDA corpus into
1,115 training dialogues and 19 test dialogues following the
conventional approach [32].

For call scene segmentation, we used a simulated Japanese
contact center dialogue dataset consisting of 361 dialogues
in six business fields. Details of the dataset are shown in
Table 1. One dialogue means one telephone call between
one operator and one customer; all utterances were manually
transcribed. Each dialogue was divided into speech units us-
ing LSTM-RNN-based speech activity detection [34] trained
from various Japanese speech samples. We manually set five
labels to define call scenes: opening, requirement confirma-
tion, response, customer confirmation, and closing [16]. We
split the dataset into 324 training dialogues and 37 test di-
alogues. Only for call scene segmentation, we additionally
prepared 4,000 unlabeled dialogues collected from various
Japanese contact centers, and an additional 500 million un-
labeled Japanese sentences collected from the Web to utilize
self-supervised pretraining [[18].

5.2. Setups

We first trained the teacher model from the labeled dataset.
For dialogue act estimation, we trained the teacher model

Table 2. Details of the models and sizes.

| | L M #units #parameters |
Teacher | 8 2 2,048 13.11M
S1 1 1 256 2.47TM
S2 2 2 512 3.65M

Table 3. Results in terms of classification accuracy for dia-
logue act estimation (%).

| ST 82
Teacher (common to S1 and S2) 7279 7279
Student

Baseline 7143 71.75
Knowledge distillation w/o Lyc, Lpc | 72.40 72.44
Knowledge distillation w/o Lyc 72.54 72.66
Knowledge distillation w/o Lpc 72.60 72.67
Proposed knowledge distillation 72.69 7281

using only labeled dataset from scratch. For call scene
segmentation, we trained the teacher model utilizing the
self-supervised pretraining [18] using unlabeled dialogues
and unlabeled sentences before training by using a labeled
dataset. To evaluate the proposed knowledge distillation, we
constructed student models by the following two training pro-
cedures. In Baseline, training used only the labeled dataset
from scratch. In Knowledge distillation, training used only
the labeled dataset and acquired the knowledge of the teacher
model by utilizing the knowledge distillation proposal. Only
for call scene segmentation, we constructed additional stu-
dent models by the following two training procedures. In
Pretraining, we utilized the self-supervised pretraining as
used by the teacher model, and then trained using the labeled
dataset. In Pretraining + Knowledge distillation, we uti-
lized the self-supervised pretraining as used by the teacher
model, and then trained utilizing the knowledge distillation
proposal using the labeled dataset.

Our experiments examined student models of two sizes:
S1 and S2. Details of the models and their size, together
with the teacher model, are shown in Table 2. In Table 2,
L and M are the number of layers for utterance-level network
and the dialogue-level network, respectively. Also, “#units”
represents the inner outputs in the position-wise feed forward
networks for Transformer encoder blocks. For all models, we
defined the token vector representation as a 256-dimensional
vector, and unit size of LSTM-RNN was set to 256. For the
Transformer encoder blocks, the dimensions of the output
continuous representations were set to 256, and the number
of heads in the multi-head attentions was set to 4. Note that
the teacher model is common to S1 and S2.

For training, the mini-batch size was set to five dialogues.
The optimizer was RAdam [35]] with the default setting. For
knowledge distillation, parameters 7, A\, «, and /3 were set
to 5.0, 0.1, 0.05, and 0.05, respectively. We constructed five



Table 4. Results in terms of classification accuracy for call scene segmentation (%).

| [ st 52|
Teacher (common to S1 and S2) 91.28 91.28
Student Baseline 87.22 87.94
Pretraining 89.05 89.46
Knowledge distillation w/o Lyc, Lpc 87.54 88.23
Knowledge distillation w/o Lyc 88.83 88.86
Knowledge distillation w/o Lpc 88.99 89.20
Proposed knowledge distillation 89.81 91.10
Pretraining + Knowledge distillation w/o Lyc, Lpc 88.65 88.82
Pretraining + Knowledge distillation w/o Lyc 89.42 89.62
Pretraining + Knowledge distillation w/o Lpc 89.49 89.86
Pretraining + Proposed knowledge distillation 89.98 91.26

models by varying the initial parameters, and evaluated their
average classification accuracy. Note that a part of the training
dialogues was used for early stopping.

5.3. Results

The resulting classification accuracy values for dialogue act
estimation are shown in Table 3. In the table, line 1 shows
ideal accuracy achieved by the teacher model. Line 2 shows
results yielded by training the student models from scratch.
The results show that there is a performance gap between
line 1 and line 2; this is due to a reduction in the number
of parameters, see Table 2. Lines 3—6 show the results of
knowledge distillation. Line 3 shows the results yielded by
using only hard and soft target losses without utterance-level
and dialogue-level context losses, which follows a previous
method [20]]. The results on line 3 show performance im-
provements over the baseline, but the improvements were
limited. Lines 4 and 5 show the results yielded by applying
the knowledge distillation proposal without utterance-level
context loss or dialogue-level context loss, respectively. The
results on lines 4 and 5 show that the utilization of utterance-
level or dialogue-level context loss improved performance
compared with line 3. Line 6 shows the results achieved by
the knowledge distillation proposal; the proposed method at-
tained the best performance. Especially for S2, the accuracy
of the proposed method exceeds that of the teacher model.
The resulting classification accuracy values for call scene
segmentation are shown in Table 4. In the table, line 1 shows
ideal accuracy values achieved by the teacher model. Line
2 shows results yielded by training the student models from
scratch, and line 3 shows results yielded by utilizing the self-
supervised pretraining. The results show that there is a perfor-
mance gap between line 1 and lines 2 and 3 due to parameter
reduction. Lines 4—7 show the results of knowledge distilla-
tion without pretraining the student models. Line 4 shows that
using only hard and soft target losses yielded poor knowledge
distillation performance. Lines 5 and 6 show that applying the
knowledge distillation proposal without utterance-level con-

text loss or dialogue-level context loss yielded limited perfor-
mance improvements. Line 7 shows that the knowledge distil-
lation proposal exceeds the performance of the results on lines
4-6. In addition, lines 811 show the results yielded by ap-
plying knowledge distillation with pretraining. The results on
lines 8—10 show that full knowledge distillation performance
was not attained when only a part of the loss was used. Note
that lines 8—10 demonstrate improved performance compared
to lines 4—6 due to pretraining. Line 11 shows that applying
the proposed knowledge distillation with pretraining yielded
the best performance of all other methods examined. S2 al-
lowed the proposed method to most closely approach the ac-
curacy of the teacher model.

The performance improvements attained by the knowl-
edge distillation proposal are considered to be due to the fact
that the proposed method could train the student model with-
out losing the ability of the teacher model to capture contexts
within an utterance and between utterances. Our results show
that the proposed knowledge distillation method is an effec-
tive way of improving performance in small student models.

6. CONCLUSIONS

This paper has proposed a novel knowledge distillation
method, hierarchical knowledge distillation, for dialogue
sequence labeling. The key advance of our method is to dis-
till the knowledge of the utterance-level and dialogue-level
contexts captured by a large teacher model. To this end,
our method utilizes utterance-level and dialogue-level con-
text losses so that the outputs of the utterance-level and the
dialogue-level networks of the student model approach those
of the teacher model. Experiments on dialogue act estimation
and call scene segmentation tasks showed that our method
allows small student models to achieve better performance
and that combining utterance-level and dialogue-level context
losses is an effective approach to knowledge distillation for
dialogue sequence labeling.
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