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ABSTRACT

The use of phonological features (PFs) potentially allows
language-specific phones to remain linked in training, which is
highly desirable for information sharing for multilingual and crosslin-
gual speech recognition methods for low-resourced languages. A
drawback suffered by previous methods in using phonological fea-
tures is that the acoustic-to-PF extraction in a bottom-up way is
itself difficult. In this paper, we propose to join phonology driven
phone embedding (top-down) and deep neural network (DNN) based
acoustic feature extraction (bottom-up) to calculate phone probabil-
ities. The new method is called JoinAP (Joining of Acoustics and
Phonology). Remarkably, no inversion from acoustics to phonologi-
cal features is required for speech recognition. For each phone in the
IPA (International Phonetic Alphabet) table, we encode its phono-
logical features to a phonological-vector, and then apply linear or
nonlinear transformation of the phonological-vector to obtain the
phone embedding. A series of multilingual and crosslingual (both
zero-shot and few-shot) speech recognition experiments are con-
ducted on the CommonVoice dataset (German, French, Spanish and
Italian) and the AISHLL-1 dataset (Mandarin), and demonstrate the
superiority of JoinAP with nonlinear phone embeddings over both
JoinAP with linear phone embeddings and the traditional method
with flat phone embeddings.

Index Terms— multilingual, crosslingual, speech recognition,
phonological feature, phone embedding

1. INTRODUCTION

In recent years, deep neural network (DNN) based automatic speech
recognition (ASR) systems have been improved dramatically, which
are, however, data-hungry. A well-trained DNN based ASR system
for a single language usually requires hundreds to thousands of hours
of transcribed speech data. Remarkably, there are more than 7100
languages in the world [1], and most of them are low-resourced lan-
guages, for which only limited transcribed speech data are available
[2].

To advance ASR for low-resourced languages, multilingual and
crosslingual speech recognition methods have long been developed,
mainly for acoustic modeling [3, 4, 5, 6, 7, 8, 9] (More discussions
in Section 2). Some end-to-end ASR models [10, 11, 12] fold the
acoustic model (AM), pronunciation lexicon and language model
(LM) into a single neural network, making the models being even
more data-hungry and not suitable for low-resourced multilingual
speech recognition, which is the main problem we hope to solve in

† Corresponding author. This work is supported by NSFC 61976122.
Code is available at https://github.com/thu-spmi/CAT

Fig. 1. Illustration of the connection between Spanish and Italian. As
indicated by the intersection of the two circles, there are some com-
mon IPA phones used in both languages, which can be trained with
more data from both languages. Notably, there also exist language-
specific phones for each language. � and E only appears in Spanish
and Italian respectively, and thus are not linked in the surface forms.
The bottom show the phonological features for � and E, which share
many common components. Phonological feature components are
ordered as listed in Table 1.

this work1.
Intuitively, the key to successful multilingual and crosslingual

recognition is to promote the information sharing in multilingual
training and maximize the knowledge transferring from the well
trained multilingual model to the model for recognizing the utter-
ances in the new language. To this end, a common practice is that
similar sounds across languages are combined into one multilingual
phone set. International Phonetic Alphabet (IPA), which classi-
fies sounds based on phonetic knowledge, has been used to create
a universal phone set [3, 8, 15]. Often phones are seen as being
the “atoms” of speech. But it is now widely accepted in phonol-
ogy that phones are decomposable into smaller, more fundamental
units, sharable across all languages, called phonological distinc-
tive features [?, 16]. Namely, phones can be represented by a set
of phonological features, such as voicing, high, low (representing
tongue position during vowels), round (for lip rounding), continuant
(to distinguish sounds such as vowels and fricatives from stops) and
so on, as shown in Table 1. As shown in Fig. 1, the use of phonolog-
ical features potentially allow language-specific phones to remain
linked — to “share statistical strength” in training. This is highly
desirable, especially for zero-shot crosslingual speech recognition.

Phonological features (PFs) have been applied in multilingual
and crosslingual speech recognition [17, 9]. Previous studies gener-

1We suppose that text corpus and pronunciation lexicons or grapheme-to-
phoneme (G2P) transducers [13, 14] are available.
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Fig. 2. (a) Phonology driven phone embedding (top-down) and DNN
based acoustic feature extraction (bottom-up) are joined to calcu-
late the logits, which define the phone probabilities. (b) Traditional
methods in using phonological features are purely bottom-up.

ally take a bottom-up approach and train a phonological feature ex-
tractor, often implemented by neural networks. Each training sample
consists of a speech frame as the input and the canonical phonologi-
cal feature components derived from the labeled phone as the target
output values. Multiple neural networks are trained, depending on
the partition of the phonological features. In the feature concate-
nation approach, the log posteriors of every phonological class are
concatenated together and fed into the high-level acoustic model,
which further predicts the phone probabilities [9]. Alternatively, in
the model combination approach, the PF probabilities and the phone
probabilities from a standard acoustic model are combined to calcu-
late the acoustic score [17].

A drawback suffered by previous methods in using phonologi-
cal features is that the acoustic-to-PF extraction in a bottom-up way
is itself difficult, let alone the training of the phonological feature
extractor needs segmented and labeled speech at the phone level.
Moreover, previous methods do not provide a principled model to
calculate the phone probabilities for unseen phones from the new
language towards zero-shot crosslingual recognition. The parame-
ters connecting to the unseen phones in the output layer of the DNN
model are initialized either randomly [3] or in an ad-hoc way (taking
a weighted average of the parameters of all the seen phones [9]).

In this paper, we propose a new approach to using phonologi-
cal features for multilingual and crosslingual speech recognition. As
illustrated in Fig. 2(a), our approach consists of phonology driven
phone embedding (top-down) and DNN based acoustic feature ex-
traction (bottom-up), which are joined to calculate the logits to de-
fine the phone probabilities. This is different from the pure bottom-
up manner of the traditional methods in using phonological features,
as sketched in Fig. 2(b).

Specifically, by using binary encoding of phonological features,
we first obtain an encoding vector for each phone in the IPA table,
which is referred to as the phonological-vector. Then, we apply lin-
ear or nonlinear transformation of the phonological-vector to obtain
the phone embedding vector for each phone. This step is referred
to as the phonological transformation (top-down). Next, we conduct
bottom-up calculation on an acoustic DNN, viewed as a cascade of
acoustic feature extractors. Finally, the extracted acoustic features
and the phone embeddings are joined to calculate the phone (poste-
rior) probabilities, which can be further used to calculate the CTC
loss [18] or the CTC-CRF loss [19, 20]. This completes the defi-
nition of a multilingual acoustic model, which involves the Joining
of Acoustics and Phonology and is thus called the JoinAP method.

Remarkably, no inversion from acoustics to phonological features is
required for speech recognition. Details about applying the JoinAP
model to multilingual and crosslingual speech recognition are given
in Section 3.

To evaluate the JoinAP model, a series of multilingual and
crosslingual (both zero-shot and few-shot) speech recognition ex-
periments are conducted on the CommonVoice dataset (involving
German, French, Spanish and Italian) [21] and the AISHLL-1
dataset (Mandarin) [22]. The main findings are as follows.

• With JoinAP, we can develop a single acoustic model for mul-
tilingual speech recognition, which performs better than the
traditional multilingual model (namely using flat phone em-
beddings2).

• In zero-shot crosslingual recognition, JoinAP with nonlin-
ear phone embeddings outperforms both JoinAP with linear
phone embeddings and the traditional model with flat phone
embeddings significantly and consistently.

• In few-shot crosslingual recognition, using JoinAP with non-
linear phone embeddings still yields much better results than
using flat phone embeddings; however, the superiority of non-
linear over linear for phone embeddings seems to be weak-
ened, as there are more training data from the target lan-
guages.

2. RELATED WORK

In multilingual speech recognition, training data for a number of
languages, often referred to as seen languages, are merged to train
a multilingual AM. Multilingual training is found to outperform
monolingual training, which trains the monolingual AMs separately
for each seen language [4]. Such advantage is presumably due to the
information sharing between seen languages in multilingual train-
ing. A common approach is to share the lower layers of the DNNs
between languages, while the output layers are language specific
[4, 5]. Another widely used approach is to extract the bottleneck
features from the bottleneck layer of a multilingual DNN model,
which are then used as input features to train the AM for the target
language [6, 7].

Crosslingual speech recognition refers to recognizing utterances
in a new language, which is unseen in training the multilingual AM.
In the zero-shot setting, the multilingual AM is trained and directly
used without any transcribed speech from the new, target language
[3, 15, 23, 24]. Alternatively, in the few-shot setting, the multilin-
gual AM can be further finetuned or adapted on limited transcribed
speech from the new language [8, 9, 25]. Hopefully, knowledge can
be transferred, by adapting a well-trained multilingual model to the
new language, presumably because the multilingual model should
learn some universal phonetic representations and the new language
is similar to seen languages, more or less.

Earlier studies in multilingual and crosslingual recognition use
context-dependent phone units, which leads to an explosion of units
and also needs special care to handle context-dependent modeling
across languages [26, 27]. There are recent attempts to use end-to-
end ASR models such as CTC with monophones [8, 24] or end-to-
end LF-MMI with biphones [28, 27] for multilingual and crosslin-
gual recognition. Remarkably, the end-to-end CTC-CRF model,

2In the traditional multilingual model such as based on CTC or CTC-
CRF, the weights of the final linear layer before softmax can be regarded as
flat, unstructured phone embeddings. In contrast, JoinAP uses phonological-
vector based, structured phone embeddings.



which is defined by a CRF (conditional random field) with CTC
topology, has been shown to perform significantly better than CTC
[19, 20]. Moreover, mono-phone CTC-CRF performs comparably
to bi-phone end-to-end LF-MMI [28] and avoids context-dependent
modeling with a simpler pipeline, which is particularly attractive for
multilingual and crosslingual speech recognition.

When the phonological transformation is linear, our JoinAP
model reduces to the model introduced in [24]. But in [24], only
zero-shot crosslingual phone recognition is conducted and the model
is developed still in a bottom-up way without the idea of joining
acoustics (bottom-up) and phonology (top-down).

3. METHOD

This section first explains the definition and construction of phono-
logical vectors. Then we describe the JoinAP method with linear
and nonlinear phone embeddings. Finally, we introduce the CTC-
CRF based ASR framework to use JoinAP.

3.1. Phonological-vector

Phonological (distinctive) features have been proposed as the basis
of spoken language universals, in the sense that while the phones of
a language vary, the set of phonological features does not and is the
same for all languages. That is, phones can be constructed from a
set of phonological features. As shown in Fig. 1, the use of phono-
logical features potentially allow language-specific phones to remain
linked, which could benefit the information sharing in multilingual
training.

There are different phonological feature sets and phonological
systems, among which one of the most popular systems is proposed
by Chomsky and Halle in 1968 [?]. Phonological features are cate-
gorized into four classes: major class features, manner of articulation
features, source features, cavity features. Each feature is marked as
‘+’, ‘-’ or ‘0’. ‘+’ indicates the presence of that feature, ‘-’ indicates
the absence, and ‘0’ means certain phone does not show such fea-
ture; for example, it is meaningless for a vowel to possess consonant
features, so it will be marked as ‘0’. In our experiment, we employ
PanPhon [29] to obtain the phonological features for IPA symbols.
PanPhon uses a total of 24 phonological features. Table 1 gives ex-
amples of the feature specifications of some IPA phones, where all
24 features are listed.

Now each phone is described by 24 phonological features, and
each feature can take ‘+’, ‘-’ or ‘0’. Further, we encode each phono-
logical feature by a 2-bit binary vector. Taking the feature “round”
as an example, the first bit indicates whether it is “round+” and the
second bit indicates “round-”. Therefore, if the “round” feature takes
‘+’, the 2-bit vector will be “10”; if the “round” feature is ‘-’, the 2-
bit vector will be “01”; if the “round” feature takes ‘0’, the 2-bit vec-
tor will be “00”. In this way, we can represent the phonological fea-
tures by a 48-bit vector. Additionally, acoustic training (e.g., based
on CTC-CRF) introduces 3 special extra tokens (<blk>, <spn>
and <nsn>), so we further add another 3 bits to encode the three
special tokens in one-hot. In summary, we obtain a 51-bit encoding
vector for each phone in the IPA table, which is referred to as the
phonological-vector.

3.2. Phone embedding

Based on the phonological-vector representation of phones, we pro-
pose to join phonology driven phone embedding (top-down) and
DNN based acoustic feature extraction (bottom-up) to calculate the

Table 1. Phonological features of some IPA phones
Phonological feature d E � @ i dý kj

syllabic - + - + + - -
sonorant - + - + + - -
consonantal + - + - - + +
continuant - + + + + - -
delayed release - - - - - + -
lateral - - - - - - -
nasal - - - - - - -
strident 0 0 0 0 0 0 0
voice + + + + + + -
spread glottis - - - - - - -
constricted glottis - - - - - - -
anterior + 0 + 0 0 - -
coronal + - + - - + -
distributed labial - 0 + 0 0 + 0
labial - - - - - - -
high - - - - + + +
low - - - - - - -
back - - - + - - -
round - - - - - - -
velaric - - - - - - -
tense 0 - 0 - + 0 0
long - - - - - - -
hitone 0 0 0 0 0 0 0
hireg 0 0 0 0 0 0 0

logits, which further define the phone probabilities for ASR. This
method, called JoinAP (Joining of Acoustics and Phonology), is dif-
ferent from the traditional bottom-up way to use phonological fea-
tures for ASR (e.g., by building the phonological feature extactor)
(See Fig. 2 for illustration).

In the traditional multilingual model such as based on CTC or
CTC-CRF, one may view the acoustic DNN as a cascade of bottom-
up feature extractors. At frame t, the DNN output ht ∈ RH could
be viewed as the projection of speech into some abstract space, per-
taining to the spoken phones. Before softmax computation to output
phone probabilities, the final linear layer calculates the logits as fol-
lows:

zt,i = eTi ht (1)

where ei ∈ RH denotes the weight vector in the final linear layer and
could be viewed as a (flat) phone embedding vector for phone i. For
simplicity, we omit the bias in describing linear layers throughout
the paper.

In JoinAP, we propose to apply linear or nonlinear transforma-
tion of the phonological-vector to obtain the phone embedding vec-
tor for each phone. This step is referred to as the phonological trans-
formation (top-down) and explained as follows.

The JoinAP-Linear method. Given the phonological-vector pi ∈
R51 for phone i, we apply linear transformation of pi to define the
embedding vector for phone i:

ei = Api ∈ RH (2)

where A ∈ RH×51 denotes the transformation matrix. The logits
for calculating the phone (posterior) probabilities are still defined as
in Eq. (1), which can be transparently used in the CTC-CRF based
ASR framework (detailed later).



The JoinAP-Nonlinear method. The nonlinear method is similar
to the linear one, except that we apply nonlinear transformation of
pi to define the embedding vector for phone i. In theory, multilay-
ered neural networks could be used for phonological transformation.
Here we consider to add one hidden layer as follows:

ei = A2σ(A1pi) ∈ RH (3)

where A1, A2 denote the matrices of appropriate sizes, and σ(·) de-
note some nonlinear activation function (e.g. sigmoid). The logits
for calculating the phone (posterior) probabilities are still defined as
in Eq. (1).

3.3. CTC-CRF based ASR

In this section, we briefly explain the CTC-CRF based framework
[19, 20] to use phone embeddings for ASR. Consider discrimina-
tive training with the objective to maximize the conditional likeli-
hood [19]:

L(θ) = − log pθ(l|x) (4)

where x , (x1, · · · , xT ) is the speech feature sequence, l ,
(l1, · · · , lL) is the phone-label sequence, and θ denotes the model
parameters. Note that in speech recognition, x and l are in different
lengths and not aligned. To handle this, a hidden state sequence
π , (π1, · · · , πT ) and a map B(·) for mapping π to l are intro-
duced. The mapping function B removes consecutive repetitive
labels and blanks in π to give l. So the posterior of l is defined as:

pθ(l|x) =
∑

π∈B−1(l)

pθ(π|x) (5)

And the posterior of π is further defined by a conditional random
field (CRF):

pθ(π|x) =
exp(φθ(π,x))∑
π′ exp(φθ(π

′,x))
(6)

where φθ(π,x) denotes the potential function of the CRF, defined
as:

φθ(π,x) = log p(l) +

T∑
t=1

log pθ(πt|x) (7)

where l = B(π), and p(l) is realized by an n-gram LM of labels. If
log p(l) is omitted in Eq. (7), the potential function becomes self-
normalized and CTC-CRF reduces to regular CTC. pθ(πt|x) rep-
resents the phone (posterior) probabilities, which are calculated by
softmax from the logits zt,i in Eq. (1) as follows:

pθ(πt = i|x) = exp(zt,i)∑
j exp(zt,j)

Remarkably, regular CTC suffers from the conditional indepen-
dence between the states in π. In contrast, by incorporating log p(l)
into the potential function in CTC-CRF, this drawback is naturally
avoided. It has been shown that CTC-CRF outperforms regular CTC
consistently on a wide range of benchmarks, and is on par with other
state-of-the-art end-to-end models [19, 20, 30]. Moreover, CTC-
CRF enjoys data-efficiency in training and works well with mono-
phones [20], which are favorable for low-resourced multilingual and
crosslingual speech recognition.

For decoding, we build a weighted finite state transducer
(WFST), obtained by composing the CTC topology, pronunciation
lexicon and word-level n-gram language model, and use WFST-
based decoding.

Table 2. Datasets used in our experiments: the source, the number of
IPA phone tokens in every language, the size of train, development
and test sets in hours.

Language Corpora #Phones Train Dev Test
German CommonVoice 40 639.4 24.7 25.1
French CommonVoice 57 465.2 21.9 23.0
Spanish CommonVoice 30 246.4 24.9 25.6
Italian CommonVoice 33 89.3 19.7 20.8
Polish CommonVoice 46 93.2 5.2 6.1

Mandarin AISHELL-1 96 150.9 18.1 10.0

4. EXPERIMENT

4.1. Experiment dataset and setup

Our experiments are conducted on two datasets, CommonVoice [21]
and AISHELL-1 [22]. In our experiment, we use German, French,
Spanish and Italian from CommonVoice to train the multilingual
models. We carry out zero-shot and few-shot crosslingual experi-
ments on Polish and Mandarin, where Polish comes from Common-
Voice and Mandarin comes from AISHELL-1. Detailed data statis-
tics are shown in Table 2.

We employ Phonetisaurus [14], a WFST-based G2P toolkit to
generate IPA lexicons for the 6 languages in our experiments. All the
monolingual phones were mapped to IPA symbols and we merged
the phones from German, French, Spanish and Italian to create the
universal phone set for multilingual training.

We use the CTC-CRF based ASR Toolkit - CAT [20], and will
release the code in CAT when this work is published. Unless oth-
erwise stated, the acoustic models used in our experiments are all
based on CTC-CRF, and word-level N-gram language models are
trained on the training transcripts for each language.

In all experiments, 40 dimension filter bank with delta and delta-
delta features are extracted as input to the AM, which is 3 blocks of
VGG layers followed by a 3-layer BLSTM with 1024 hidden size
(namely H = 2048). A dropout probability of 50% is applied to the
LSTM to prevent overfitting. During training, we use Adam as opti-
mizer, and set initial learning rate as 1e-3. When the performance on
development set stops improving, learning rate is adjusted to 1/10 of
the previous one until it is less than 1e-5.

4.2. Experiment results

Our experiments are divided into 2 parts, multilingual and (zero-shot
and few-shot) crosslingual. The multilingual models trained on the
collection of German, French, Spanish and Italian data are tested on
these 4 languages for multilingual experiments and on Polish and
Mandarin for crosslingual experiments.

4.2.1. Multilingual experiment

Multilingual results are summarized in Table 3. Multilingual acous-
tic models are trained with 3 methods: the traditional method
(namely using flat phone embeddings), JoinAP with linear phone
embeddings, and JoinAP with nonlinear phone embeddings (the
hidden layer size is 512). For each method, we test on the target
language before and after fine-tuning over the data from the target
language. Monolingual models on German, French, Spanish and
Italian are trained separately for comparisons. The main observa-
tions are as follows.



Table 3. Word error rate (WER) results (%) for German, French, Spanish and Italian in the multilingual experiments. Multilingual mod-
els are trained with 3 methods: the traditional method using flat phone embeddings (“Flat-Phone”), JoinAP with linear phone embeddings
(“JoinAP-Linear”), and JoinAP with nonlinear phone embeddings (“JoinAP-Nonlinear”). The multilingual models can be directly used with-
out finetuning or with finetuning over the training data of the target languages. Monolingual models are trained separately for comparisons.

Language Flat-Phone Flat-Phone Flat-Phone JoinAP-Linear JoinAP-Linear JoinAP-Nonlinear JoinAP-Nonlinear
monolingual w/o finetuning finetuning w/o finetuning finetuning w/o finetuning finetuning

German 13.09 14.36 12.42 13.72 12.45 13.97 12.64
French 18.96 22.73 18.91 22.73 19.54 22.88 19.62
Spanish 15.11 13.93 13.06 13.93 13.19 14.10 13.26
Italian 24.57 25.97 21.77 25.85 21.70 24.06 20.29

Average 17.93 19.25 16.54 19.06 16.72 18.75 16.45

Table 4. About the intersections of the set of phones across lan-
guages. For each phone in a language, we count how many lan-
guages it appears and define this count to the language-degree of this
phone, which may take from 1 to 4. The cell in column j denotes the
number of those phones, whose language-degree is j = 1, 2, 3, 4.

Language
Language-degree 4 3 2 1

German 18 6 8 8
French 18 6 7 26
Spanish 18 4 1 7
Italian 18 5 4 6

Without finetuning, the trained multilingual model can be di-
rectly used and works as a single model. In this case, on aver-
age, both JoinAP-Nonlinear and JoinAP-Linear perform better than
Flat-Phone, and JoinAP-Nonlinear is the strongest. The average
relative gain of JoinAP-Nonlinear over Flat-Phone is 3%. But no-
tably, the detailed improvements of JoinAP-Linear over Flat-Phone
and of JoinAP-Nonlinear over JoinAP-Linear are in fact language-
dependent. For Italian, JoinAP-Nonlinear improves the most over
JoinAP-Linear (7%), while for other languages, JoinAP-Linear per-
forms slightly better. JoinAP-Linear performs better or equally well,
compared to Flat-Phone. As observed in previous studies [15, 4],
the performance differences between different multilingual training
methods are affected by several factors, including the phonetic vari-
ety in this particular mix of multiple languages, data-scarce/data-rich
for the target languages, etc.

After finetuing over the entire data from the target language, we
obtain separate models for each target language. Similar to previous
studies, the three multilingual training methods all significantly out-
perform monolingual trained models, on average. JoinAP-Nonlinear
reduces the average WER by 8% against the monolingual models.
The performance differences between the three multilingual methods
themselves become smaller, presumably because the target training
data are already rich enough to train models. On average, JoinAP-
Nonlinear still performs the strongest.

To analyze, it is shown in Table 4 how the four languages
are intersected with each other. We introduce the concept of the
language-degree for a phone in multilingual training. Language-
degree 4 means that the phone is shared by all the 4 languages,
there are 18 such phones. Language-degree 1 means that the phone
is language-unique, belonging to only one language. Italian has
the smallest number of language-unique phones among the four
languages. Many phones in Italian are also shared by other lan-
guages. Also note that Italian has the smallest amount of training
data, as can be seen from Table 2. These may explain the most
significant benefit for Italian from multilingual training. For Ital-
ian, finetuned multilingual JoinAP-Nonlinear reduces the WER by

Table 5. WER results (%) for Polish in the crosslingual experiments.
#Finetune denotes the amount of data used in finetuning (0 means
zero-shot).

#Finetune Flat-Phone JoinAP-Linear JoinAP-Nonlinear
0 33.15 35.73 31.80

10 minutes 8.70 7.50 8.10

Table 6. WER results (%) for Mandarin in the crosslingual experi-
ments.

#Finetune Flat-Phone JoinAP-Linear JoinAP-Nonlinear
0 97.10 89.51 88.41

1 hour 25.39 25.21 24.86

17% again the monolingual Flat-Phone baseline. Also the gain by
JoinAP-Nonlinear over JoinAP-Linear in Italian is also the largest
(7% without finetuning, 6% after finetuning). On the other hand,
French has the largest number of language-unique phones among the
four languages, and the training data size is larger. This may explain
the small improvement for French from multilingual training.

4.2.2. Crosslingual experiment

Crosslingual results for Polish and Mandarin are summarized in Ta-
ble 5 and Table 6 respectively. The two languages are representative
in how much the testing language is overlapped with the training
languages, or say in the other way, how many unseen phones are
in the testing language, as seen in Table 7. Polish represents the
much overlapping setting, while Mandarin the less overlapping set-
ting. The results for the two settings are different, as detailed below.

For Flat-Phone, in order to calculate the phone probabilities
for unseen phones from the new languages (Polish and Mandarin),
the parameters connecting to unseen phones in the output layer of
the DNN model are initialized randomly. For JoinAP-Linear and
JoinAP-Nonlinear, it is straightforward to calculate the phone em-
beddings for unseen phones, according to Eq. (2) and Eq. (3), once
we obtain the phonological-vectors for those unseen phones.

In the zero-shot setting, for both Polish and Mandarin, JoinAP-
Nonlinear outperforms both JoinAP-Linear and Phone-Flat signif-
icantly and consistently. The JoinAP-Linear performs worse than
Flat-Phone in Polish. This is somewhat unexpected, which may re-
flect some instability of JoinAP-Linear.

In the few-shot setting, for both Polish and Mandarin, JoinAP-
Nonlinear still yields much better results than Phone-Flat; however,
the superiority of JoinAP-Nonlinear over JoinAP-Linear seems to be
weakened, as there are more training data from the target languages.
The JoinAP-Nonlinear performs better than JoinAP-Linear in Man-
darin, while not in Polish. 10 minutes of transcribed speech in Polish
may be rich enough for JoinAP-Linear to be well adapted, as indi-
cated by the low WER. As can be seen from Table 7, the number of



Fig. 3. Visualization of Polish phone embeddings by t-SNE. (a) Flat phone embeddings, (b) JoinAP-Linear phone embeddings, (c) JoinAP-
Nonlinear phone embeddings. They are obtained from the un-finetuned multilingual models in the zero-shot Polish experiment. Red circles
indicate the consonants with the same manner of articulation, green circles indicate the consonants with the same place of articulation, and
yellow circles indicate similar vowel height.

Table 7. Statistics about Polish and Mandarin, including the number
of IPA phone tokens in every language, and the number of unseen
phones.

Language #Phones #Unseen phones
Polish 46 18

Mandarin 96 79

unseen phones in Polish is far less than in Mandarin. This may also
explains the good performance of JoinAP-Linear in Polish. Remark-
ably, under a large amount of finetuning data for a testing language
that is much overlapped with training languages, say, 1 hour for Pol-
ish, the performances of different models will tend to saturate and
become less differed. So we use 10-min finetuning data for Polish
for comparing different models. 10-min for Mandarin will yield re-
sults similar to zero-shot, so we use 1-hour for Mandarin few-shot.

To further understand our phonological-vector based phone em-
beddings, we apply t-SNE [31] to draw the 2048-dimensional phone
embeddings on a 2-dimensional map. Fig. 3 shows the maps of
the 46 phones in Polish, obtained from the un-finetuned multilingual
models. It seems that we can hardly find many sensible groupings for
flat phone embeddings from Fig. 3(a). But for JoinAP-Linear and
JoinAP-Nonlinear phone embeddings, the maps reflect more notable
groupings, where similar phones are found to gather together in the
maps. We use red, green and yellow circles to indicate the phones
with the same manner of articulation, place of articulation and vowel
height respectively. Their detailed IPA features are listed in Table 8.
The figures clearly show that the JoinAP based phone embeddings
indeed carry phonological information, which could help zero-shot
learning. Moreover, it can be seen that the vowels are located in the
top-right corner in Fig. 3(c), while the vowels are separated in two
corners in Fig. 3(b). And the within-class scattering of (b) seems to
be larger than (c). These observations could reflect the superority of
JoinAP-nonlinear over JoinAP-Linear.

5. CONCLUSION

In this work, we propose the JoinAP method to join phonology
driven phone embedding (top-down) and DNN based acoustic fea-
ture extraction (bottom-up). We apply linear or nonlinear transfor-

Table 8. Detailed explanation of Fig. 3. We list the IPA phones in
the colored circles from different methods.

Method Color Feature Phones

Flat Green Retroflex ü ãü tù
Palatalized gj kj Cj vj bj xj pj

Red Fricative b t p d k

Linear

Green

Alveolo-palatal ý C dý tC
Velar N g k x gj kj xj

Alveolar dz ţ n d t r s z l
Retroflex ù ü ãü tù

Red Plosive x v xj vj z s f ü ù
Fricative g k p gj kj pj b bj t d

Yellow Close i u w 1 1̃
Open/Open-mid a E O Õ

Nonlinear

Green
Alveolo-palatal ý C dý tC

Velar N g k x gj kj xj

Alveolar n d t r s z l

Red
Affricate dý tC dz ţ
Plosive x v xj z s f

Fricative p pj b bj t d

Yellow Close i j 1 1̃
Open/Open-mid a E Ẽ O Õ

mation of phonological-vectors to obtain phone embeddings, and
compare to the traditional method using flat phone embeddings. In
the multilingual and crosslingual experiments, JoinAP-Nonlinear
generally performs better than JoinAP-Linear and the traditional
flat-phone method on average. The improvements are generally the
most significant for those target languages such as Italian in our
multilingual experiments and Polish in our zero-shot crosslingual
experiments, due to their data-scarce and high language-degrees of
their phones (i.e., being well shared by other languages), and become
weak for those target languages when they become data-rich such as
French in our multilingual experiments and Polish in our few-shot
crosslingual experiments. In summary, the JoinAP method pro-
vides a principled approach to multilingual and crosslingual speech
recognition. Some promising directions include exploring DNN
based phonological transformation, and pretraining over increasing
number of languages.
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