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ABSTRACT

The paper presents a novel approach to refining similarity
scores between input utterances for robust speaker verifica-
tion. Given the embeddings from a pair of input utterances, a
graph model is designed to incorporate additional information
from a group of embeddings representing the so-called aux-
iliary speakers. The relations between the input utterances
and the auxiliary speakers are represented by the edges and
vertices in the graph. The similarity scores are refined by it-
eratively updating the values of the graph’s vertices using an
algorithm similar to the random walk algorithm on graphs.
Through this updating process, the information of auxiliary
speakers is involved in determining the relation between input
utterances and hence contributing to the verification process.
We propose to create a set of artificial embeddings through
the model training process. Utilizing the generated embed-
dings as auxiliary speakers, no extra data are required for the
graph model in the verification stage. The proposed model
is trained in an end-to-end manner within the whole system.
Experiments are carried out with the Voxceleb datasets. The
results indicate that involving auxiliary speakers with graph
is effective to improve speaker verification performance.

Index Terms— speaker verification, deep neural network,
graph model, random walk

1. INTRODUCTION

Speaker verification (SV) systems are designed to distin-
guish whether an input utterance is from the claimed speaker.
In earlier studies, speaker-dependent acoustic features are
modeled by Gaussian Mixture Model-Universal Background
Model (GMM-UBM) [1] and the decision of verification is
made based on estimated likelihoods. Joint Factor Analysis
(JFA) [2] and I-vector [3] consider the information in a speech
utterance as the mixture of different factors, e.g., speaker and
session. These factors are utilized to extract speaker-relevant
information for verification. Deep neural network (DNN)
embedding based models represent a predominant approach
to SV in recent years [4–8]. Speaker-relevant embeddings
are extracted by a DNN model. A back-end scoring method
is applied on the embeddings to measure the similarity be-
tween the test and reference utterances, e.g., cosine simi-

larity [6, 9, 10], PLDA [5, 11, 12]. Metric learning methods
have also been successfully applied to embedding scoring
for SV [13, 14]. A high similarity between the embeddings
indicates the two utterances are likely to be from the same
speaker.

Generally, back-end scoring is focused on estimating pair-
wise similarity between one input utterance (to be verified)
and one reference utterance, without involving the informa-
tion from any other utterances. However, speaker-related in-
formation provided by a single utterance is limited and may
not be reliably captured in the embedding. For instance, utter-
ances from the same speaker could be recorded under differ-
ent circumstances, or a speaker may give speeches in different
languages or accents. Embeddings extracted from these ut-
terances may deviate significantly, although they come from
the same speaker. Thus in one-to-one comparison with a pair
of utterances, embedding based similarity score may be sub-
optimal to achieve robust performance.

Incorporating additional information from other utter-
ances into the pairwise similarity estimation is beneficial.
Consider a pair of utterancesA andB that have a low similar-
ity score. If there exists utterance C that has high similarity to
both A and B, it is probable that A and B are closely related
or from the same speaker. Increasing the A-to-B similarity
score is expected to avoid false rejection. In this study, we
define this extra utterance C as from an “auxiliary speaker”,
meaning that it is supplementary and providing assistance to
the goal of comparing the two target utterances. Since each
speaker is represented by a single utterance in the SV process,
the term “auxiliary speaker” is made equivalent to “auxiliary
utterance” hereafter in this paper. The auxiliary speakers
may carry additional information, e.g., different environment
sounds, recording devices. In conventional SV setup, supple-
mentary data are not available or not allowed. We propose the
notion of “ghost speakers” in this paper. As the name implies,
“ghost speakers” are not real human speakers. They refer to
a set of specially prepared speaker embeddings, which are
generated during model training and used as “auxiliaries”
during the verification process.

Graph structure has been widely adopted for describing
the relation of data samples. With the help of DNN, deep
graph network has demonstrated successful applications in
many fields [15–18]. In the present study, we propose a train-
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able graph model, referred to as Auxiliary Speakers Graph
(ASG), to incorporate the information from auxiliary utter-
ances into the refinement of similarity score. In an ASG, sim-
ilarity scores on utterance pairs are represented on the graph
vertices. They are refined using the information from auxil-
iaries by updating the vertices’ values according to the edges.
The updating process is similar to the well-known random
walk on graphs [19]. Similar graph update methods have
shown effectiveness in other tasks, e.g., speaker identifica-
tion [20, 21] and person re-identification [22, 23]. ASG takes
speaker embeddings as input and can be trained with the em-
bedding extraction model in an end-to-end manner.

Extensive experiments are carried out on the Voxceleb1
[9] and Voxceleb2 [24] databases to evaluate the proposed
model. The ASG model shows superior performance to the
baseline system that does not use auxiliary speakers. The
auxiliaries can be obtained either from available speech data
or model-generated embeddings, i.e., ghost speakers. More-
over, we show that ASG can outperform score normalization
without training under some circumstances.

2. RELATED WORK

2.1. Score normalization

Score normalization is a commonly used approach in SV that
aims to leverage speech data from other speakers [25–28].
The original scores of input utterances are derived from a
trained model and normalized with respect to the score statis-
tics on a cohort dataset. Our proposed approach is different
from score normalization in that the graph model for score
calculation and refinement can be trained jointly with the en-
tire SV model. Score normalization is applied only to the
given scores and does not affect the training of speaker mod-
els. Moreover, by using ghost speakers, cohort datasets or
other additional data are not required in the proposed method.

2.2. Graph model in SV

In [29], a graph was used to represent speaker feature distribu-
tion, and the similarity scores were computed with the graph
matching algorithm. Graph matching is invariant to the rota-
tion or uniform scaling of features, which gives stable similar-
ity estimation for the verification. In [30], the graph model is
constructed to connect segment-wise speaker embeddings of
utterance pairs. These embeddings are updated by the atten-
tion mechanism. The similarity scores are obtained by apply-
ing affine transformation on the updated embeddings in the
graph. Our proposed method adopts a similar idea of con-
necting speaker embeddings with a graph, with the focus on
score refinement with auxiliary speakers.
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Fig. 1. (a) The matrix of similarity scores between utterances.
The scores on the diagonal are ignored. (b) The ASG con-
structed from (a).

3. THE PROPOSED METHOD

The Auxiliary Speakers Graph (ASG) model takes extracted
embeddings as input and refines the similarity score using the
auxiliary speakers. The details of the graph structure and up-
date will be introduced first, then the idea of “ghost speakers”
and score calculation in evaluation will be explained.

3.1. Graph structure

Consider a test utterance A, a reference utterance B, and
M auxiliaries {C1, C2, ..., CM} are available for verification.
Let scoreU1,U2

denote the similarity score between utterances
U1 and U2. Figure 1 (a) shows a score matrix with 3 aux-
iliaries (M = 3). An ASG is thereby constructed on the
score matrix. The ASG is an undirected graph with N ver-
tices and N × (N − 1)/2 edges. The vertices are associated
with the similarity scores betweenA and other utterances, i.e.,
scoreA,B ∪ scoreA,Ci

. There are N = M + 1 vertices in
this graph. The edge connecting the vertices scoreA,U1

and
scoreA,U2

is represented by scoreU1,U2
, where U1 and U2

could be either the reference utterance B or any of the auxil-
iaries.

Figure 1 (b) illustrates the ASG in correspondence to the
score matrix in (a). The scores on vertices are given by co-
sine similarity between speaker embeddings. The score cal-
culation on edges is done differently. Let fi and fj be the
speaker embeddings extracted from Ui and Uj respectively
and the similarity score on edge is computed by:

Si,j = Sigmoid(FC(BN((fi − fj)⊗ (fi − fj)))) (1)

where⊗ denotes element-wise product, BN represents batch
normalization layer and FC stands for fully connected layer.
The Sigmoid function is utilized to limit the score’s range in
(0, 1). The scores on edges can be represented by a symmetric
matrix S ∈ RN×N .

Each vertex in the ASG gives the similarity score in a
pairwise comparison, thus each one of the utterances has two



roles: (1) as a reference in pairwise comparison with the in-
put, (2) as an auxiliary to other utterances, e.g., B is consid-
ered as an auxiliary when refining scoreA,C1

.

3.2. Graph update

The value of the target score (scoreA,B) is represented on
a vertex, which is updated based on other vertices and the
edges connecting them. When utterance B shows a strong
relation to utterance Ci, scoreA,Ci

contributes more to refine
the target score scoreA,B . The contribution weights in the
graph update are represented by a matrixW with sizeN×N ,
where N is the number of vertices in the ASG and W (i, j)
denotes the weight from vertex j to i. W is normalized from
score matrix S on edges as:

W (i, j) =


exp(α · Si,j)∑N

j=1,j 6=i exp(α · Si,j)
, i 6= j

0 , i = j

(2)

α is a trainable parameter controlling the scale of similar-
ity scores. If the elements on the diagonal are significantly
larger than others, W will approximate an identity matrix.
Therefore W (i, i) is set to 0 for all i in Equation 2 to avoid
self-reinforcement, and there is no self-connected edge in the
graph.

The original scores on the vertices are denoted by a vector
y ∈ RN . The update of y in the nth iteration is implemented
by matrix multiplication in a recursive way yn = Wyn−1,
where n indexes the iteration. This update process is simi-
lar to the random walk algorithm [19, 31] on graphs, where
W (i, j) represents the transition probability from vertex j to
i, with

∑
iW (i, j) = 1,∀j. In our proposed method, the sum

of contribution weights from other vertices to i is set to 1,
meaning

∑
jW (i, j) = 1,∀i.

As a refinement process, the scores updated by the graph
should not deviate from the original scores y0 too much. Thus
the updating operation is formulated as:

yn = (1− λ)y0 + λWyn−1 (3)

λ ∈ [0, 1] balances the original score and the refined score
Wyn−1. It is determined empirically by experiments. The
refined similarity score between utterances A and B is de-
noted by ̂scoreA,B , and located at the first element of yn.

3.3. Ghost speakers

During training, the auxiliary speakers are obtained by sam-
pling from the training dataset. In the SV decision process,
only a single test utterance and a reference utterance are avail-
able. If the auxiliary speakers are taken by sampling from
training data, they would have low similarity scores with the
test and reference utterances, due to the mismatch on speak-
ers. Consequently, the values in S would be very small and

W tends to be an average matrix. Therefore the contribu-
tion weights from different auxiliaries would be very close
in updating the similarity score and the effectiveness of the
proposed graph model is degraded.

Instead of collecting extra data as auxiliaries, e.g., getting
a cohort set for score normalization, the idea of ghost speakers
is proposed. The intuition behind introducing the so-called
ghost speakers is to create auxiliaries that can be involved in
the training process and used in evaluation directly. The ghost
speakers are represented by a dictionary of embeddings with
the size ofG×d, whereG denotes the number of ghost speak-
ers and d is the dimension of embeddings. TheG ghost speak-
ers are combined with other speaker embeddings and utilized
as auxiliaries in the training process. Different from other
speaker embeddings which are extracted from speech data,
the values of ghost speakers are initialized randomly and up-
dated by gradient descent directly during training. Note that
the ghost speakers are speaker-independent. In other words,
the test utterances use the same ghost speakers as auxiliaries
in the evaluation, and the ASG is constructed based on these
G ghost speakers.

3.4. Calculating similarity of variable-length utterances

The evaluation stage involves two variable-length input utter-
ances, denoted as A and B. They are divided into multiple
equal-length segments and represented as {A1, A2, ..., Ap},
{B1, B2, ..., Bq}. To compute the score between segment
Am and B, one graph is built among Am ∪ {B1, ..., Bq} and
M auxiliaries, which gives score vector ym

0 ∈ Rq+M . The
scores on edges are obtained as in Equation 1. The edge with
a very small value Si,j indicates that the two connected ver-
tices have weak relation, and these redundant vertices are not
considered in refining the target score. Therefore only the top
k values in each row of exp(α·S) are kept in Equation 2 when
calculatingW , and the other values are replaced by zero. The
refined score after n iterations of graph update is given by:

̂scoreA,B =
1

p× q

p∑
m

q∑
j

ymn (j) (4)

̂scoreA,B is not symmetrical, i.e. ̂scoreA,B 6= ̂scoreB,A. The
similarity between two utterances is considered to be a sym-
metric score, thus the similarity score for A and B is given
by the average of ̂scoreA,B and ̂scoreB,A in the evaluation
stage.

4. EXPERIMENTS

4.1. Datasets

The datasets used in this study are Voxceleb1 [9] and Vox-
celeb2 [24]. The development set of Voxceleb2 contains
1,092,009 utterances from 5,994 speakers, which are used for
model training. To evaluate the performance of models, equal



0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

𝐺

𝑺 𝒚𝒏

𝑎 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏 𝑐 𝑐 𝑑

𝑏

𝑐

𝑐

𝑑

𝑑

𝑑

𝑏

𝑐

𝑐

𝑑

𝑑

𝑑

1 0 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

𝑏 𝑐 𝑐 𝑑 𝑑 𝑑

𝐺

Fig. 2. Let {a, b, c, d} represent the 4 speakers in a group,
and the subscripts {1, 2, 3, 4} are the utterances indexes. The
“0”s and “1”s with green or orange background indicates the
supervised labels for binary cross-entropy loss. The empty
part represents the scores from ghost speakers.

error rate (EER) of each model is calculated on the clean
version of Voxceleb1 test set which consists of 37,611 com-
parison pairs formed by 4,874 utterances from 40 speakers.

4.2. Details of implementation

During training, an input segment with a three-second du-
ration is randomly cropped from each training utterance. In
performance evaluation, utterances are divided into four-
second long, and the neighboring segments overlap with each
other by 2 seconds. The audio data are transformed into 64-
dimension log Mel-filterbank (FBank) coefficients using the
Librosa library [32]. The embedding extraction model used
here is a modified version of ResNet [33]. The model takes
Fbank as input and the output of the “AvgPool2” layer is used
as the embedding. The embedding dimension is set to 128.

In each training step, four speakers are randomly sam-
pled from the dataset and each speaker provides 4 utterances.
These 16 utterances form a group and are arranged as Figure 2
for similarity comparison. One column vector of yn repre-
sents the vertices in one ASG after n iterations of update. All
graphs in yn are updated simultaneously by multiplying with
weight matrix W , which is derived from the edges S. The
update process in one column’s graph will not interfere with
others. This special arrangement of sample grouping simu-
lates the scenarios in the evaluation, where some utterances
may not have any auxiliary with close relationships and some
may have. For instance, utterances {a1, a2, a3, a4} do not
encounter any utterance from the same speaker in the graph,
while {b1, b2, b3} will meet one similar utterance , i.e. b4, in
their graphs. There are 8 groups in one batch, giving a total
of 128 utterances in a training step.

The values of yn give the similarity scores of the cor-
responding utterance pairs, and a binary cross-entropy loss
function is applied to it. If the two inputs come from the
same speaker, the ground truth is set to 1, else 0. The same
loss function is also applied on the edges S. Combining the

loss on yn and S gives Losspair, but the scores on vertices
and edges calculated from the ghost speakers would not be
counted in this loss. The speaker embeddings are taken to
predict the speaker identities, and a loss is calculated on the
prediction by AM-Softmax [34] with cross-entropy function,
represented as Lossid.

The embedding extraction model and the ASG are trained
jointly for 5 epochs by the Stochastic Gradient Descent op-
timizer to minimize the sum of Lossid and Losspair. The
weight decay is 0.001 and the momentum equals 0.9. The
initial learning rate is set to 0.05 and 0.005 for the embedding
extraction model and the ASG respectively. The learning rate
decreases in a half-cosine schedule [35]. No extra data aug-
mentation is applied. After training, the utterance pairs from
the test set are evaluated as in Section 3.4 with k = 64 in
all experiments. All model training and evaluation are imple-
mented with PyTorch [36].

4.3. Results

The baseline performance with ResNet18 and ResNet34 give
EER of 2.53% and 2.21% respectively. The baselines are
achieved using the cosine similarity calculated between ut-
terance embeddings without involving auxiliary speakers or
graph model.

The ASG is constructed as described in Section 3, using
ghost speakers as auxiliaries. The ghost speakers are trained
jointly with the embedding extraction model and the graph
model. The number of ghost speakers G is set to 128. The
iteration of the graph update is a critical factor to the model
performance. In our experiments, training with infinite itera-
tions is found to be unstable and time-consuming. Thus we
train the models at iteration 1, 2, and 5. For performance eval-
uation, only the ghost speakers are utilized as the auxiliaries
and no extra data are involved, which follows the standard
SV testing procedure. Table 1 shows the results with different
settings. About 10% relative improvement is observed with
respect to the baselines. The iteration of graph update does
not affect the performance noticeably, and λ = 0.2 gives the
best performance.

In Table 2, we retrain the entire system without ghost
speakers. During the evaluation, 128 or 256 speakers are ran-
domly sampled from the training set, their utterance embed-
dings are averaged on speaker basis and utilized as the auxil-
iaries. For each setting, the evaluation operation is repeated
three times with different random seeds, and the average re-
sults are shown. Although the results are better than the base-
lines’, they are not as good as using ghost speakers.

To better understand the different effects of using aux-
iliaries from the training set and using ghost speakers, 100
test utterances are randomly sampled from the test set. The
auxiliaries’ contribution weights W on these 100 sampled
utterances are plotted as in Figure 3. In the weight matrix
of (a), different ghost speakers show different weights to the



Table 1. Performances of models using ghost speakers as
auxiliaries.

λ Iteration EER(%)
ResNet18 ResNet34

baseline 2.53 2.21

0.1
1 2.34 2.01
2 2.42 2.04
5 2.42 2.06

0.2
1 2.29 2.00
2 2.11 2.03
5 2.28 1.99

0.5
1 2.31 2.08
2 2.35 2.15
5 2.34 2.01

Table 2. EER(%) of models without ghost speakers. Aux-
iliaries are sampled from speakers in training data, and the
number of auxiliaries are 128 or 256. Iteration is 2.

λ
ResNet18 ResNet34

128 256 128 256
0.1 2.43 2.46 2.11 2.11
0.2 2.35 2.35 2.16 2.16
0.5 2.36 2.36 2.11 2.09

test data. Most of the weights are very small and close in
(b). The comparison between (a) and (b) suggests that differ-
ent ghost speakers can contribute diverse information in the
graph. This explains why using ghost speakers gives supe-
rior performance as compared with using training utterances
as auxiliaries.

4.4. Ablation study

The proposed ASG model is similar to score normalization
in that extra utterances are used to refine similarity scores.
It should be noted that score normalization is a training-free
method. For a fair comparison of these two methods, the cal-
culation of graph’s edges S in Equation 1 is replaced by the
cosine similarity between embeddings, and the ghost speak-
ers are removed. Thus the ASG model can be used for eval-
uation without training. First, the utterances from Voxceleb1
test set are utilized as auxiliaries. Note that using data from
test set is not allowed in the standard SV process. However,
in real-world applications, there may exist a large amount of
unlabeled data from potential claimed speakers, and they can
be utilized to improve performance. Therefore evaluation in
this scenario is meaningful. Different values of λ for graph
update and α in Equation 2 are evaluated in the experiments.
Four types of score normalization are evaluated, and the co-
hort set is given by the auxiliaries used in the graph.

(a) (b)

Fig. 3. (a) The contribution weights from the ghost speak-
ers to 100 test data. (b) The contribution weights from 128
auxiliaries sampled from the training set to 100 test data.

The results are shown as in Table 3. Under the assumption
that all test utterances are available in the evaluation stage, the
use of ASG leads to significant improvement on EER and out-
performs the score normalization methods. The reason for the
improvement is that the model is able to find out utterances
from the potential reference speaker in the test set by select-
ing top k similar utterances. Because the same speaker as the
reference utterance must exist in the auxiliaries, the refined
score is approximated as the weighted average of the scores
between the test utterance and k utterances from the potential
reference speaker. The models are reevaluated with 1024 aux-
iliaries, which are randomly sampled from the test utterances.
The experiments are repeated three times with different sam-
pled auxiliaries, and the average results are reported. The per-
formance of ASG declines noticeably, and in some cases is
even worse than the baseline. Score normalization improves
the baseline performance with a large margin by utilizing the
utterances from the test set, and it is not much affected by the
number of auxiliaries (size of cohort set).

The performance decline of ASG is caused by missing the
auxiliaries that have strong relation to the input utterances.
In other words, the edges S between the reference utterance
and auxiliaries are all very small, and no auxiliary is distinct.
The refinementWyn−1 is degraded to the average of yn−1.
Additionally, the vertices from these weakly-connected aux-
iliaries should not be regarded as important for score refine-
ment. While the edges are normalized by Equation 2, these
weakly-connected vertices in yn−1 still contribute λ of the
final score yn.

Self-connected edges are added in ASG as Si,i = 1 in
the next experiment. The self-connected edges tend to domi-
nate the graph update weightsW and suppress the function of
other vertices in yn−1 when the edges S between the refer-
ence utterance and auxiliaries are all very small. The models
are evaluated utilizing the speaker-wise average of the em-
beddings in Voxceleb2 training set as auxiliaries, which gives
5994 auxiliaries in total. Utilizing a larger k is founded use-
ful. We report the results in Table 4 under two conditions,
using all auxiliaries or 1024. Using ASG gives little per-
formance improvement compared with the baseline, and is



Table 3. EER(%) of models using utterances from test set as auxiliaries. Top k = 64, iteration is 1.

Model Num. of α = 1 α = 5 α = 10 Score Norm.
Utt. λ = 0.5 λ = 0.8 λ = 0.5 λ = 0.8 λ = 0.5 λ = 0.8 z t zt s

ResNet18 All 1.50 1.12 1.54 1.21 1.66 1.33 2.12 2.10 2.03 1.92
1024 2.44 3.69 2.43 2.87 2.14 2.11 2.11 2.13 2.06 1.94

ResNet34 All 1.29 0.96 1.32 0.98 1.44 1.12 1.73 1.83 1.70 1.56
1024 2.39 3.27 2.07 2.43 1.81 1.71 1.74 1.80 1.66 1.55

Table 4. EER(%) of models with self-connected edges using speakers’ embeddings from training set as auxiliaries. Top
k = 512, iteration is 1. SN. stands for score normalization. In SN.+ASG, α = 0.1, λ = 0.7.

Model Num. of α = 0.1 0.5 1 SN. SN.+ASG
Utt. λ = 0.5 0.7 0.5 0.7 0.5 0.7 z t zt s zt s

ResNet18 All 2.47 2.47 2.47 2.46 2.48 2.47 2.47 2.51 2.49 2.49 2.37 2.42
1024 2.50 2.47 2.49 2.47 2.49 2.47 2.53 2.55 2.51 2.51 2.44 2.44

ResNet34 All 2.15 2.15 2.16 2.14 2.15 2.15 2.16 2.16 2.13 2.18 2.09 2.14
1024 2.19 2.17 2.19 2.17 2.19 2.18 2.17 2.18 2.14 2.16 2.09 2.13

Table 5. EER(%) of ECAPA-TDNN

ECAPA-512 ECAPA-1024
baseline 1.27 1.05
ASG 1.27 1.05
s-norm 1.20 0.99
zt-norm 1.17 1.01
s-norm + ASG 1.12 0.97
zt-norm + ASG 1.16 0.97

close to the score normalization. ASG can be applied after
score normalization, which further improves the performance.
The trained ASG in Section 4.3 uses fewer auxiliaries and
achieves lower EER than the ASG with untrained edges. This
indicates that the trained edges can learn better information to
update the graph.

4.5. On other models

We apply the untrained ASG in Section 4.4 on ECAPA-
TDNN [8] with 512 and 1024 channels. ECAPA-TDNN is
trained on Voxceleb2 training set. Each utterance is aug-
mented three times using MUSAN dataset [37] and RIR
dataset [38]. Other augmentation methods in [8], like tempo
up/down or SpecAugment [39], are not used. Each ECAPA-
TDNN is trained for 20 epochs. The learning rate is initialized
as 0.001 and decayed by a factor of 0.1 every 8 epochs.

The results are shown as in Table 5. The performance
keeps unchanged when only ASG is used, and the zt-norm
and s-norm [25] give slight improvement. Because ASG and
score normalization refine the scores in different manners, we

can also employ the graph update on the normalized score.
Applying these two methods sequentially gives the best per-
formance.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we investigate the effect of utilizing auxiliary
speakers with a graph model in speaker verification. The pro-
posed Auxiliary Speakers Graph (ASG) model represents the
relation between utterances by edges and refines the similar-
ity scores on the vertices in a manner similar to random walk.
ASG can be trained with the embedding extraction model in
an end-to-end manner. Incorporating “ghost speakers” as aux-
iliaries, ASG improves the performance without requiring ad-
ditional data in the evaluation stage. The ablation study shows
that ASG can also be utilized as a training-free refinement
method and outperform score normalization under certain cir-
cumstances.

The choice of auxiliary speakers and the parameters in
ASG affect the performance greatly. Further investigations on
these factors are needed. The information of speech produc-
tion is not considered in the generation of ghost speakers, and
thus the ghost speakers may not match the patterns of embed-
dings extracted from real speech data. In future work, gen-
erative adversarial network (GAN) [40] or variational auto-
encoder (VAE) [41] could be applied to generating the ghost
speakers and producing more robust embeddings.
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