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ABSTRACT

A major bottleneck for building statistical spoken dialogue systems
for new domains and applications is the need for large amounts
of training data. To address this problem, we adopt the multi-
dimensional approach to dialogue management and evaluate its
potential for transfer learning. Specifically, we exploit pre-trained
task-independent policies to speed up training for an extended task-
specific action set, in which the single summary action for requesting
a slot is replaced by multiple slot-specific request actions. Policy
optimisation and evaluation experiments using an agenda-based
user simulator show that with limited training data, much better
performance levels can be achieved when using the proposed multi-
dimensional adaptation method. We confirm this improvement in a
crowd-sourced human user evaluation of our spoken dialogue sys-
tem, comparing partially trained policies. The multi-dimensional
system (with adaptation on limited training data in the target sce-
nario) outperforms the one-dimensional baseline (without adaptation
on the same amount of training data) by 7% perceived success rate.

Index Terms— dialogue systems, policy optimisation, rein-
forcement learning, transfer learning

1. INTRODUCTION

One of the main challenges in spoken dialogue system development
is their scalability to new domains and applications. A statistical
spoken dialogue system can be built efficiently for a large slot-filling
domain when sufficient annotated data in that domain is available.
However, as domains are expanded with new slots, and new appli-
cations emerge that require new, task-specific system actions, in-
domain annotated datasets are typically hard to get by. Therefore,
numerous efforts have been made to use transfer learning techniques
[} 2] to efficiently develop dialogue systems for new domains with
limited or no data in the target domain. Most of the efforts in statisti-
cal dialogue management and action selection in particular focus on
adaptation to newly introduced slots and values, with the underlying
task unchanged [3} 14 15].

The multi-dimensional approach to dialogue modelling [6] of-
fers the potential to exploit its principled separation of domain- and
application-independent aspects of dialogue to adapt to new domains
as well as new applications. In [7], a multi-dimensional statistical di-
alogue manager was presented and it was demonstrated that policy
optimisation for a target domain could be improved by re-using the
policies for the application-independent dimensions (Social Obliga-
tions Management and Auto-feedback; see Section[Z) that were pre-
trained in a source domain. However, the addressed use-case was
limited to adapting across very similar domains, where the set of
task-specific actions was the same and only the set of slots and val-
ues changed.

In this paper, we adopt the multi-dimensional approach to dia-
logue management [8,9,[7], but rather than adapting to new slots and
values, we focus on adapting to a different policy action set, which
is typically required when developing a dialogue system for a new
application. In addition, we present two extensions of the model: 1)
whereas [7] restricted their model to allow only single dialogue acts
being generated (despite the multi-agent design), we allow combi-
nations of auto-feedback and task acts that support implicit confir-
mation, and 2) the agent that evaluates the generated dialogue act
candidates from the different dimensions (see Section [2) is trained
jointly with the other agents, rather than hand-coded.

Using the improved multi-dimensional design, we present policy
optimisation and evaluation experiments using our simulated user
and error model, demonstrating significant improvements in perfor-
mance on limited training data when using the proposed adaptation
method (Section[3). Furthermore, a human user evaluation was car-
ried out to confirm this result in more realistic conditions; the exper-
imental design, spoken dialogue system implementation, and evalu-
ation results are described in Section @ Section [ contains a more
detailed discussion of related work in the area of transfer learning for
dialogue management. The paper is wrapped up in Section [] with
conclusions and directions for future work.

2. MULTI-DIMENSIONAL DIALOGUE MANAGEMENT

In conventional reinforcement learning-based statistical dialogue
systems [[10]], the dialogue policy selects an action from a single
set of possible actions in each turn. In contrast to such ‘one-
dimensional’ systems, multi-dimensional dialogue systems employ
multiple dialogue act agents, each dedicated to a different aspect
of the dialogue process, using a policy that selects actions from its
own specialised action set. We propose and evaluate a model with
three dimensions and corresponding agents: Auto-feedback, So-
cial Obligation Management (SOM), and Task. The Auto-feedback
agent has actions for giving feedback to the user about processing
their utterances, for example indicate non-understanding when the
speech recogniser does not return any results (“I did not quite get
that, could you please repeat?”) or provide articulate feedback in
the form of an explicit/implicit confirmation when the system is
unsure about the user’s input (e.g., “Expensive, you said?”), the
SOM agent deals with greeting, thanking, apologising, and other
social actions, and the Task agent focuses on the underlying task
or activity (information navigation, tutoring, negotiation, etcetera).
Additional agents to support other dimensions could be introduced
as well (e.g. for turn-taking and time-management [11]]), but the
three agents currently included are considered to be the minimum
requirement for a task-oriented multi-dimensional dialogue system.
An additional Evaluation agent is used for determining which of the
generated dialogue act candidates are forwarded as final dialogue
acts to the natural language generation component [12]]. Figure [T]



Task Auto-Feedback SOM All Example utterance
OFFER OFFER How about the Rice Boat?
OFFER IMPL-CONFIRM OFFER+IMPL-CONFIRM The Rice Boat is a nice Indian restau-
rant
ANSWER ANSWER The address of the Rice Boat is . ..
REQUEST REQUEST What price range did you have in mind?
REQUEST  IMPL-CONFIRM REQ+IMPL-CONFIRM Okay, Indian food. What price range
did you have in mind?
EXPL-CONFIRM EXPL-CONFIRM You want Indian food, is that right?
AUTO_NEGATIVE AUTO_NEGATIVE 1 did not quite catch that, could you
please rephrase?
ACCEPT_THANKING ACCEPT_THANKING You’re welcome
RETURN_GOODBYE RETURN_GOODBYE Have a nice day
NONE NONE NONE

Table 1. The dialogue act agent action sets. Note that IMPL-CONFIRM is essentially an inform act stating with a slot-value pair a preference
that the system believes the user has, whereas EXPL-CONFIRM is essentially a propositional question asking the user whether they have a

specific preference, expressed by a slot-value pair.

gives an outline of the multi-agent action selection component.
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Fig. 1. Multi-agent action selection component, showing the Task,
Auto-feedback, and SOM agents generating candidate dialogue acts,
of which two are selected by the Evaluation agent.

Besides reflecting the multi-dimensional nature of dialogue [6]],
this design opens up opportunities for efficient adaptation of dia-
logue managers to new tasks and domains. The Auto-feedback and
SOM dimensions are considered to be domain and task independent,
and therefore policies for these dimensions may be transferred, leav-
ing only the Task policy to be trained from scratch in the target do-
main/application.

We introduce a new design of the multi-agent action selection
model, in which the Evaluation agent is designed to allow two pos-
sible combinations of two dialogue acts. Both of these combina-
tions include an implicit confirmation from the Auto-feedback di-
mension, combined with either an offer (e.g., “Prezzo is a popular
Italian restaurant.”), or a request (e.g., ““You are looking for an Italian
restaurant in which area?”) from the Task dimension. Table[I] lists
all allowed action combinations, organised along the three supported
dimensions, as well as in a single action set for a one-dimensional
baseline system. In future versions, additional combinations can be
considered, for example negative feedback combined with an apol-
ogy (e.g., “I'm sorry, I did not quite get that”).

3. POLICY OPTIMISATION AND ADAPTATION
EXPERIMENTS

The potential for transfer learning in a multi-dimensional dialogue
manager has been demonstrated previously for the use-case of adapt-
ing from a hotel search application to a restaurant search application
[7]. Here, we introduce a use-case where we stay within the restau-
rant domain, but adapt to a new action set. Specifically, the action
set of the Task agent is extended by replacing the summary action
REQUEST for requesting a slot by separate request actions for each
slot, e.2. REQUEST-PRICERANGE. Whereas in the source scenario
the policy may select the REQUEST summary action, after which
heuristics determine which slot is requested, in the target scenario
the policy may select a request action for a particular slot, for exam-
ple the area. Therefore, in the target scenario with extended action
set, the system learns automatically which slot to request, rather than
relying on heuristics in the source scenario.

In the DSTC-2 restaurant search domain [13]], this means
that the REQUEST summary action is replaced by the three slot-
specific request actions, corresponding to the slots food, area,
and pricerange. Going back to the original action sets out-
lined in Table [I] the action set of the Task agent therefore grows
from 4 (OFFER, REQUEST, ANSWER, NONE) to 6 actions (OFFER,
REQUEST-FOOD, REQUEST-AREA, REQUEST-PRICERANGE, AN-
SWER, NONE), whereas the action set of the one-dimensional base-
line (column °‘All’) grows from 9 to 13 actions, since the extension
applies to both REQUEST and REQ+IMPL-CONFIRM.

Hence, we first train a multi-dimensional system for the source
scenario, in which the Task agent uses a summary action for request-
ing slots (mdim-src). This yields 4 trained policies, corresponding to
the 3 conversational dimensions plus the evaluation agent. Out of
these, the policies for Auto-feedback and SOM are subsequently re-
used and adapted when we train a system for the target scenario, in
which the Task agent uses the extended action set (mdim-ada). As
baselines, we also train a multi-dimensional system for the target
scenario without re-using the pre-trained Auto-feedback and SOM



policies (multi-dim) and a one-dimensional system for the target sce-
nario in which all action combinations from the multi-dimensional
system are taken as single actions into one action set (one-dim).

3.1. Training details

All action selection models are trained in online interaction with
an agenda-based user simulator [14]. In each case, all 4 policies
are trained simultaneously using Monte Carlo Control reinforcement
learning with linear value function approximation [[15]. Each policy
selects actions from its own action set, based on the approximated
values given the current state. The values predict the long-term cu-
mulative reward when taking an action in a given state and following
the policy in subsequent turns, where the state is represented by a set
of features extracted from the full dialogue state. During training, the
policies use Boltzmann exploration, i.e., actions are sampled from a
softmax distribution applied to the estimated values. The tempera-
ture hyper-parameter of the softmax is decayed linearly, gradually
reducing the level of exploration until the policy only selects actions
with the highest estimated value. The weights of the linear value
function are updated after every dialogue/episode, based on a shared
reward signal. The policies coordinate their actions only indirectly
through the shared rewards, i.e., each policy operates independently
without any direct communication with other policies.

The rewards are calculated at each turn, combining rewards ob-
tained from the simulated user with internal rewards. The user gives
a reward of +100 upon task completion: in the restaurant search do-
main, this is when the system has recommended a restaurant match-
ing the user’s preferences and has provided all requested information
about this restaurant. Such ‘user goals’ are randomly initialised from
the domain ontology at the start of each dialogue, and fed to the sim-
ulated user. In addition, the user issues a penalty when the system
fails to respond to a thanking action or inserts a social act when it is
not called for (-5 for each occurrence). This is to force the system to
learn basic reactive social behaviour, though we are aware that this
might be experienced as repetitive and unnatural. In future work, we
will consider learning more sophisticated social patterns. Internally,
a penalty of -1 is applied for each turn (to encourage shorter dia-
logues) and a penalty of -25 when a ‘processing problem’ is encoun-
tered and the system does not signal this to the user with a feedback
act. A processing problem is recorded in the dialogue state when
speech recognition or natural language understanding fails, i.e., re-
turns no results. During training, such processing problems are sim-
ulated randomly in 5% of the user turns, discarding the original sim-
ulated user act.

The Evaluation agent from [7] was implemented via a set of
rules, based on definitions from the dialogue act annotation standard
[L1]. Here, we implement it as another reinforcement learning agent,
which takes as input the candidate dialogue act for each dimension
and selects which dialogue act combination will be passed on to the
natural language generation component. Given that there are 3 sup-
ported dimensions, the actions correspond to the 8 possible combi-
nations of dimensions that can be selected. Using an action masking
mechanism, we ensure that the Evaluation agent only allows single
dialogue acts or a combination of IMPL-CONFIRM (Auto-feedback
dimension) with OFFER or with any of the three REQUEST actions
(Task dimension).

3.2. Results

The policy optimisation results in simulation for the target scenario
are shown in Figure [J] The learning curves (here shown in terms

of success rates) quite clearly show that the performance levels are
much higher in the early stages of training when using our proposed
multi-dimensional adaptation method (mdim-ada, in red) than when
training a multi-dimensional action selection model from scratch
(multi-dim, in green). In the first 20k training dialogues we also
observe much higher success rates compared to the one-dimensional
baseline (one-dim, in blue).
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Fig. 2. Learning curves for the target scenario in terms of success
rate for the three training methods. Note that the results are averaged
over 10 training runs in each setting; in each training run, success
rates over a sliding window of 100 dialogues are recorded.

After training all policies, we ran evaluations of the fully trained
policies over 3000 simulated dialogues each, at 25% semantic error
rate. The first three rows in Table |Z| correspond to the systems with
the extended action set (the target scenario) that were also shown in
Figure[2] These systems all score similar average rewards, although
the adapted system (mdim-ada) gets a slightly higher success rate,
but with slightly longer dialogues. Since the system with the orig-
inal action set (the source scenario) covers the same range of full
system dialogue acts (through its summary actions and heuristics for
mapping them to complete dialogue acts), it has the same function-
ality as the extended system, and can therefore be included in the
evaluation for comparison. As this system (mdim-src) achieves sim-
ilar scores, automatically learning request actions for each slot did
not result in improved performance levels in this particular scenario.
Whether improvements can be achieved in this way, however, de-
pends on the nature of the domain ontology and database, and on the
behaviour of the users.

System ASet ADA NLU Succ Len Rew

one-dim ext no sim 96.0 9.28  86.06
multi-dim ext no sim 96.7 949  85.49
mdim-ada ext yes sim 983 971 8792
mdim-src sum  no sim 972 9.57 87.15
one-dim-asu ext no asu 99.5 7.69 91.83
mdim-ada-asu  ext yes asu 88.9 751 8141

Table 2. Evaluation of fully trained policies over 3000 simulated
dialogues. ASet: Action Set (summary/extended), ADA: adapted
(yes/no), NLU: Natural Language Understanding (asu/simulated),
Succ: Success Rate, Len: Average Length, Rew: Average Reward

The results in the first 4 rows have been obtained using a rule-
based state tracker that takes (simulated) user dialogue act hypothe-



System Success rate \ Average length \ Average reward | Num. dial’s
one-dim 96.0 96.0 99.5 9.28 9.28 7.69 86.06 86.06 91.83 100k
mdim-ada 98.3 98.3 88.9 9.71 9.71 7.51 87.92 87.92 81.41
one-dim 59.1 61.7 64.9 8.02 11.64 10.15 49.05 45.78 52.13 18k
mdim-ada 73.5 73.8 73.3 895 10.01 7.71 62.18  60.77 64.25
one-dim 48.9 57.5 60.3 7.55 11.98 10.63 37.31 38.05 45.82 17k
mdim-ada 77.1 79.1 78.5 9.49 10.70 7.75 65.55 64.99 68.72
one-dim 45.3 48.5 54.1 7.30 11.60 10.16 34.07 30.04 39.77 16k
mdim-ada 83.5 83.5 83.2 9.32  10.36 8.13 73.04 71.18 74.21
one-dim 30.6 334 37.5 5.61 11.94 10.70 19.86  13.95 21.48 15k
mdim-ada 64.5 64.3 62.3 9.26 10.14 8.08 52.67 50.54 52.44
| no-expl  expl expl+asu | no-expl  expl expl+asu | no-expl  expl expl+asu |

Table 3. Evaluation of partially trained policies over 3000 simulated dialogues, reporting success rate, average dialogue length, and average

reward in three settings.

ses as input, as is the case during policy optimisation. For the human
user evaluation, we use the Action State Update (ASU) dialogue
state tracker [16] that takes user utterances as input (see also Sec-
tion [f.1). We have therefore also evaluated the one-dim and mdim-
ada policies with this tracker in the loop, and included a hybrid re-
trieval/template based natural language generation component that
maps simulated user dialogue acts to natural language utterances that
can be fed to the ASU componenﬂ For the one-dimensional system,
this results in higher scores (one-dim-asu), whereas for the adapted
multi-dimensional system, we get considerably lower scores (mdim-
ada-asu). In the latter case, we note however that this is mainly due
to one of the 10 policy combinations performing very badly: the
policy repeatedly responds with negative feedback, after which the
simulated user loses its patience and hangs up, resulting in 0% suc-
cess rate and -5.02 average reward. In contrast, the other policies all
achieve 98% success rate.

In order to decide which partially trained policies to include in
the human user evaluation, we have run simulated evaluations for
the policies that were obtained after 15k, 16k, 17k, and 18k train-
ing dialogues. This pre-selection is based on the learning curves
in Figure 2| and in particular the area where the success rate of the
one-dimensional system is starting to build up, but is still strongly
outperformed by the adapted multi-dimensional system. The results
in Table [3| report success rates, average dialogue lengths (in terms
of user turns), and average rewards over 3000 simulated dialogues
at 25% error rate. Each evaluation is carried out in three different
settings, indicated in the bottom row of the table: 1) using the rule-
based state tracker and no policy exploration, i.e. the policies always
select the action with the highest estimated value (no-expl); 2) using
the rule based state tracker and policy exploration at the level deter-
mined by the temperature setting at the corresponding stage of train-
ing (expl); and 3) using the ASU state tracker and policy exploration
(expl+asu).

At a relatively early training stage, the policy is still exploring
the state-action space, and has not experienced many successful di-
alogues yet. Therefore, the reported performance levels can differ
between the no-expl and expl settings. Overall, the results in Table[3]
show lower average rewards in the expl setting, but higher success

I Training the policies together with the ASU tracker is currently not prac-
tical, because its BERT model is too slow for running the required volume of
training dialogues.

rates. Furthermore, the performance levels are much higher when
evaluating with the ASU tracker in the loop. The likely reason for
this is that no semantic error model was used in this setting, i.e.,
the true user dialogue acts from the simulator were used to generate
the input user utterances for the tracker. Hence, the language un-
derstanding performance is probably much better in this setting, and
therefore the action selection performance as well.

Based on these results, we selected the one- and multi-dimensional
models that were trained on 17k dialogues for the human evaluation,
as well as the fully-trained multi-dimensional system. The three
selected variants are highlighted in grey in Table 3| and also pointed
out in Figure[2}

4. HUMAN USER EVALUATION

Using the agenda-based user simulator and error model, we have
shown that significant performance gains with limited training data
can be achieved with the proposed adaptation method. However,
it remains to be seen to what extent these results are representative
for the scenario of real users interacting with the system [17, [18].
Ideally, the policy optimisation experiments should be carried out
in online interaction with human users, which has been attempted
with some success [19} 20]. However, this requires moving to more
sample efficient optimisation methods and addressing many other
technical challenges, which we will leave for future work. Instead,
we have run a human user evaluation in which we compared three
system variants, and in particular two sets of partially trained poli-
cies, corresponding to the adapted multi-dimensional system and
the non-adapted one-dimensional baseline, both trained on 17k di-
alogues only.

Users were recruited through the Amazon Mechanical Turk
(AMT) crowd-sourcing platform, where they were given a task de-
scription (e.g., “You are looking for a moderately priced French
restaurant. Make sure you get the phone number and address.”)
and a link to the web-based interface that we have created. To en-
able spoken dialogue on the web interface, we use the Google Web
Speech API for both ASR (for recognising the user’s speech) and
TTS (for synthesizing the system’s speech); our dialogue system
server receives recognised user utterances and responds with system
utterances, both in text form.

After finishing their conversation with the system, the user can
‘hang up’ by pressing a button and receive a token which they can



System Num. Average Q1[%] Q2[%] Q3[1-6] Q4 [1-6] Q5[1-6] Q6 [1-6]
Dialogues Length Found Venue DialSuccess Understand Recognise SysResponse Naturalness
one-dim-17k 203 7.69 (4.34)  65.52(3.34)  63.05(3.40) 3.34(1.68) 3.46 (1.66) 3.21(1.72) 3.01 (1.77)
mdim-ada-17k 201 6.52(3.24)  73.00 (3.15)  70.00 (3.25)  3.43(1.58)  3.56(1.55) 3.48 (1.59) 3.35(1.67)
mdim-ada-100k 199 5.88(2.38) 78.89(2.90) 79.90(2.85) 3.76 (1.56)  3.86 (1.50) 3.93 (1.46) 3.71 (1.62)

Table 4. Human user evaluation results, where N is the number of dialogues, AvgLen is the average number of turns per dialogue, and Q1-6
are the scores obtained from the questionnaire. The scores for Q1-2 are percentages, and the standard deviation for each score is indicated in

brackets.

use to proceed on the AMT page, where they are given a question-
naire to fill out and submit, upon which they complete the task. In
the questionnaire, the subject is asked to state their opinion on 6
statements about the conversation, in the form of either a binary Yes
or No (Q1 and Q2), or on a 6 point Likert scale (Q3 to Q6), ranging
from ‘Strongly disagree’ to ‘Strongly agree’.

Q1: The system recommended a restaurant that matched my con-
straints. (Yes/No)

Q2: I got all the information I was looking for. (Yes/No)

Q3: The system understood what I was saying. (6 point Likert)
Q4: The system recognised my speech well. (6 point Likert)
Q5: The system’s responses were appropriate. (6 point Likert)

Q6: The conversation felt natural. (6 point Likert)

4.1. Spoken dialogue system implementation

Our dialogue system takes as input the user utterance text, in the
form of the ASR top hypothesis obtained from the web interface.
A domain-independent dialogue act tagger is used to recognise so-
cial acts like goodbye and thanks, after which the utterance is passed
to the Action State Update model for dialogue state tracking [16].
The dialogue state contains beliefs about the user goal (in terms of
slot-value pairs and their confidence score), which slots are believed
to be requested, which database items are or have been discussed,
whether any processing problems have occurred (i.e. speech recog-
nition or language understanding failed), and the dialogue act tags of
previous user utterances. Based on the dialogue state, one or more
system dialogue acts are selected using one of the trained action se-
lection models; the three models compared in the human evaluation
are highlighted in Table [3] A set of templates is used to generate
a natural language system response from the selected dialogue acts.
The response is synthesised on the web interface.

In order to obtain results that are representative for each system
variant, all 10 policies that were trained for each variant have been
evaluated and the average results reported. For each dialogue, one
policy is selected from the pool of 10 using a round-robin system.

4.2. Results

The evaluation results are shown in Table ] including the (objec-
tive) average dialogue length and the (subjective) scores from the
questionnaire. As expected, the fully trained system mdim-ada-
100k gets the best scores. More importantly, across all metrics the
partially trained mdim-ada-17k gets better scores than the partially
trained baseline one-dim-17k. Especially in terms of average dia-
logue length and the perceived partial and full task completion rates
(QI resp. Q2) the difference between one-dim-17k and mdim-ada-
17k is substantial, as was predicted by the experiments with the

user simulator. The scores for perceived understanding (Q3) and
speech recognition (Q4) could somewhat explain these differences
(rather than attributing them to the used policies), but their variance
is quite large. When assessing how appropriate the system responses
appear to users (QS5), the difference between one-dimensional and
multi-dimensional adaptation is larger.

Compared to the simulated evaluation results in Table[3] the per-
ceived success rates (Q2) are much lower in the case of the fully
trained system (79.9% vs. 88.9%) and the multi-dimensional par-
tially trained system (70% vs. 78.5%), whereas they are slightly
higher in the case of the partially trained one-dimensional system
(63.05% vs. 60.03%).

In terms of average dialogue length, the human evaluation dia-
logues turn out to be shorter overall. This suggests that the human
subjects might have given up more quickly when the system failed
to recommend a restaurant that met their constraints, i.e. the unsuc-
cessful dialogues were shorter. In contrast, the simulator keeps try-
ing to complete the goal until the maximum number of user turns is
reached (set to 30 turns in the configuration) or the system response
act is repeated too many times (set to 3 times in the configuration).

5. RELATED WORK

In the area of transfer learning methods for dialogue management,
most approaches have focused on cross-domain adaptation or multi-
domain optimisation for slot-filling dialogue, where each domain is
defined in terms of slots and their possible values.

In [3], Domain-Independent Parameterisation (DIP) of dialogue
state and action representations is introduced to enable transfer
across domains. DIP seeks to train a dialogue policy that abstracts
away from the specific slots and values in a particular domain, so it
is applicable to the conversational search task in other domains as
well. The effectiveness of their method was demonstrated using an
agenda-based user simulator when adapting from restaurant search
to laptop search. Furthermore, they carried out a human user eval-
uation, showing that their best transferred DIP policy performed at
the same level as a non-transferred in-domain policy.

A Bayesian approach to dialogue management is described in
[Sl], which uses Gaussian Process (GP) reinforcement learning, ex-
ploiting model priors of a generic dialogue policy for fast domain
adaptation. They also discuss a Bayesian committee machine ap-
proach, in which each domain is handled by a separate GP policy,
but when only limited data is available for a specific domain, its pol-
icy may rely on the output of the other policies. This approach has
been further extended into a multi-agent learning setting, further im-
proving performance levels during training with human users.

The Multi-Agent Dialogue Policy (MADP) is proposed in [4],
which consists of several slot-specific agents and a slot-independent
agent. Adopting the Deep Q-Network (DQN) reinforcement learn-
ing framework [21]], the parameters of the slot-independent agent



and the shared parameters of the slot-specific agents that have been
learned for the source domain can be transferred to a new target do-
main. So in this case, the multi-agent design is based on the slots
in the domain definition. The benefit of this method has only been
demonstrated in simulated experiments, and is focused on adapting
to new slots within the same restaurant/tourist information task. A
more recent incarnation of this approach is the AgentGraph frame-
work [22]], which employs Graph Neural Networks. This method
was evaluated using the PyDial benchmark, demonstrating success-
ful transfer between restaurant search and laptop shopping tasks.

Where the agents in S]] are associated with domains, and the
agents in [4,22] are associated with slots (except for the generic slot-
independent agent), the agents in the multi-dimensional approach
to dialogue management are associated with dimensions [23]. Al-
though this approach is very different in nature, it is not necessarily
incompatible with these other multi-agent approaches. For example,
it could benefit from the MADP approach by dividing up the Auto-
feedback agent into sub-agents for each slot in the domain definition.

The multi-dimensional design presented in this paper is an ex-
tension of the previous models described in [9l [7]. First, the sys-
tem supports the generation of multiple dialogue acts in a single
response; second, the Evaluation agent that was extended for this
purpose is trained jointly with the other agents. Furthermore, the
adaptation use-case in previous work was limited to domain adap-
tation only, where the slots and values changed between source and
target scenario, but not the action sets. Finally, the human evaluation
described in [7]] included fully trained policies only, showing that a
multi-dimensional system could be trained to a performance level
equivalent to a one-dimensional baseline. In this paper, we have pre-
sented a human user evaluation to confirm the performance boost
of partially adapted policies seen on simulated data when using the
multi-dimensional adaptation method.

6. CONCLUSION

We have presented a multi-dimensional approach to dialogue man-
agement, in which system response actions are selected through a
combination of 4 dialogue policies, 2 of which are task-independent,
and are therefore suitable for re-use when moving to a new applica-
tion. In simulated policy optimisation and evaluation experiments
we have shown that by re-using and adapting these task-independent
policies, significant performance gains can be achieved in the early
stages of training. As a first task adaptation use-case, we have looked
at extending the task-specific action set with multiple slot-specific
request actions, replacing the original summary request action that
relied on heuristics to determine the slot to be requested. To con-
firm the adaptation results obtained with an agenda-based user sim-
ulator, we have carried out a crowd-sourced human user evaluation.
When trained on the same limited amount of training data, the pro-
posed multi-dimensional adaptation strategy achieved significantly
better results than the one-dimensional baseline (trained from scratch
without any adaptation) on all subjective metrics, including task suc-
cess and appropriateness of system responses, as well as on dialogue
length.

In future work, we will consider more challenging use cases for
applying the multi-dimensional adaptation method. We will extend
the role of the social agent to improve the naturalness of the interac-
tions, explore methods for combining different types of agents (e.g.,
rule-based agents, or agents trained with supervised learning), and
investigate the relation between multi-dimensional dialogue man-
agement and natural language generation. Finally, to enable on-
line learning with human users and therefore evaluate the proposed

adaptation method more directly, we will explore more efficient re-
inforcement learning algorithms.
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